Suppose that

$$
f(x)=2 x^{2}
$$

and

$$
g(x)=x^{3} .
$$

We are going to find the volume of the solid generated by rotating these curves using two different methods.
the disk and washer methods

The disk method is based on finding the areas of infinitely thin donuts, or "washers," and adding those areas up.

To add those areas up, we use an integral. If we
(i) know our bounds of integration,
(ii) are rotating our solid around the x axis, and
(iii) have two functions $f_{\text {top }}$ and $f_{\text {bottom }}$,
our integral to find the volume is

$$
V_{\text {washer }}=\int_{a}^{b} \pi(\underbrace{f_{\text {top }}(x)}_{\text {radius of outer circle }})^{2}-\pi(\overbrace{f_{\text {bottom }}(x)})^{2} d x,
$$

which can be re-written as

$$
V_{\text {washer }}=\pi \int_{a}^{b}(\underbrace{f_{\text {top }}(x)}_{\text {radius of outer circle }})^{2}-(\overbrace{f_{\text {bottom }}(x)}^{\text {radius of inner circle }})^{2} d x
$$

What happens if we don't have two functions?

Let's apply it.

We set

$$
f(x)=f_{\text {outer }}(x), \quad g(x)=f_{\text {inner }}(x)
$$

(because f is "on top" of g) and find where the curves intersect - that is, where the curves hit the same value. This gives us our bounds of integration.

$$
\begin{aligned}
f(x) & =g(x) \\
2 x^{2} & =x^{3} \\
2 & =\frac{x^{3}}{x^{2}} \\
2 & =x
\end{aligned}
$$

so the curves intersect at the points

$$
(2, f(2))=(2, g(2))=(2,8)
$$

and

$$
(0, f(0))=(0, g(0))=(0,0)
$$

We will integrate from $x=0$ to $x=2$.

Setting up our integral, we get

$$
\begin{aligned}
V_{\text {washer }} & =\pi \int_{0}^{2} f(x)^{2}-g(x)^{2} d x \\
& =\pi \int_{0}^{2}\left(2 x^{2}\right)^{2}-\left(x^{3}\right)^{2} d x \\
& =\pi \int_{0}^{2} 4 x^{4}-x^{6} d x \\
& =\left.\pi\left[\frac{4}{5} x^{5}-\frac{1}{7} x^{7}\right]\right|_{0} ^{2} \\
& =\frac{256 \pi}{35}
\end{aligned}
$$

the shell method

The shell method finds the surface area of infinitely thin cylinders and adds them up to find a volume. Recall that the surface area of a cylinder without a top or bottom (like a straw) is

$$
S=2 \pi \cdot r \cdot h
$$

To add those areas up, we use an integral again.

If we
(i) know our bounds of integration,
(ii) are rotating our solid around the x axis, and
(iii) have two functions $f_{\text {top }}^{-1}$ and $f_{\text {bottom }}^{-1}$,
we have good information. However, we need to change our perspective - if we are rotating around the x-axis, then our cylinders are in terms of y. (Why?)

We then find these inverse functions by setting up equations and solving for x :

$$
\begin{aligned}
y & =2 x^{2} \\
\frac{y}{2} & =x^{2} \\
\sqrt{\frac{y}{2}} & =x=f^{-1}(y) \\
y & =x^{3} \\
\sqrt[3]{y} & =x=g^{-1}(y)
\end{aligned}
$$

Now, because the height and radius of our cylinders are in terms of y, we integrate with...

Our integral is then

$$
V_{\text {shell }}=\int_{a}^{b} 2 \pi \cdot \underbrace{y}_{\text {radius of cylinder }} \cdot(\overbrace{f_{\text {top }}^{-1}(y)-f_{\text {bottom }}^{-1}(y)}^{\text {height of cylinder }}) d y
$$

which we can re-write as

$$
V_{\text {shell }}=2 \pi \int_{a}^{b} y \cdot\left(f_{\text {top }}^{-1}(y)-f_{\text {bottom }}^{-1}(y)\right) d y
$$

Let's set up our integral!

$$
\begin{aligned}
V_{\text {shell }} & =2 \pi \int_{a}^{b} y \cdot\left(f_{\text {top }}^{-1}(y)-f_{\text {bottom }}^{-1}(y)\right) d y \\
& =2 \pi \int_{0}^{8} y \cdot\left(\sqrt[3]{y}-\sqrt{\frac{y}{2}}\right) d y \\
& =\left.2 \pi\left[-\frac{\sqrt{2} y^{\frac{5}{2}}}{5}-\frac{3 y^{\frac{7}{2}}}{7}\right]\right|_{0} ^{8} \\
& =\frac{256 \pi}{35}
\end{aligned}
$$

so we get the same result!
questions?

