limits

sequences

a sequence is a list of mathematical objects.

$$
S=\{\triangle, \square, \square, \square, \ldots\}
$$

definition 1:

definition 1:

the limit of a sequence S is the value that S 's terms approach.

$$
S=\{\Delta, \square, \bullet, \square, \ldots\}
$$

$$
S=\{\Delta, \square, \bullet, \square, \ldots\} \rightarrow \bigcirc
$$

in our class, a sequence is an ordered list of real numbers.

symbolically, we'll write sequences as

$$
S=\left\{a_{1}, a_{2}, \ldots, a_{n}, \ldots\right\}
$$

where a_{n} is the $n^{\text {th }}$ term in the sequence.
we can also write sequences using shorthand:

$$
S=\left\{a_{n}\right\}_{n=1}^{\infty}
$$

where a_{n} is the $n^{\text {th }}$ term in the sequence.

$$
S=\{3,3.1,3.14,3.141,3.1415, \ldots
$$

$$
\begin{aligned}
S= & \{3,3.1,3.14,3.141,3.1415, \ldots \\
& \text { what's the } n^{\text {th }} \text { term of } S ?
\end{aligned}
$$

$$
\begin{gathered}
S=\{3,3.1,3.14,3.141,3.1415, \ldots \\
\text { what's the } n^{\text {th }} \text { term of } S ? \\
\text { what's the limit of } S ?
\end{gathered}
$$

definition 2:

definition 2:

the limit of a sequence S is the value that the $n^{\text {th }}$ term approaches as n gets really, really big.
... can we more precisely define a limit?
definition 3:

definition 3:

a sequence has a limit at L if the entries a_{n} get arbitrarily close to L as $n \rightarrow \infty$.
if L is the limit of a sequence as $n \rightarrow \infty$, we write

$$
\lim _{n \rightarrow \infty} a_{n}=L
$$

take five minutes to complete problem 1 on your worksheets.
functions
a function is a relationship between a set of inputs and a set of outputs.
functions are a special kind of relationship: each possible input has exactly one output.

definitions:

the domain of a function is the set of all inputs which have an output. the range (or image) of a function is the set of all possible outputs.

$$
f(x)=\sqrt{x}
$$

take ten minutes to complete problem 2 on your worksheets.
functions can have limits, too.

definition:

a function has a limit L as x approaches the p if $f(x)$ gets really close to L as we make x really close to p.
if L is the limit of a function as $x \rightarrow p$, we write

$$
\lim _{x \rightarrow p} f(x)=L
$$

take the rest of class to complete problem 3 on your worksheets.

