THE GREATEST THING YOU WILL DO ALL WEEK\#11

MATH 114 - CALCULUS II - SPRING 2020
Professor/TA : \qquad Sec: \qquad
FULL NAME: \qquad Partners: \qquad

Approximating functions using polynomials.

(A) Let us first do LINEAR approximations. We want to approximate the function $g(x)=e^{x}$ about $x=0$.

1) Deliberate with your group about how you might approximate the function $g(x)=e^{x}$ about $x=0$. Explain your thinking.
(2) Use one of the discussed methods to approximate the function using a line $L(x)=a_{0}+a_{1} x$. Draw the linear approximation $L(x)$ on the graph.
(3) Find a formula for the tangent line of an arbitrary function $f(x)$ about at the point $x=0$.
(B) Let us now tackle QUADRATIC approximations.
2) Let us find the quadratic $Q(x)=a_{0}+a_{1} x+a_{2} x^{2}$ that approximates the function $g(x)=e^{x}$ around $x=0$.
(i) Match function values:
(ii) Match tangents:
(iii) Match concavity:
3) Finally, $Q(x)=\square$

Use these results to graph the quadratic $\mathrm{Q}(\mathrm{x})$ (make sure to match location, slope and concavity!).
3) Find a formula for the quadratic approximation of an arbitrary function $f(x)$ about the point $x=0$.
(C) Complete the following table. Which method provides the best approximation? Why?

Functions	Value at $x=1$	Error
$g(x)=e^{x}$	2.71828	
$L(x)=$		
$Q(x)=$		

(D) Find a cubic $\left[C(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}\right]$ approximation for $g(x)=e^{x}$ at $x=0$.
(E) Extra time: Discuss how you could generalize this to a polynomial of degree $n\left[P(x)=\sum_{i=0}^{n} a_{i} x_{i}\right]$ approximation at $x=0$.

