limits

sequences

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

a sequence is a list of mathematical objects.

$S = \{ \triangle, \Box, \Diamond, \bigcirc, \dots \}$

definition 1:

definition 1:

the *limit of a sequence* S is the value that S's terms approach.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ ○ ○ ○ ○

$S = \{ \triangle, \Box, \triangle, \bigcirc, \dots \}$

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

$S = \{ \triangle, \Box, \triangle, \bigcirc, \dots \} \rightarrow \bigcirc$

in our class, a *sequence* is an ordered list of *real numbers*.

symbolically, we'll write sequences as

$$S = \{a_1, a_2, \dots, a_n, \dots\}$$

where a_n is the n^{th} term in the sequence.

(ロ)、(型)、(E)、(E)、 E) のQ(()

we can also write sequences using shorthand:

$$S = \{a_n\}_{n=1}^{\infty}$$

where a_n is the n^{th} term in the sequence.

$S = \{3, 3.1, 3.14, 3.141, 3.1415, \dots$

$S = \{3, 3.1, 3.14, 3.141, 3.1415, \dots$ what's the n^{th} term of S?

 $S = \{3, 3.1, 3.14, 3.141, 3.1415, \dots$ what's the $n^{\rm th}$ term of S? what's the limit of S?

definition 2:

definition 2:

the *limit of a sequence* S is the value that the n^{th} term approaches as n gets really, really big.

... can we more precisely define a limit?

definition 3:

definition 3:

a sequence has a limit at L if the entries a_n get arbitrarily close to L as $n \to \infty$.

if L is the limit of a sequence as $n \to \infty,$ we write

$$\lim_{n \to \infty} a_n = L.$$

take **five minutes** to complete **problem 1** on your worksheets.

functions

a *function* is a relationship between a set of *inputs* and a set of *outputs*.

functions are a special kind of relationship: each possible input has *exactly* one output.

definitions:

the *domain* of a function is the set of all inputs which have an output. the *range* (or *image*) of a function is the set of all possible outputs.

 $f(x) = \sqrt{x}$

take ten minutes to complete problem 2 on your worksheets.

functions can have limits, too.

・・・・
・・・
・・・
・・
・・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
<

definition:

a function has a limit L as x approaches the p if f(x) gets really close to L as we make x really close to p.

if L is the limit of a function as $x \to p,$ we write

$$\lim_{x \to p} f(x) = L.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ ○ ○ ○ ○ ○

take the rest of class to complete problem 3 on your worksheets.

<ロト < 団 > < 巨 > < 巨 > 三 の < で</p>