Week 8 Recitation Problems

MATH:114, Recitations 309 and 310

Names:			
	Names:		

Last week, we covered **linear** and **quadratic approximations** for a given function f. These approximations lead to **Taylor's Theorem**, which says:

Theorem (Taylor). Let f be continuously differentiable N+1 times at the point a. Then, there is a function R(x) and a point c between a and x which satisfies the following equation:

$$f(x) = P_N(x) + R_N(x),$$

where

$$P_N(x) = \underbrace{f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2}_{quadratic \ approximation!} + \dots + \frac{f^N(a)}{N!}(x-a)^N,$$

and

$$R(x) = \frac{f^{N+1}(c)}{(N+1)!}(x-a)^{N+1}.$$

The function $P_N(x)$ is the N^{th} -order **Taylor polynomial** — that is, a polynomial of degree N which approximates f at a. $R_N(x)$ is the **remainder** or **error** function, and represents how far away $P_N(x)$ is from f(x).

1. Let $f(x) = \sin(x)$ and a = 0. Compute the 6^{th} -order Taylor polynomial $P_6(x)$ and the remainder function $R_6(x)$. What pattern do you see?

2. Suppose $f(x) = \sin(x)$ and a = 0, and that N is an arbitrary finite number. Write an expression for the N^{th} -order Taylor polynomial $P_N(x)$ of f(x) using summation notation — that is,

$$P_N(x) = \sum_{k=1}^N \frac{f^k(a)}{k!} x^k$$

Also find the remainder function $R_N(x)$. Use the pattern you found in Problem 1 to help. Once you finish this question, STOP and tell one of the instructors. We'll discuss our results as a class before moving on!

3. Fill out the following table. In the first column, write one of the four expressions for $R_N(x)$ that we discussed as a class. In the second column, write the minimum and maximum possible value of the $f^{N+1}(c)$ that appears in $R_N(x)$. In the third column, write the absolute value of the value in the previous column. In the fourth column, substitute the absolute value in the previous question for $f^{N+1}(c)$ in the expression of $R_N(x)$. The first row of the table is filled out for you, with N=2k+1.

$R_N(x)$	$\min, \max f^{N+1}(c)$	$ \min, \max f^{N+1}(c) $	$R_N(x)$ Upper Bound
$R_N(x) = \frac{\sin(c)}{(2k+2)!} x^{2k+2}$	-1, 1	1	$R_N(x) \le \frac{(1)}{(2k+2)!} x^{2k+2} = \frac{x^{2k+2}}{(2k+2)!}$

What do you notice about the upper bounds of $R_N(x)$?

4. Using a a visualizer like Desmos, graph the function

$$\frac{\left(\frac{\pi}{2}\right)^{x+1}}{(x+1)!}$$

Using this graph, what can you say about the function

$$\frac{x^{N+1}}{(N+1)!}$$

as N goes to infinity? Once you finish this question, STOP and tell one of the instructors. We'll discuss our results as a class!

5. Based on our discussion, what can we say about the remainder $R_N(x)$ as N goes to infinity? Use this to conclude that

$$\sin(x) =$$