Week 5 Recitation Problems
MATH:114, Recitations 309 and 310

First, let's talk about linear approximations.

1. Let's approximate the function $f(x)=e^{x}$ around $x=0$. Discuss a few ideas for this specific approximation.
how can we capture curvature? how far do we have to "zoom in" for our approximation to make sense? What makes an approximation good?
2. Let $L(x)=a_{0}+a_{1} x$. What kind of function does $L(x)$ describe? Try to approximate $f(x)$ at $x=0$ by adjusting a_{0} and a_{1}, and draw a picture of your approximation.
$L(x)$ describes a line. pick a point a really close to x.
then... $\left\{\left(x_{1} f(x)\right) \geqslant\right.$ use a tangent line' we can say that...

$$
f(x)=1, f^{\prime}(x)=1 \Rightarrow L(x)=f(x)+\underbrace{f^{\prime}(x) x}_{\text {slope }}
$$

3. Come up with a general-purpose formula for approximating an arbitrary function $g(x)$ near the point x. (Hint: what does the Mean Value Theorem say?)

Yes! We can get, for a point a close to x,

$$
L(x)=f(a)+f^{\prime}(a)(x-a)
$$

slope distance from x to a
uses the "point-slope" formula

Now, we can talk about quadratic and higher-order approximations. To do so, we're going to find a quadratic function $Q(x)=a_{0}+a_{1} x+a_{2} x^{2}$ that approximates $f(x)$ near the point x. From the previous page, let

$$
f(x)=e^{x}
$$

4. To construct $Q(x)$, we want the first and second derivatives to look a lot like the first and second derivatives of $f(x)$. In each of the following equations, set $f(x)$ (or its derivatives) equal to $Q(x)$ (or its derivatives) and solve for each coefficient.

First, match the values of the functions:

$$
\left.\begin{array}{l}
\text { unctions: } \\
f(0)=Q(0) \Rightarrow a_{0}=1 \\
\text { inst derivatives. }
\end{array}\right\} \begin{aligned}
& 1=a_{0}
\end{aligned}
$$

Then, match the values of the first derivatives:

$$
\left.\begin{array}{l}
f^{\prime}(0)=Q^{\prime}(0) \Longrightarrow a_{1}=1 \\
\text { second derivatives: }
\end{array}\right\} \begin{gathered}
f^{\prime}(0)=a_{1}+2 a_{2}(0) \\
1=a_{1}
\end{gathered}
$$

Finally, match the values of the second derivatives:

$$
\left.f^{\prime \prime}(0)=Q^{\prime \prime}(0) \Longrightarrow a_{2}=\frac{1}{2}\right\} f^{\prime \prime}(0)=2 a_{2}
$$

5. Using the coefficients you just found, write out $Q(x)$. Can you come up with a generalpurpose formula for the quadratic approximation $Q(x)$ for an arbitrary function $g(x)$? What about a cubic approximation?

$$
\begin{gathered}
Q(x)=1+x+\frac{1}{2} x^{2} x^{2} \text { using this pattern, we get } \\
Q(x)=f(x)+f^{\prime}(x)(x)+\frac{f(x)}{2}(x)
\end{gathered}
$$

or, at the point $a_{\text {, }}$

$$
Q(a)=f(a)+f^{\prime}(x)(x-a)+\frac{f^{\prime \prime}(x)}{2}(x-a)
$$

6. Find the cubic approximation $C(x)$ for $f(x)=e^{x}$. For each of the linear, quadratic, and cubic approximations, check its value against the true value of $f(x)$ at $x=0$.

$$
C(x)=1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}
$$

