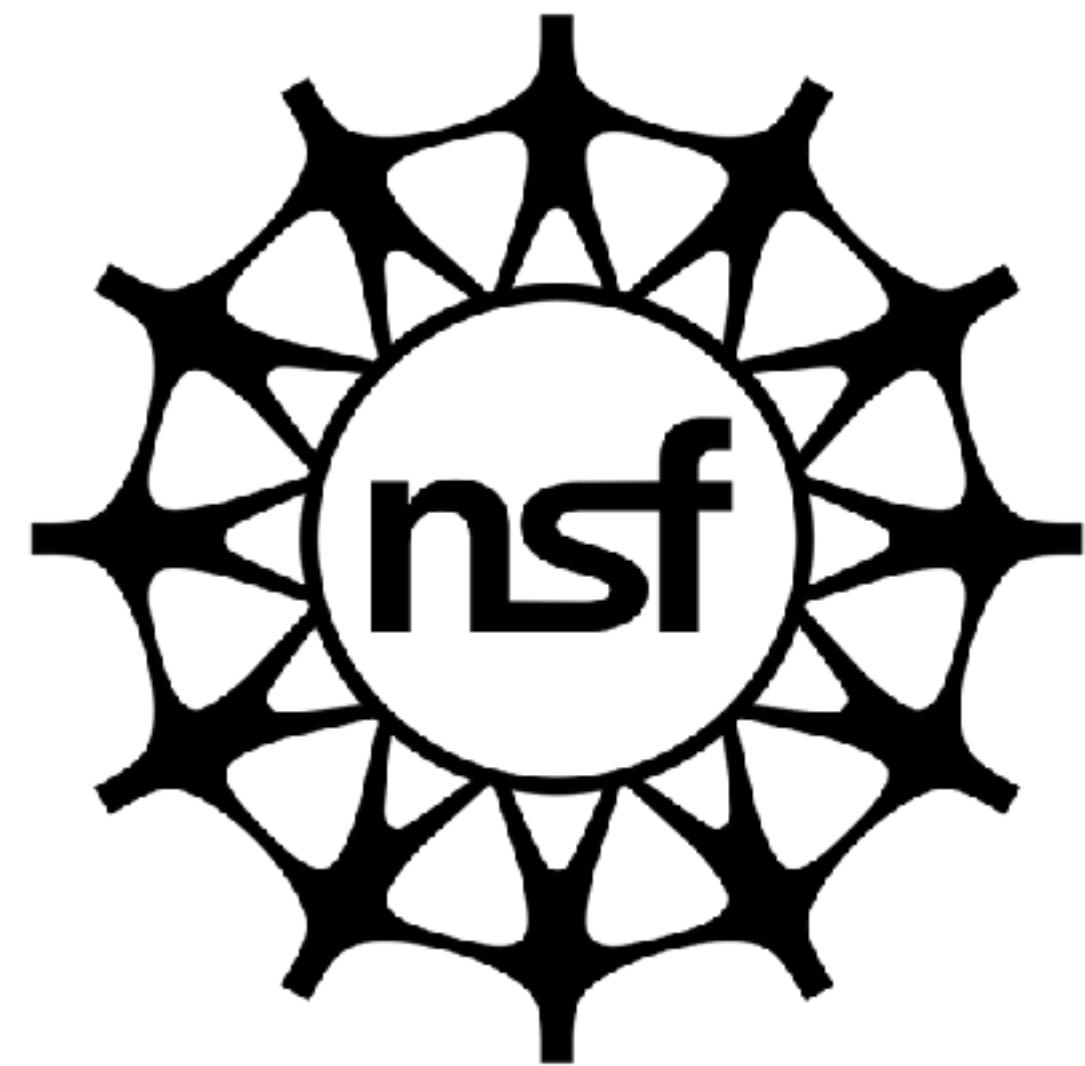


Generalized cluster algorithms for Potts lattice gauge theory

Anthony E. Pizzimenti @ JMM • January 7th, 2026

Ben Schweinhart
George Mason University

