Week 5 Recitation Problems
 MATH:114, Recitations 309 and 310

Euler's Formula and Hyperbolic Functions

Euler's Formula, written as

$$
e^{i t}=\cos t+i \sin t,
$$

where i is the complex unit $i=\sqrt{-1}$, is an expression which establishes the relationship between continuous complex growth $\left(e^{i t}\right)$ and trigonometry in the complex plane ($\cos t+i \sin t$).

1. Using an annotated picture or words, describe what Euler's formula tells us. (Hint: think about the complex unit circle - that is, the circle centered at the origin which intersects the complex (vertical) axis at the points $(0, i)$ and $(0,-i)$ and the real (horizontal) axis at the points $(1,0)$ and $(-1,0)$. Ift measures an angle counter-clockwise from the origin, where does each side of the equation end up?)
2. Verify Euler's Identity

$$
e^{i \pi}=-1
$$

3. (From a previous exam.) The derivative with respect to t of the complex function

$$
e^{t} \cos (2 t)+i e^{t} \sin (2 t)
$$

is

$$
e^{t} \cos (2 t)-2 e^{t} \sin (2 t)+i e^{t} \sin (2 t)+2 i e^{t} \cos (2 t) .
$$

Show that this derivative is equal to the derivative with respect to t of $e^{(1+2 i) t}$.
4. (From a previous exam.) If we define

$$
\sinh (t)=\frac{e^{t}-e^{-t}}{2} \quad \text { and } \quad \cosh t=\frac{e^{t}+e^{-t}}{2}
$$

show that

$$
(\cosh t)^{2}-(\sinh t)^{2}=1
$$

for all values of t.
5. Using the definitions of cosh and sinh from Problem 4, show that

$$
\cosh (2 t)=(\cosh t)^{2}+(\sinh t)^{2}
$$

