Week 5 Recitation Problems
MATH:114, Recitations 309 and 310

Logarithms and Exponential Change
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If a function y(¢) is increasing or decreasing at an exponential rate, we can say it is exponen-
tially growing or exponentially decreasing, and this rate of change is proportional to its
value at a time ¢. In other words, y(¢) is proportional to its own derivative y/(¢), so

&ty =k-y(0) )

Writing this just in terms of our function y, and treating it like a variable, the following ex-
pressions are equivalent:
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A differential equation is when a function is equated to its own derivative(s), in an expres-
sion like the ones above. An initial value problem arises when you are given k and the
value of y(t) at a “starting value” or initial condition ¢; on its domain — like ¢y = 0, so
y(to) = y(0) = C, where C is some constant — and we are tasked with recovering the function
y(t). The above types of initial value problems have one specific solution:

y(t) = CeM,

where k& > 0.

3. Check that the function y(t) = Ce satisfies the equation in (x).

d - d kt soit L Ck, L s aconstmat,
- t)= & )
RN G Ce aucl

Kkt d k&
=(C-k-¢ l z—? s:L-e \/
4. Find the general solution for the initial value problem where & = 1/4 and y(to) = y(0) = 200.
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5. If y(t) from Problem 4 describes the population of mosquitoes, when will we triumph over
our pestilent insect overlords and vanquish their population? (In other words, at what time ¢
does y(t) = 07)
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WhiOn ore ?oss\\>\e..- the mogquitoeq never die.
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