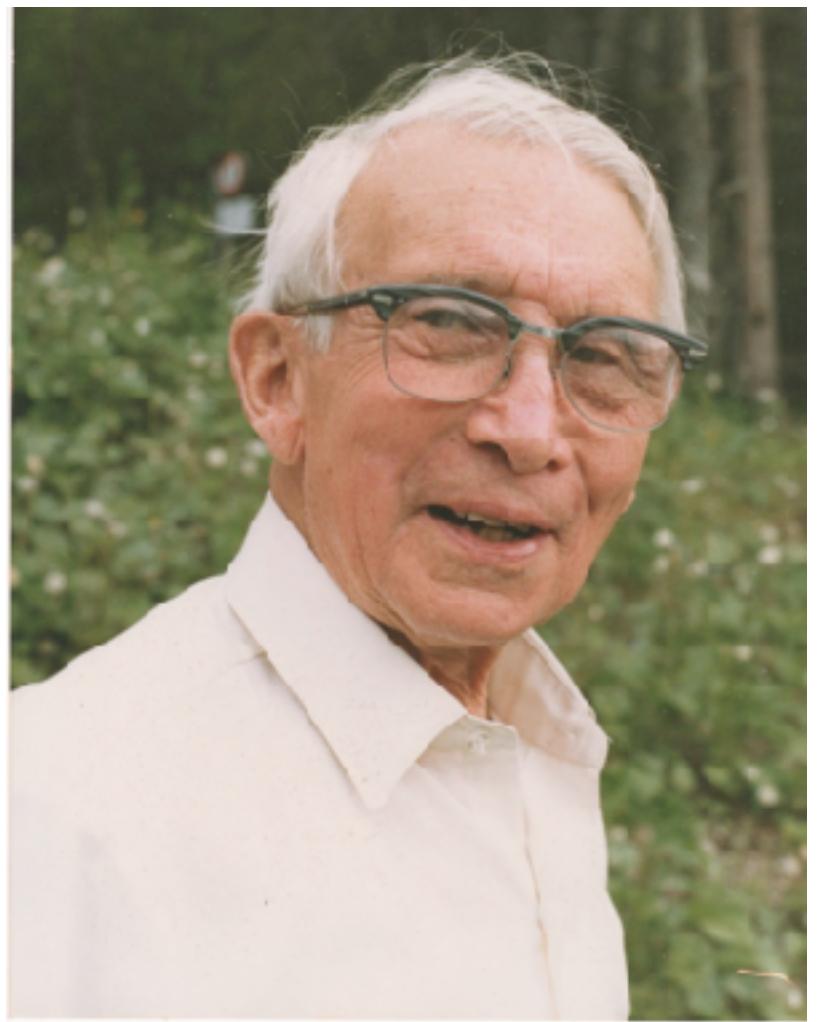
Paul Duncan
Indiana University



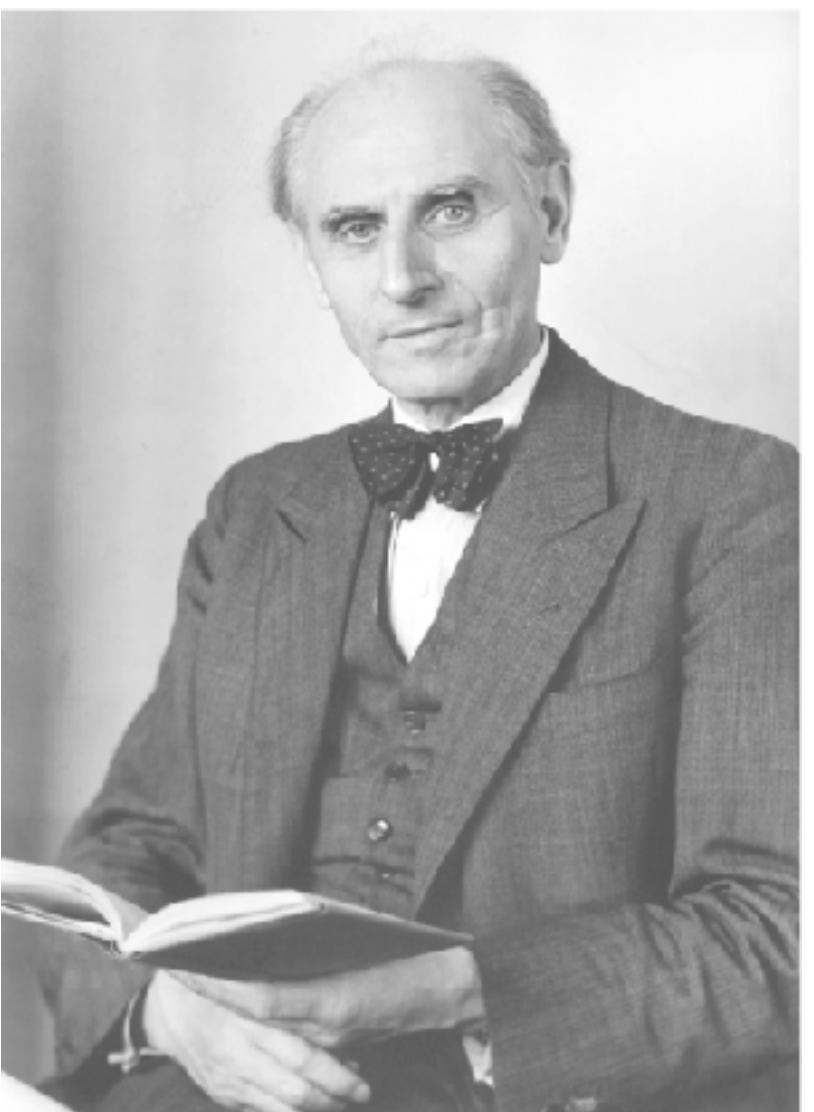
the plan

1. classical models
2. homological generalization
3. practicalities and future work

