Partner's Names:

Name:__

Recitation Week 3: Trig!

Directions: Below are the questions for the activity. The triangles will say something like "Question 1". You will answer Question 1 below and look for the answer on a different triangle. When you are finished, you should have 3 tetrahedrons. If you want a hint, some questions will have a helpful hint on the back. Also, for an extra challenge, there are 6 additional questions for another tetrahedron. Good Luck!

Question 1) What is the exact value of $(\cos(\frac{5\pi}{12}) + \sin(\frac{5\pi}{12}))(\cos(\frac{5\pi}{12}) - \sin(\frac{5\pi}{12}))?$ Question 2) What is the exact value of $\sin(15^\circ)\cos(15^\circ)$? Question 3) Given $\cos \theta = \frac{3}{5}$ and $\sin \theta < 0$, what is $\sin(2\theta)$? Question 4) If $\cos(2\theta) = \frac{4}{5}$ and $\theta \in (\frac{\pi}{2}, \pi)$ what is $\cos \theta$? Question 5) Given $\sin(\frac{\theta}{2}) = \frac{3}{5}$, what is $\cos\theta$? Question 6) If $\sin(\frac{\theta}{2}) = \frac{3}{5}$, what is $\sin \theta$? Question 7) If $\cos(\frac{\theta}{2}) = \frac{5}{13}$, what is $\sin \theta$? Question 8) What is the exact value of $\cos(\frac{11\pi}{12})\cos(\frac{5\pi}{12}) - \sin(\frac{11\pi}{12})\sin(\frac{5\pi}{12})$ Question 9) What is the exact value of $\cos(\frac{7\pi}{12})\cos(\frac{5\pi}{3}) - \sin(\frac{7\pi}{12})\sin(\frac{5\pi}{3})$ Question 10) Given $\sin \theta = \frac{4}{5}, \theta \in (\frac{\pi}{2}, \pi), \cos \phi = -\frac{5}{13}$ and $\phi \in (\pi, \frac{3\pi}{2})$, what quadrant is $\theta + \phi$ in? Question 11) What is the exact value of $\sin(75^\circ)$ Question 12) What is the exact value of $\sin(\frac{7\pi}{12})\cos(\frac{5\pi}{6}) - \cos(\frac{7\pi}{12})\sin(\frac{5\pi}{6})$ Question 13) Given $\sin \theta = \frac{4}{5}, \theta \in (\frac{\pi}{2}, \pi), \cos \phi = -\frac{5}{13}$ and $\phi \in (\pi, \frac{3\pi}{2})$, what quadrant is $\theta - \phi$ in? Question 14) If a 45 - 45 - 90 triangle has a hypotenuse length of 6, what is the leg length? Question 15) If a 30-60-90 triangle has a short length of $5\sqrt{3}$, what is the length of the other length? Question 16) If the short leg of 30 - 60 - 90 triangle is 5 and the leg of a 45 - 45 - 90 triangle is also 5 which triangle has the SHORTER perimeter? For ease of calculation, you may use $\sqrt{2} \approx 1.41$ and $\sqrt{3} \approx 1.73$

Question 17) If the hypotenuse of a 30 - 60 - 90 triangle is 10 and the hypotenuse of a 45 - 45 - 90 triangle is also 10, which triangle has the LARGER area?

- Hint 1) Have fun with some algebra!
- Hint 2) What identity does this look like?
- Hint 3) Which quadrant is this in?
- Hint 4) Which quadrant is this in?
- Hint 5) Which quadrant is this in?

Hint 6) What identity relates $\sin \theta$ and $\cos \theta$?

Hint 7) What identity relates $\sin \theta$ and $\cos \theta$?

- Hint 8) What identity does this look like?
- Hint 9) What identity does this look like?
- Hint 10) What are the signs of $\sin(\theta + \phi)$ and $\cos(\theta + \phi)$?
- Hint 11) 135 60 = 75
- Hint 12) What identity does this look like?
- Hint 13) What are the signs of $\sin(\theta \phi)$ and $\cos(\theta \phi)$?
- Hint 14) Remember your special right triangles!

Hint 15) Remember your special right triangles!

- Hint 16) Remember your special right triangles!
- Hint 17) Remember your special right triangles!

Challenge 1) Use the angle addition or subtraction formula(s) to determine the exact value of $\tan(\frac{7\pi}{12})$ (Hint: What is $\sin(\frac{7\pi}{12})?\cos(\frac{7\pi}{12})?$ How will those help here?)

Challenge 2) What is the general form for $\tan(\theta + \phi)$?

Challenge 3) What is the general form for $\tan(2\theta)$?

Challenge 4) What is the general form for $\tan(\frac{\theta}{2})$?

Challenge 5) Is $\cos(\frac{\pi}{2})$ defined? Why?

Challenge 6) Is $\tan(\frac{\pi}{2})$ defined? Why?