Euler’s identity and hyperbolic functions



Polar coordinates tell us where something is using an angle from the origin and a
stretching factor.
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Because complex numbers are written as
a + bi,

with @ a real number and b a stretching (scaling) factor on the complex number i, we
can say that

a represents stretching in the x direction

and

bi represents stretching in the i direction.
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... but how does e factor into this?
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it's e¥

if we want to represent a point on the complex unit circle by scaling and rotation, we
can write this as
6a—i—bi — 2. €bi.

but if we translate our a + bi into polar coordinates with radius 1, we get

rotation
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. and because we express polar coordinates in terms of sin and cos...
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SO our expressions
eix
and

cosx +isinx

represent the same thing!



the unit hyperbola
< — y2 =1

is like a circle because it grows at precisely the same rate everywhere, so we can
define analogous trig functions on it!
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Figure Geometric definitions of sin, cos, sinh, cosh: t is twice the shaded