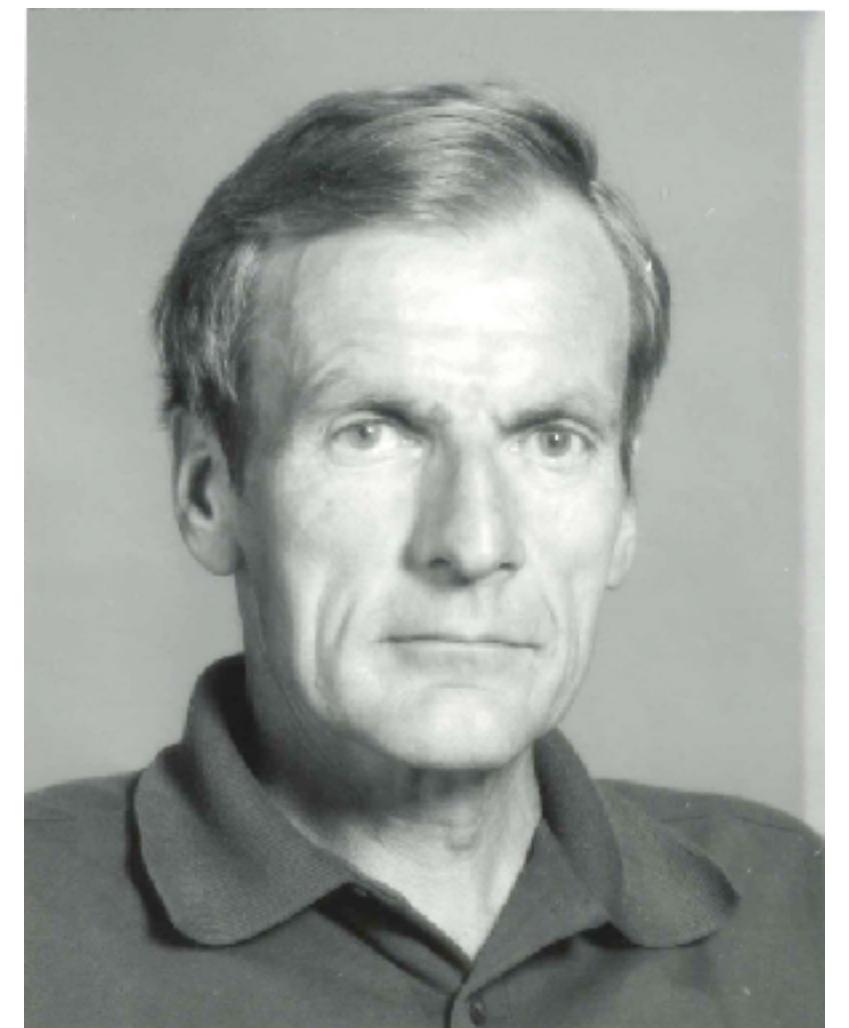
1. classical models



Ernst Ising
c. University of Cologne

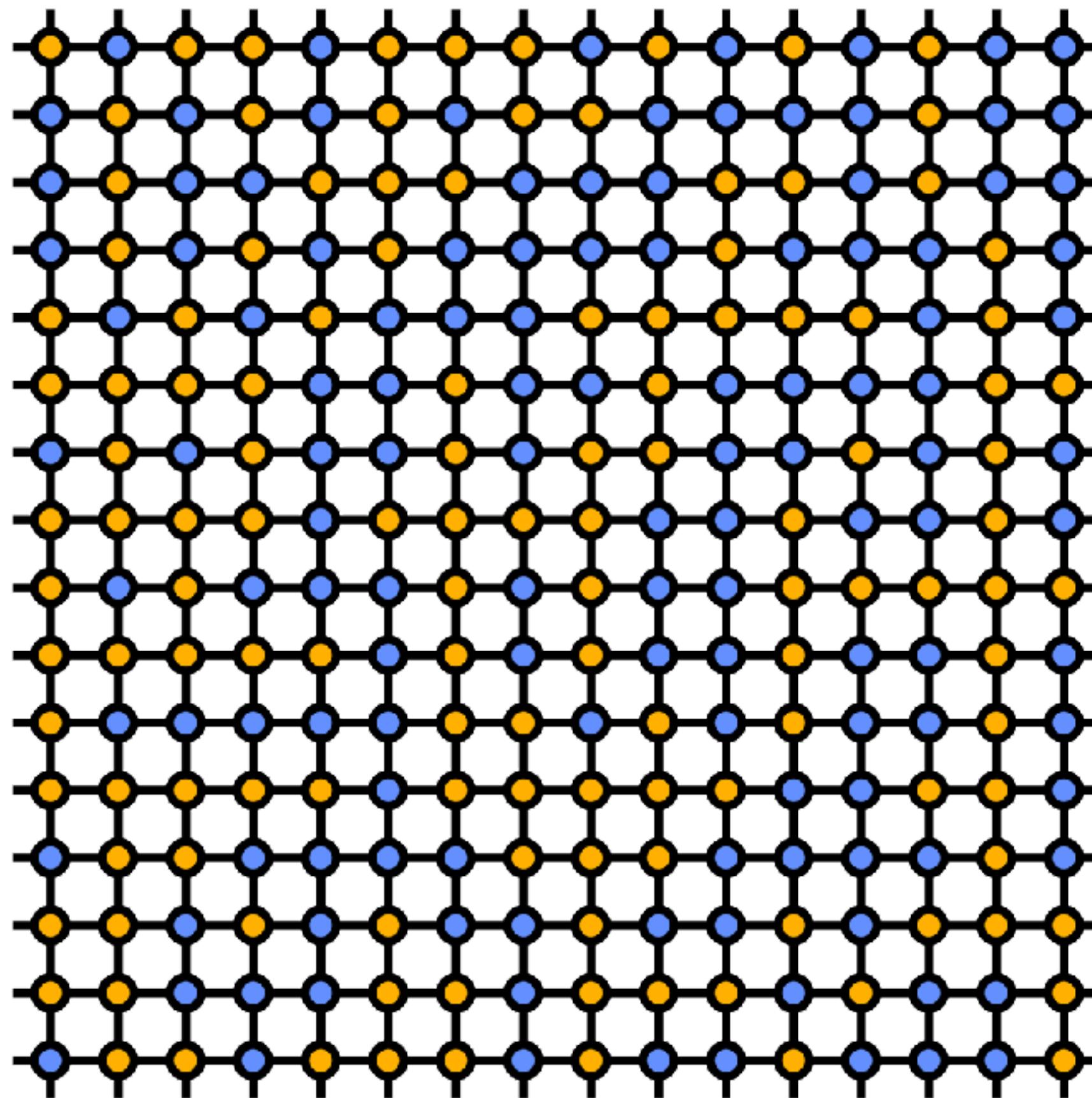


