Week 3 Recitation Problems
MATH:113, Recitations 304 and 305

Continuity

1. Is

$$
f(t)= \begin{cases}\cos (t)+1 & t \leq 0 \\ 2-3 t & t>0\end{cases}
$$

continuous at $t=0$? How do you know?
2. Is

$$
g(x)= \begin{cases}e^{x} & x<0 \\ 9 x^{2}+x+1 & x \geq 0\end{cases}
$$

continuous? Where?
3. Suppose we draw a ray from the origin of the plane until it hits the unit circle at the point $P=\left(p_{x}, p_{y}\right)$. Let t be the counterclockwise angle from the x-axis to the ray. Now, draw a line L parallel to the y-axis that passes through P and intersects the x-axis at the point $Q=\left(q_{x}, 0\right)$. Finally, define functions $A(t), O(t)$, and $R(t)$ on the unit circle where

- $A(t)$ is the length of the line segment from the origin to the point $\left(q_{x}, 0\right)$,
- $O(t)$ is the length of the line segment from the point $\left(q_{x}, 0\right)$ to the point P, and
- $R(t)$ is the ratio of the lengths of the line segments.

Are $A(t)$ and $O(t)$ continuous? Is $R(t)$ continuous?
Solutions

1. We can check the left-and right limits to ensure they're the same:

$$
\begin{aligned}
\lim _{t \rightarrow 0^{-}} f(t) & =\lim _{t \rightarrow 0^{-}} \cos (t)+1 \\
& =2 \\
\lim _{t \rightarrow 0^{+}} f(t) & =\lim _{t \rightarrow 0^{+}} 2-3 t \\
& =2
\end{aligned}
$$

and that $f(0)=2$ (which it does). Thus, it's cont's.
2. Same as \#1, but limit is 1 insteced.
3. These are just the frigg functions in clinguise!

By drawing different rays, we can experiment and determine that $A(t)$ and $O(t)$ san tate on all values in $[-1,1]$ and are thus cont's. But we should recognize that, $\alpha s t \rightarrow \frac{\pi}{2}$, or $t \rightarrow \frac{3 \pi}{2}$, the denominator of $R(t)$ goes to \mathcal{O} while the numerator doesnif. In other words,

$$
\begin{aligned}
\lim _{t \rightarrow \frac{\pi}{2}} \frac{O(t)}{A(t)} & =" \frac{\sin (t)}{\cos (t)} \quad \text { (and same for } \frac{3 \pi}{2} \text {.) } \\
& =\frac{\sin \left(\frac{\pi}{2}\right)}{0} \\
! & =\text { so } R(t) \text { is not cont's. }
\end{aligned}
$$

