Week 9 Recitation Problems

MATH:114, Recitations 309 and 310

An improper integral is the definite integral of a function where one or both of the limits

of integration approach interval of integration.	infin	ity or the fu	nction is discontir	nuous somewhere on the
1. Using what you've covered these answers?	ed in	lecture, fill ou	ıt the table below. H	Iow are you thinking about
	p =	Integral	Finite or Infinite?	
	1	$\int_{1}^{\infty} \frac{1}{x} dx$		
	1/2	$\int_{1}^{\infty} \frac{1}{x} dx$ $\int_{1}^{\infty} \frac{1}{\sqrt{x}} dx$ $\int_{1}^{\infty} \frac{1}{x^{2}} dx$		
	2	$\int_{1}^{\infty} \frac{1}{x^2} dx$		
2. If $p \neq 1$, compute the improper integral				
$\int_{1}^{\infty} \frac{1}{x^{p}} dx.$				
What are the conditions on \boldsymbol{p} that determine the convergence of the integral? Why do they make sense?				
Let's find out if $\int_3^\infty \ln(x)/\sqrt{x} \ dx$	dx is ${f c}$	convergent.		

- 3. Draw and compare the graphs of $f(x) = \ln(x)$ and g(x) = 1. When $x \ge 3$, which of the functions is greater than the other?
- 4. Using the result from Problem 4, what can you say about the functions $\ln(x)/\sqrt{x}$ and $1/\sqrt{x}$ when $x \geq 3$? If we integrate them as $\int_3^\infty \ln(x)/\sqrt{x} \ dx$ and $\int_3^\infty 1/\sqrt{x} \ dx$, which integral should be bigger?
- 5. Compute the integral $\int_3^\infty 1/\sqrt{x} \, dx$. Based on your result, what can you say about $\int_3^\infty \ln(x)/\sqrt{x} \, dx$?
- 6. Suppose we have two functions f(x) and g(x), and let $f(x) \ge g(x) \ge 0$ where $x \ge a$. If...

$$\int_{a}^{\infty} f(x) \ dx \ \text{diverges} \implies \int_{a}^{\infty} g(x) \ dx \ _$$

$$\int_{a}^{\infty} f(x) \ dx \ \text{converges} \implies \int_{a}^{\infty} g(x) \ dx \ _$$

$$\int_{a}^{\infty} g(x) \ dx \ \text{diverges} \implies \int_{a}^{\infty} f(x) \ dx \ _$$

$$\int_{a}^{\infty} g(x) \ dx \ \text{converges} \implies \int_{a}^{\infty} f(x) \ dx \ _$$

Note: the symbolic phrase $a \implies b$ *means "if* a, *then* b."

.....

7. Think about the integral

$$\int_{2}^{\infty} \frac{\cos^2(t)}{t^2} dt.$$

Do you think that this integral converges or diverges? Why?

8. What is a good function to compare the above integrand to? Write an inequality to justify your answer.