Wilhelm Lenz
c. Universität Rostock



Renfrey Potts
c. University of Adelaide

Ising/Potts models

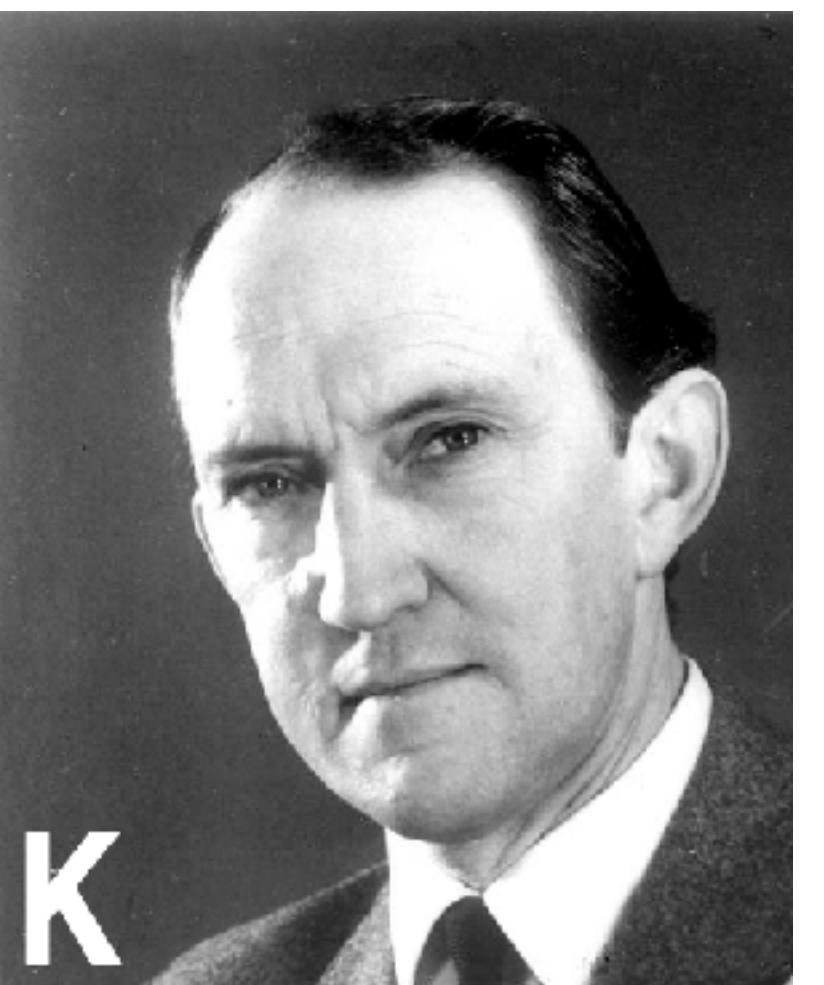


