Euler's identity and hyperbolic functions

Polar coordinates tell us where something is using an angle from the origin and a stretching factor.

Because complex numbers are written as

$$
a+b i,
$$

with a a real number and b a stretching (scaling) factor on the complex number i, we can say that
a represents stretching in the x direction
and
$b i$ represents stretching in the i direction.

... but how does e factor into this?

$$
\text { it's } e^{x}
$$

if we want to represent a point on the complex unit circle by scaling and rotation, we can write this as

$$
e^{a+b i}=e^{a} \cdot e^{b i}
$$

but if we translate our $a+b i$ into polar coordinates with radius 1 , we get

$$
e^{1 \cdot i \cdot t}=\underbrace{e^{i}}_{\text {rotation }} \cdot e^{t}
$$

... and because we express polar coordinates in terms of sin and cos...

so our expressions

$$
e^{i x}
$$

and

$$
\cos x+i \sin x
$$

represent the same thing!
the unit hyperbola

$$
x^{2}-y^{2}=1
$$

is like a circle because it grows at precisely the same rate everywhere, so we can define analogous trig functions on it!

Figure
Geometric definitions of $\sin , \cos , \sinh , \cosh : t$ is twice the shaded

