$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

secant lines, tangent lines, and etymology
secant (n.) 1590s, from Latin secantem "a cutting," present participle of secare "to cut"; from PIE root *sek, "to cut."
related words: dissect, hacksaw, section, sector, scythe

$$
m=\frac{f(b)-f(a)}{b-a}
$$

$$
m=\frac{\overbrace{f(b)-f(a)}^{\text {rise }}}{\underbrace{b-a}_{\text {run }}}
$$

secant lines tell us about averages.
... but what if we want exactness?
tangent (adj.) 1590s, "meeting at a point without intersecting," from Latin tangere "to touch," from PIE root *tag-, "to touch, handle."
related words: tactile, tangible, (to) taste

$$
x=a
$$

"horizontal" distance from x

$$
x=a, b=x+\overbrace{h}
$$

"horizontal" distance from x

$$
x=a, b=x+\overparen{h}
$$

$$
m=\frac{f(b)-f(a)}{b-a}
$$

"horizontal" distance from x

$$
x=a, b=x+h
$$

$$
m=\frac{f(b)-f(a)}{b-a}=\frac{f(x+h)-f(x)}{(x+h)-x}
$$

$$
m=\frac{f(x+h)-f(x)}{(x+h)-x}
$$

$$
m=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{(x+h)-x}
$$

$$
m=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

slopes of tangent lines tell us about exact local behavior.
we can generalize this "slope of the tangent line" idea to work with lots of functions:
we can generalize this "slope of the tangent line" idea to work with lots of functions:

we call it a derivative.

$$
m=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