$$\text{Potts}(f) \propto e^{-\beta H(f)}$$

F

Kees Fortuin

c. The Random-Cluster Model, Geoffrey Grimmett

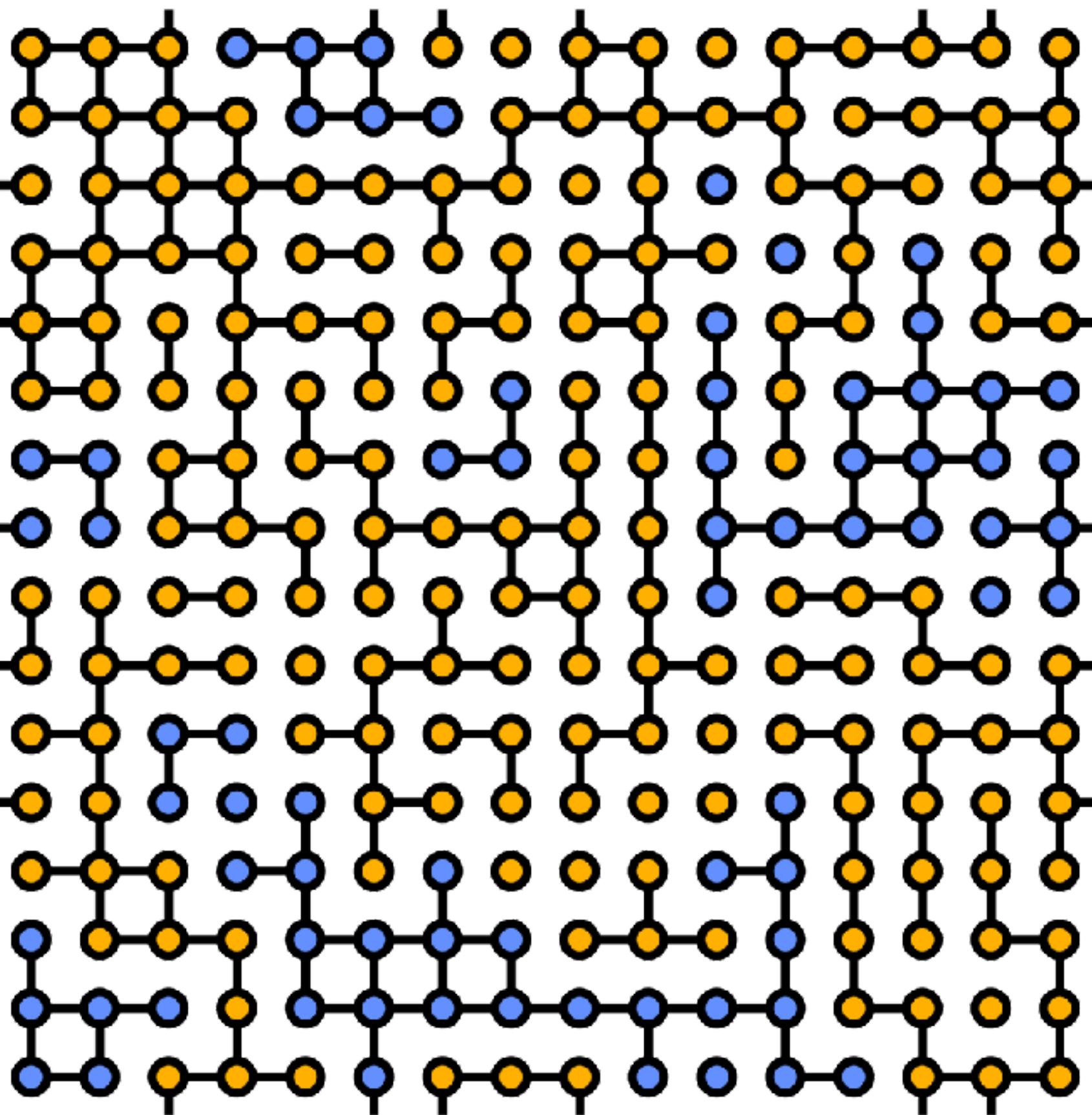


K

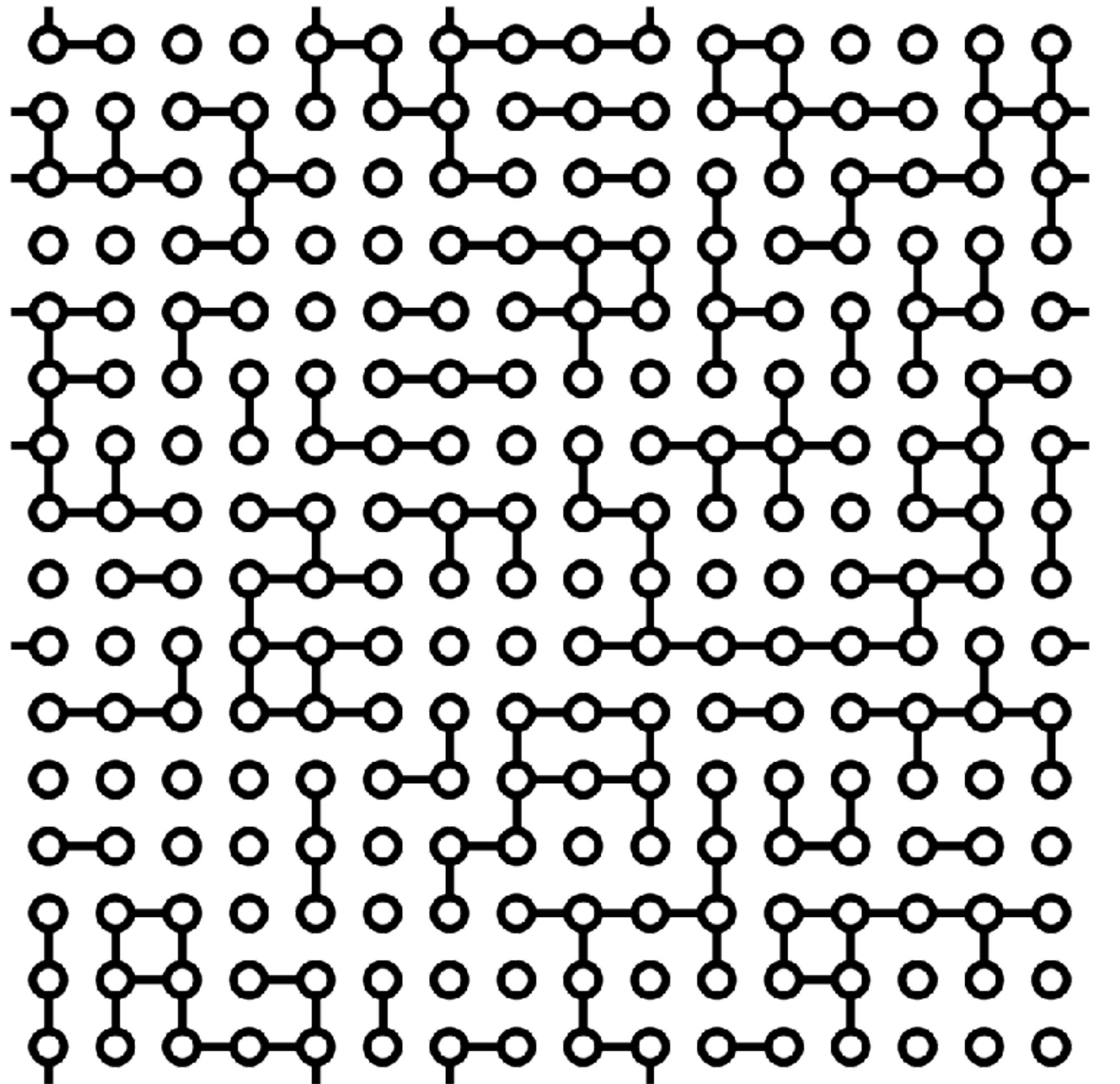
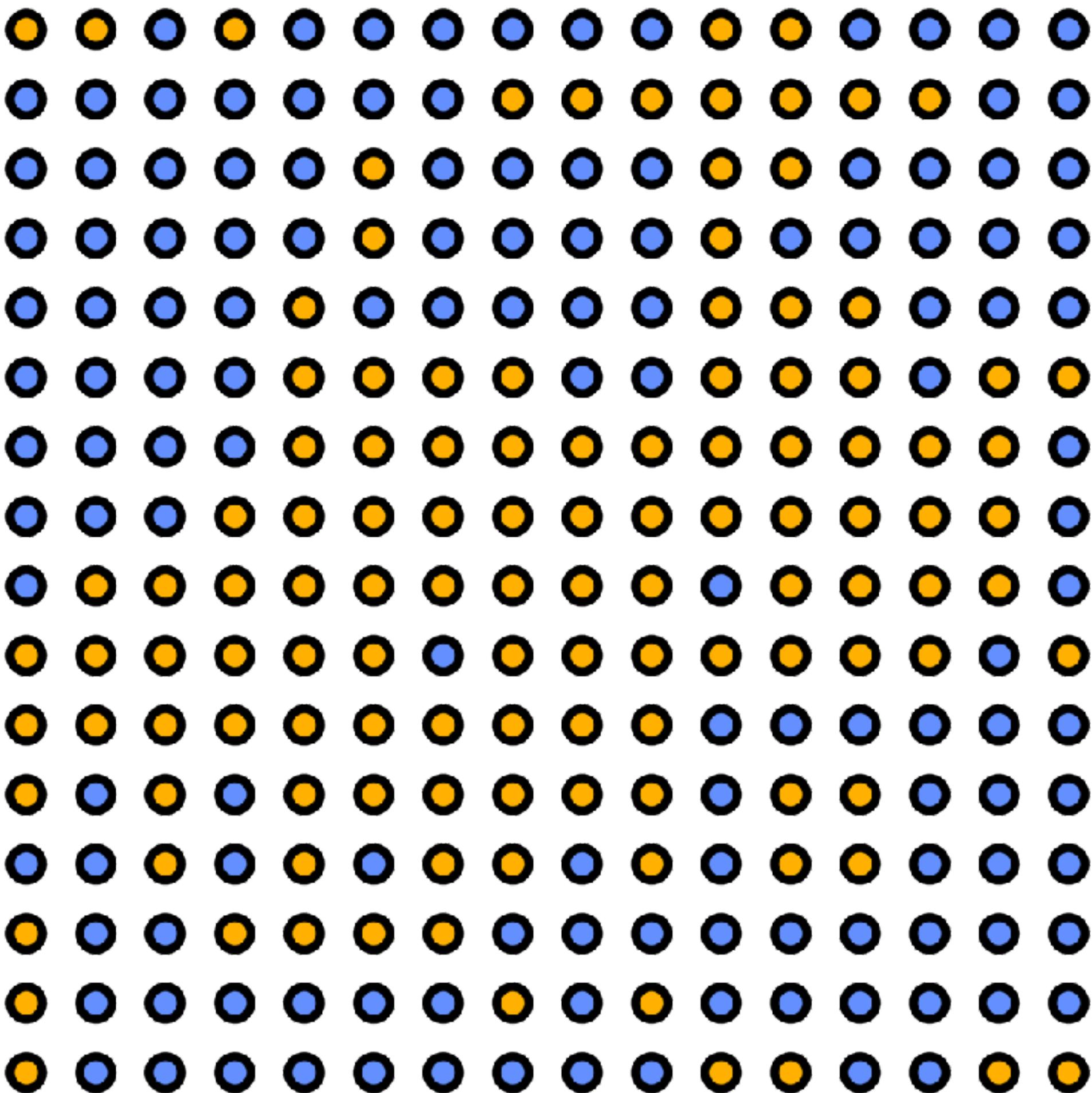
Piet Kasteleyn

