Week 5 Recitation Problems
MATH:114, Recitations 309 and 310

Curve Length and Surface Area

1. Given a function $f(x)$, how might we approximate the length of $f(x)$ on the closed interval $[a, b]$? Draw an annotated picture or write a few words to explain, and include relevant geometric formulas or ideas. (Hint 1: use the Euclidean distance formula, which you are free to look up. Hint 2: break the curve up into chunks!)

interpolate the curve, then sum the lengths of the segmentrusing the distance formula

$$
\left\{\begin{array}{l}
L=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
\left(L=\sqrt{\left.(\Delta x)^{2}+\Delta y\right)^{2}}\right)
\end{array}\right.
$$

2. Using your strategy from Problem 1, translate your approximation into an exact continuous calculation (that is, one which uses an integral). Draw an annotated picture or write a few words to explain, and include relevant calculus theorems or geometric ideas. (Hint: think about the rectangle or trapezoid methods for estimating the area under a curve, which you are free to look up.)
shrink the distances between the x values! (or, make Δx smaller!) $\overbrace{\text { using triangles: }} 1 f^{\prime}(c)=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\}$ slope

$$
\begin{gathered}
\left.f^{\prime}(c)=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right\}_{\text {slope }} \\
=\frac{\Delta y}{\Delta x}, \\
f^{\prime}(c) \Delta x=\Delta y
\end{gathered}
$$

$\Delta y=m \Delta x\left(a \operatorname{line} e^{\prime}\right) \mid "$ "there is a point c between

$$
L=\sqrt{\left((x)^{2}+(\Delta y)^{2}\right.}
$$

using mut:

$$
=\sqrt{(\Delta x)^{2}+(m \Delta x)^{2}}
$$

m is our derivative! is the slope ${ }^{\prime \prime}$!!!

$$
=\sqrt{1+m^{2}} \Delta x^{2}
$$

$$
\begin{aligned}
& \text { subbing, } \\
& L=\sqrt{(\Delta x)^{2}+(\Delta y)^{2}} \\
&=\sqrt{\Delta x^{2}+\left(f^{\prime}(c) \Delta x\right)^{2}} \\
&=\sqrt{1+f^{\prime}(c)^{2} \Delta x}
\end{aligned}
$$

3. Let

$$
\begin{aligned}
& f(x)=\frac{x^{3}}{6}+\frac{1}{2 x} . \\
& L=\int_{1}^{3} \sqrt{1} \sqrt{\frac{x^{4}+2 x^{4}+1}{4 x^{4}}} d x \\
& =\int_{1}^{3} \sqrt{\frac{\left(x^{4}+1\right)^{2}}{\left(2 x^{2}\right)^{2}}} d x \\
& =\int_{1}^{3} \frac{x^{4}+1}{2 x^{2}} d x
\end{aligned}
$$

Find the length of $f(x)$ when $1 \leq x \leq 3$.

$$
\begin{aligned}
\frac{d}{d x} f(x) & =\frac{x^{2}}{2}-\frac{1}{2 x^{2}} \\
& =\frac{x^{4}-1}{2 x^{2}} \\
& =f^{\prime}(x)
\end{aligned}
$$

4. The formula

$$
S=2 \pi \int_{a}^{b} g(x) \cdot \sqrt{1+g^{\prime}(x)^{2}} d x
$$

describes how to find the surface area of the solid generated by the curve $g(x)$ on the closed interval $[a, b]$. What is familiar about this formula? Using annotated pictures or a few words, describe the geometric ideas at work here.
 distance between x_{1} and x_{2} to be infinitesimal, then $r_{1} \approx r_{2}$ and we find the surface area of a cylinder!
we know the length of L is given by $L=\sqrt{1+f^{\prime}(x)^{2}} d x$, so we find the surface area of the cylinder $b y$

$$
2 \pi \cdot r \cdot h=2 \pi \cdot g(x) \cdot L_{j}
$$

then add the areas up!
5. Let $g(x)=\sqrt{4-x^{2}}$, and $-1 \leq x \leq 1$. Find the surface area of the solid generated by rotating $g(x)$ around the x axis.

$$
\begin{aligned}
\frac{d}{d x} g(x) & =\frac{-x}{\sqrt{4-x^{2}}}, \\
S & =\int_{-1}^{1} 2 \pi \cdot g(x) \cdot \sqrt{1+g^{\prime}(x)^{2}} d x \\
& =2 \pi \int_{-1}^{1} \sqrt{4-x^{2}} \cdot \sqrt{1+\frac{x^{2}}{4-x^{2}}} d x \\
& =2 \pi \int_{-1}^{1} \sqrt{4-x^{2}} \cdot \frac{2}{4-x^{2}} d x
\end{aligned}
$$

