Week 5 Recitation Problems
MATH:114, Recitations 309 and 310

Curve Length and Surface Area

1. Given a function f(z), how might we approximate the length of f(z) on the closed interval
[a,b]? Draw an annotated picture or write a few words to explain, and include relevant geo-
metric formulas or ideas. (Hint 1: use the Euclidean distance formula, which you are free to
look up. Hint 2: break the curve up into chunks!)
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2. Using your strategy from Problem 1, translate your approximation into an exact continuous
calculation (that is, one which uses an integral). Draw an annotated picture or write a few
words to explain, and include relevant calculus theorems or geometric ideas. (Hint: think
about the rectangle or trapezoid methods for estimating the area under a curve, which you are
free to look up.)
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describes how to find the surface area of the solid generated by the curve g(z) on the closed
interval [a, b]. What is familiar about this formula? Using annotated pictures or a few words,
describe the geometric ideas at work here.
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5. Let g(x) = V4 — 22, and —1 < = < 1. Find the surface area of the solid generated by rotating
g(z) around the x axis.
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