c. The Random-Cluster Model, Geoffrey Grimmett

FK random-cluster model

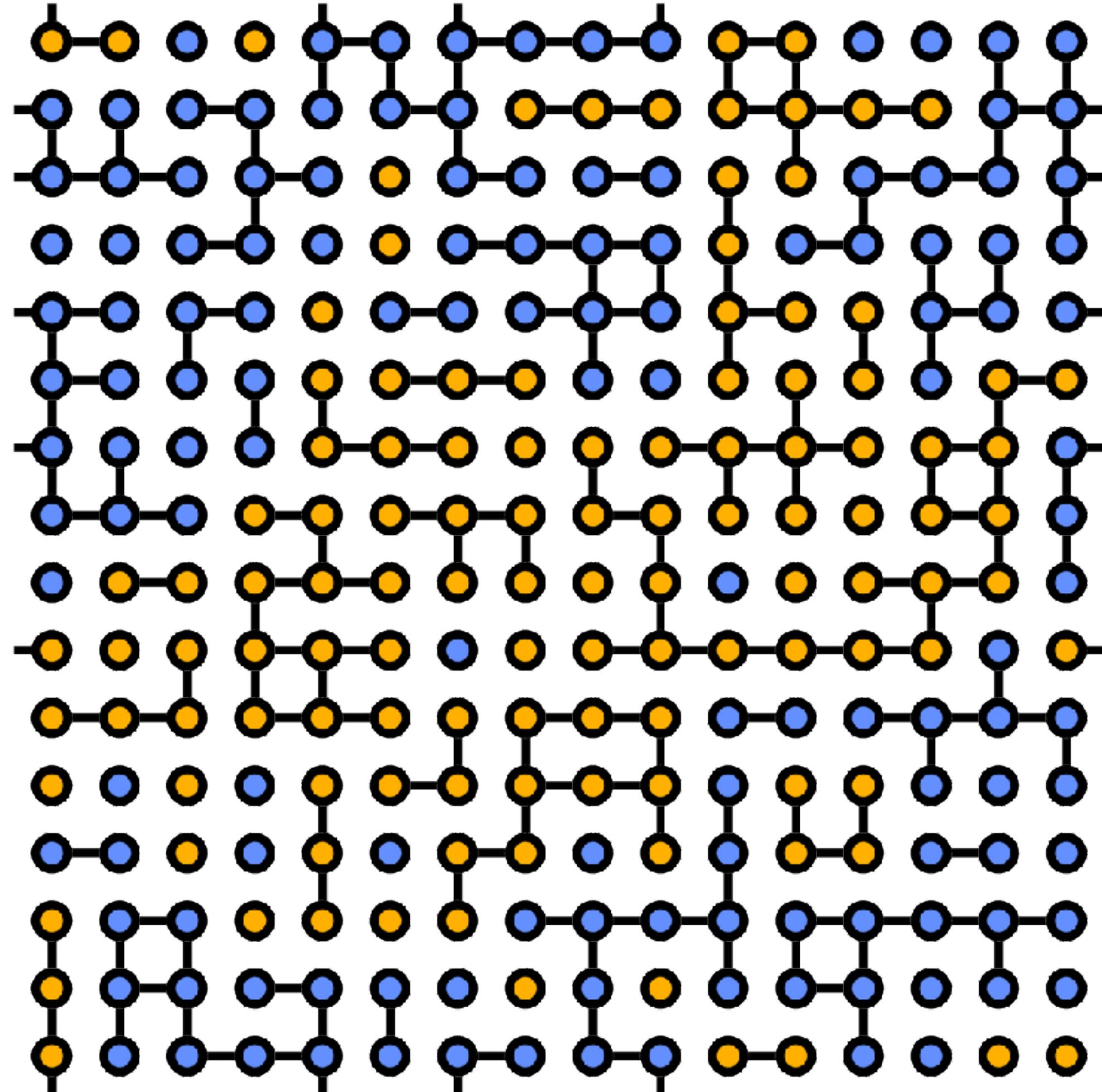


$$\text{RCM}(Q) \propto p^{|Q|} (1-p)^{|G|-|Q|} q^{(\text{\# of components})}$$

Q  f 

(Q, f) is a **compatible pair**

$(Q, f) \in Z^0(Q; \mathbb{Z}_q)$



f is constant on each component of Q

$|Z^0(Q; \mathbb{Z}_q)| = q^{(\# \text{ of components})}$

of compatible pairs $(Q, -)$

$$H(f) = -(\# \text{ of edges with agreeing spins})$$

$$\text{Potts}(f) = \frac{e^{-\beta H(f)}}{\mathcal{Z}(q, \beta)}$$

$$\mathcal{Z}(q, \beta) = \sum_f e^{-\beta H(f)}$$

the event that f is compatible with the edge $x = (u, v)$

setting $p = 1 - e^{-\beta}$ and $F(f, x) = \{f(u) = f(v)\}$,

$$e^{\beta \mathbf{1}_{F(f,x)}} = e^{\beta} \left(p \mathbf{1}_{F(f,x)} + (1 - p) \right)$$

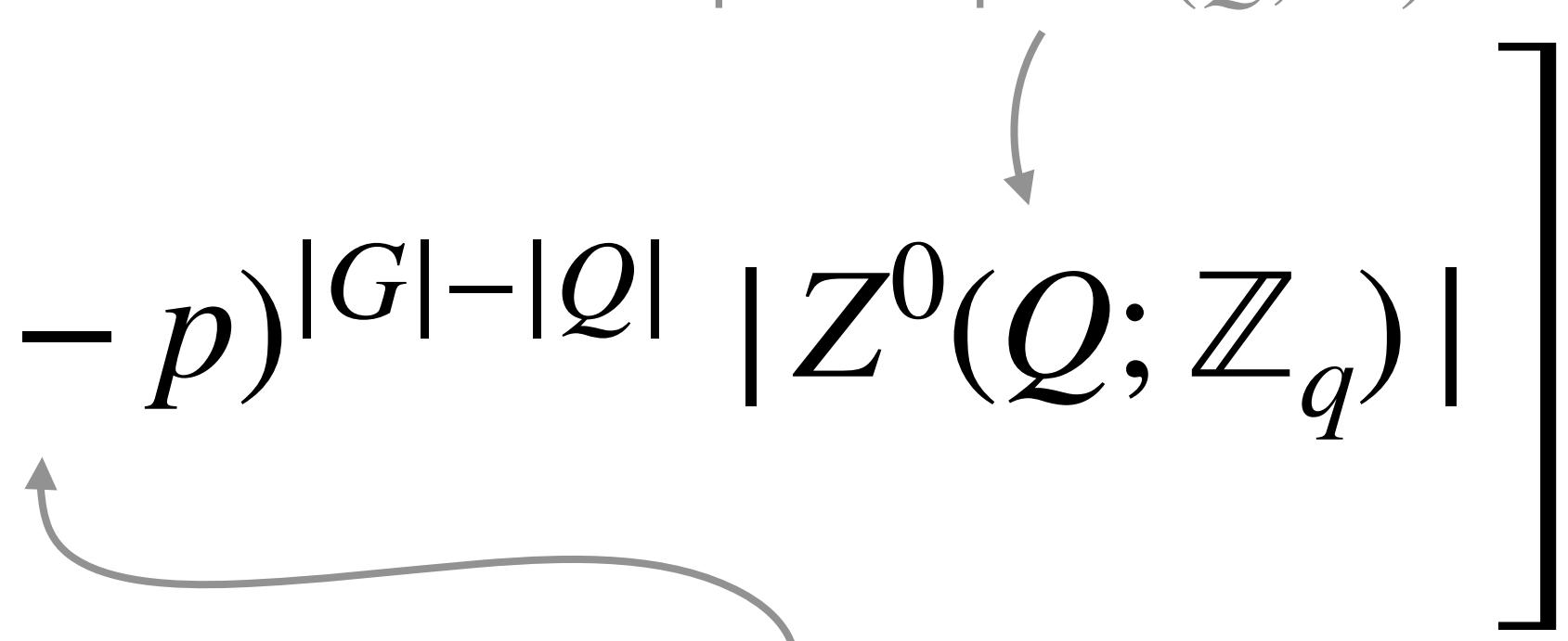
$$\sum_f e^{-\beta \mathbf{H}(f)} = \sum_f \prod_x e^{\beta \mathbf{1}_{F(f,x)}}$$

