Week 5 Recitation Problems
MATH:114, Recitations 309 and 310

Logarithms and Exponential Change

1. Evaluate

$$
\begin{aligned}
& \int \frac{1}{x \ln (x)} d x \\
= & \int \frac{1}{x} \cdot \frac{1}{\ln (x)} d x \quad\left\{\begin{array} { r l }
{ u = \operatorname { l n } (x) }
\end{array} \quad \left\{\begin{array}{l}
\frac{d u}{d x}=\frac{1}{x} \\
=
\end{array} \int \frac{d u}{d x} \cdot \frac{1}{u} d x\right.\right. \\
= & \int \frac{1}{u} d u
\end{aligned}
$$

2. Evaluate

$$
\int \frac{x}{x^{2}+4} d x
$$

use u-sub again!

$$
\begin{aligned}
& u=x^{2}+4, \\
& \frac{d u}{d x}=2 x, \\
& d u=2 x d x
\end{aligned} \quad \int \frac{x}{x^{2}+4} d x \quad \begin{aligned}
= & \int \frac{1}{2} \frac{d u}{d x} d x \\
= & \frac{1}{2} \int \frac{1}{u} d x \\
& =\frac{1}{2} \ln (u)+c \\
& =\frac{1}{2} \ln \left(x^{2}+4\right)+c \quad \because
\end{aligned}
$$

If a function $y(t)$ is increasing or decreasing at an exponential rate, we can say it is exponentially growing or exponentially decreasing, and this rate of change is proportional to its value at a time t. In other words, $y(t)$ is proportional to its own derivative $y^{\prime}(t)$, so

$$
\begin{equation*}
\frac{d}{d t} y(t)=k \cdot y(t) \tag{*}
\end{equation*}
$$

Writing this just in terms of our function y, and treating it like a variable, the following expressions are equivalent:

$$
\frac{d y}{d t}=k \cdot y(t) \quad y^{\prime}(t)=k \cdot y(t) \quad y^{\prime}=k \cdot y
$$

A differential equation is when a function is equated to its own derivatives), in an expression like the ones above. An initial value problem arises when you are given k and the value of $y(t)$ at a "starting value" or initial condition t_{0} on its domain - like $t_{0}=0$, so $y\left(t_{0}\right)=y(0)=C$, where C is some constant - and we are tasked with recovering the function $y(t)$. The above types of initial value problems have one specific solution:

$$
y(t)=C e^{k t},
$$

where $k>0$.
3. Check that the function $y(t)=C e^{k t}$ satisfies the equation in ($*$).

$$
\begin{aligned}
\frac{d}{d t} y(t) & =\frac{d}{d t} C e^{k t} \quad \text { so if } L=C \cdot k, L \text { is a constant, } \\
& =C \cdot k \cdot e^{k t}, \quad \text { and } \\
& \frac{d y}{d t}=L \cdot e^{k t}
\end{aligned}
$$

4. Find the general solution for the initial value problem where $k=1 / 4$ and $y\left(t_{0}\right)=y(0)=200$.

5. If $y(t)$ from Problem 4 describes the population of mosquitoes, when will we triumph over our pestilent insect overlords and vanquish their population? (In other words, at what time t does $y(t)=0$?)
$0=200 e^{\frac{1}{4} t}$, but then either $200=0$ or $e^{\frac{1}{4} t}=0$, neither of which are possible... the mosquitoes never die.
