Week 3 Recitation Problems
 MATH:114, Recitations 309 and 310

1. Let

$$
f(x)=\frac{1}{2 x-1}
$$

Compute the surface area of the solid generated when f is rotated around the x axis where x is between $3 / 4$ and 4 .

Solution: Start by taking the first derivative of f :

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(\frac{1}{2 x-1}\right) \\
& =\frac{-1}{(2 x-1)^{2}}
\end{aligned}
$$

Then, we can use the surface area formula:

$$
\begin{aligned}
S & =\int_{-\frac{3}{4}}^{4} 2 \pi f(x) \sqrt{1+\left(f^{\prime}(x)\right)^{2}} \\
& =2 \pi \int_{-\frac{3}{4}}^{4} \frac{1}{2 x-1} \sqrt{1+\left(\frac{-1}{(2 x-1)^{2}}\right)^{2}} \\
& =2 \pi \int_{-\frac{3}{4}}^{4} \frac{1}{2 x-1} \cdot \int_{-\frac{3}{4}}^{4} \sqrt{1^{2}+\left(\frac{-1}{(2 x-1)^{2}}\right)^{2}} \\
& =2 \pi \int_{-\frac{3}{4}}^{4} \frac{1}{2 x-1} \cdot \int_{-\frac{3}{4}}^{4} \sqrt{\left(1+\frac{-1}{(2 x-1)^{2}}\right)^{2}} \\
& =2 \pi \int_{-\frac{3}{4}}^{4} \frac{1}{2 x-1} \cdot \int_{-\frac{3}{4}}^{4}\left(1+\frac{-1}{(2 x-1)^{2}}\right) \\
& =\left.2 \pi \cdot \ln (2 x-1) \cdot\left(x+\frac{1}{2(2 x-1)}\right)\right|_{3 / 4} ^{4} \\
& =\frac{221 \ln (\pi)}{4}
\end{aligned}
$$

so we have found the surface area of our solid.
2. Plot the functions

$$
f(x)=x^{3}, g(x)=\sqrt[3]{x}
$$

Rotate the area between f and g around the x axis to form a solid of rotation. Set up (but do not compute) two integrals to find the volume of the solid.
3. Using f and g from \#2, set up (but do not compute) an integral to find the surface area of the solid. Remember that the expression used to find the surface area of a solid is

$$
S=\int_{a}^{b} 2 \pi \cdot h(x) \cdot \sqrt{1+\left(h^{\prime}(x)^{2}\right)} d x
$$

How does this integral compare to the integral you set up to compute the volume using the shell method? Come up with a geometric explanation (a picture counts!).
4. Let

$$
f(x)=\frac{1}{2} x^{2}-\frac{1}{4} \ln (x),
$$

and find the length of the curve for $2 \leq x \leq 4$.

