Week 5 Recitation Problems MATH:114, Recitations 309 and 310

Curve Length and Surface Area

1. Given a function f(x), how might we **approximate** the length of f(x) on the closed interval [a, b]? Draw an annotated picture or write a few words to explain, and include relevant geometric formulas or ideas. (*Hint 1: use the Euclidean distance formula, which you are free to look up. Hint 2: break the curve up into chunks!)*

2. Using your strategy from Problem 1, translate your approximation into an exact continuous calculation (that is, one which uses an integral). Draw an annotated picture or write a few words to explain, and include relevant calculus theorems or geometric ideas. (*Hint: think about the rectangle or trapezoid methods for estimating the area under a curve, which you are free to look up.*)

/		{	include as Vt.
5	brink the distances be	tween the x values!	using
(or, make ox smaller!		$\int'(c) = \frac{\partial z}{x_{\bullet} - x_{\bullet}} \left\{ \text{slope} \right\}$
	a cuell and	using triangles: 1	54
	Small 22	by	$\frac{1}{\Delta \varkappa}$,
			f'(c) Dx = Dy
		Dy=max (a line!)	"there is a point c between
	1 mar	$\int \int $	x, and x2 where the deriv
-		$L = (\Delta z) + (\Delta y)$	subbing
		$= \sqrt{(\Delta x)^2 + (m \Delta x)^2},$	$1 = (\alpha x)^2 + (\alpha y)^2$
	m is our derivative	= fl+m2 Dx2	$= \int (2\pi)^2 + (f'(c) \Delta r)^2$
	(slope of the line)	shrink ax to dx to get 1	=.[[+1'(c] AX
١	,	$L = \sqrt{1 + f'(x)} dx$	

3

describes how to find the surface area of the solid generated by the curve g(x) on the closed interval [a, b]. What is familiar about this formula? Using annotated pictures or a few words, describe the geometric ideas at work here.

g(x) around the *x* axis.

$$\frac{d}{dx}g(x) = \frac{-x}{\sqrt{4-x^2}}, \qquad z = 2\pi\int 2 dx$$

$$S = \int 2\pi \cdot g(x) \cdot \sqrt{1+g'(x)^2} dx \qquad = 4\pi \int_{-1}^{1} \frac{1}{-1}$$

$$= 2\pi \int_{-1}^{1} \sqrt{4-x^2} \cdot \sqrt{1+\frac{x^2}{4-x^2}} dx \qquad = 8\pi$$

$$= 2\pi \int_{-1}^{1} \sqrt{4-x^2} \cdot \frac{2}{4-x^2} dx$$