$\mathbf{1}_{F(f,x)} = 1$ when $F(f, x)$ holds, 0 otherwise

$$e^{\beta \mathbf{1}_{F(f,x)}} = e^{\beta} \left(p \mathbf{1}_{F(f,x)} + (1-p) \right)$$

$$\sum_f e^{-\beta \mathbf{H}(f)} = \sum_f \prod_x e^{\beta \mathbf{1}_{F(f,x)}}$$

$$\begin{aligned}
\mathcal{Z}(q, \beta) &= \sum_f e^{-\beta \mathbf{H}(f)} \\
&= \sum_f \prod_x e^{\beta} \left(p \mathbf{1}_{F(f,x)} + (1-p) \right) \\
&= e^{\beta |G|} \left[\sum_Q p^{|Q|} (1-p)^{|G|-|Q|} |Z^0(Q; \mathbb{Z}_q)| \right]
\end{aligned}$$

of compatible pairs $(Q, -)$


RCM(Q)

$$\text{RCM}(Q) = \frac{p^{|Q|} (1-p)^{|G|-|Q|} |Z^0(Q; \mathbb{Z}_q)|}{e^{-\beta|G|} \mathcal{Z}(q, \beta)}$$

of compatible pairs $(Q, -)$

Robert G. Edwards

$$\text{ES}(f, Q) \propto \prod_x \left[(1-p) \mathbf{1}_{x \notin Q} + (p) \mathbf{1}_{x \in Q} \mathbf{1}_{F(f, x)} \right]$$

Alan D. Sokal

$$\begin{aligned}\text{ES}(f, -) &= \sum_Q \text{ES}(f, Q) \\ &= \text{Potts}(f)\end{aligned}$$

$$\begin{aligned}\text{ES}(-, Q) &= \sum_f \text{ES}(f, Q) \\ &= \text{RCM}(Q)\end{aligned}$$

$$\text{ES}(f \mid Q)$$

uniform over f constant on components of Q

$$\text{ES}(Q \mid f)$$

independent percolation on edges compatible with f

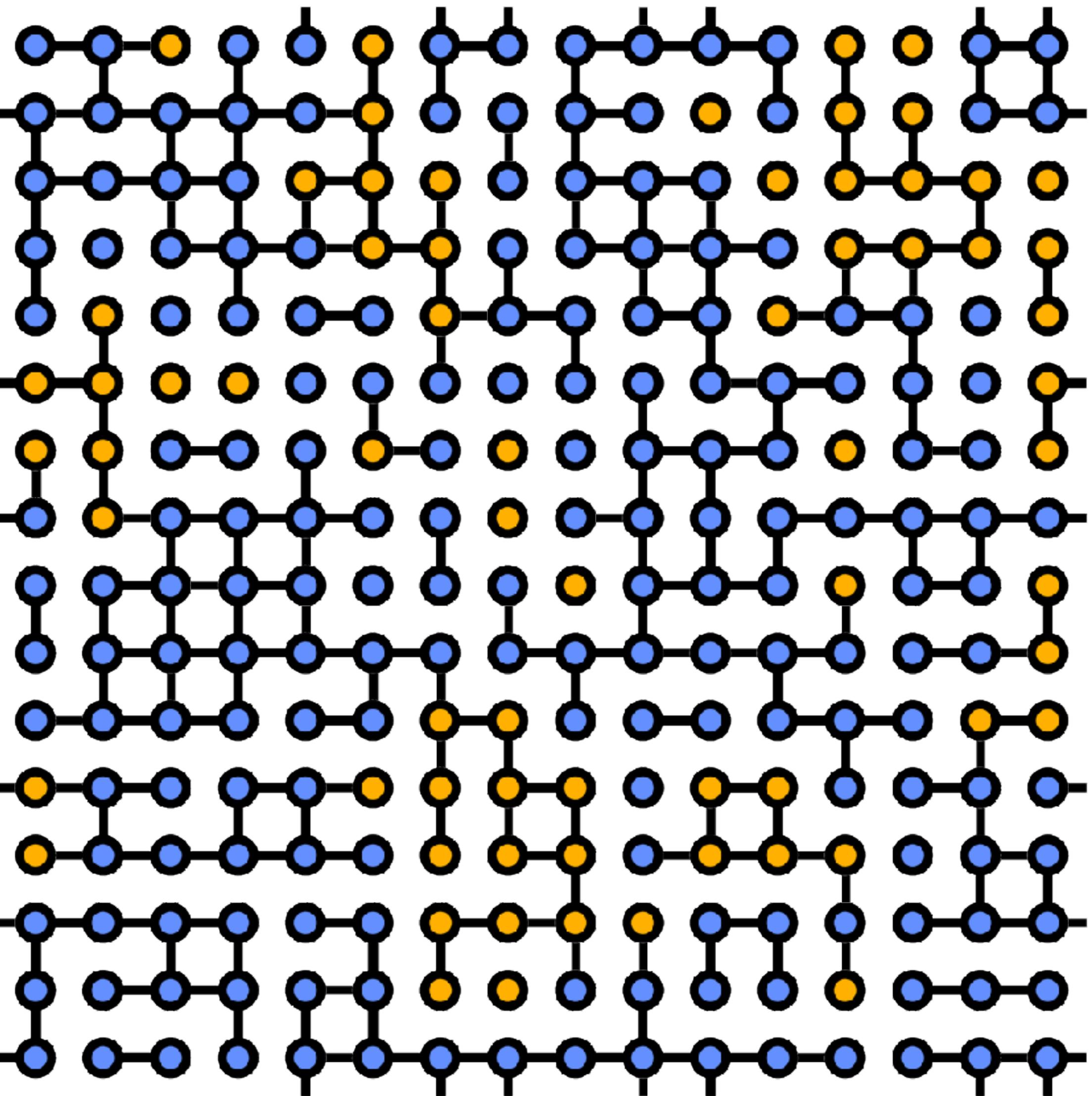
how do we sample from these distributions?

→ ***single-spin Glauber dynamics***

Swendsen-Wang dynamics

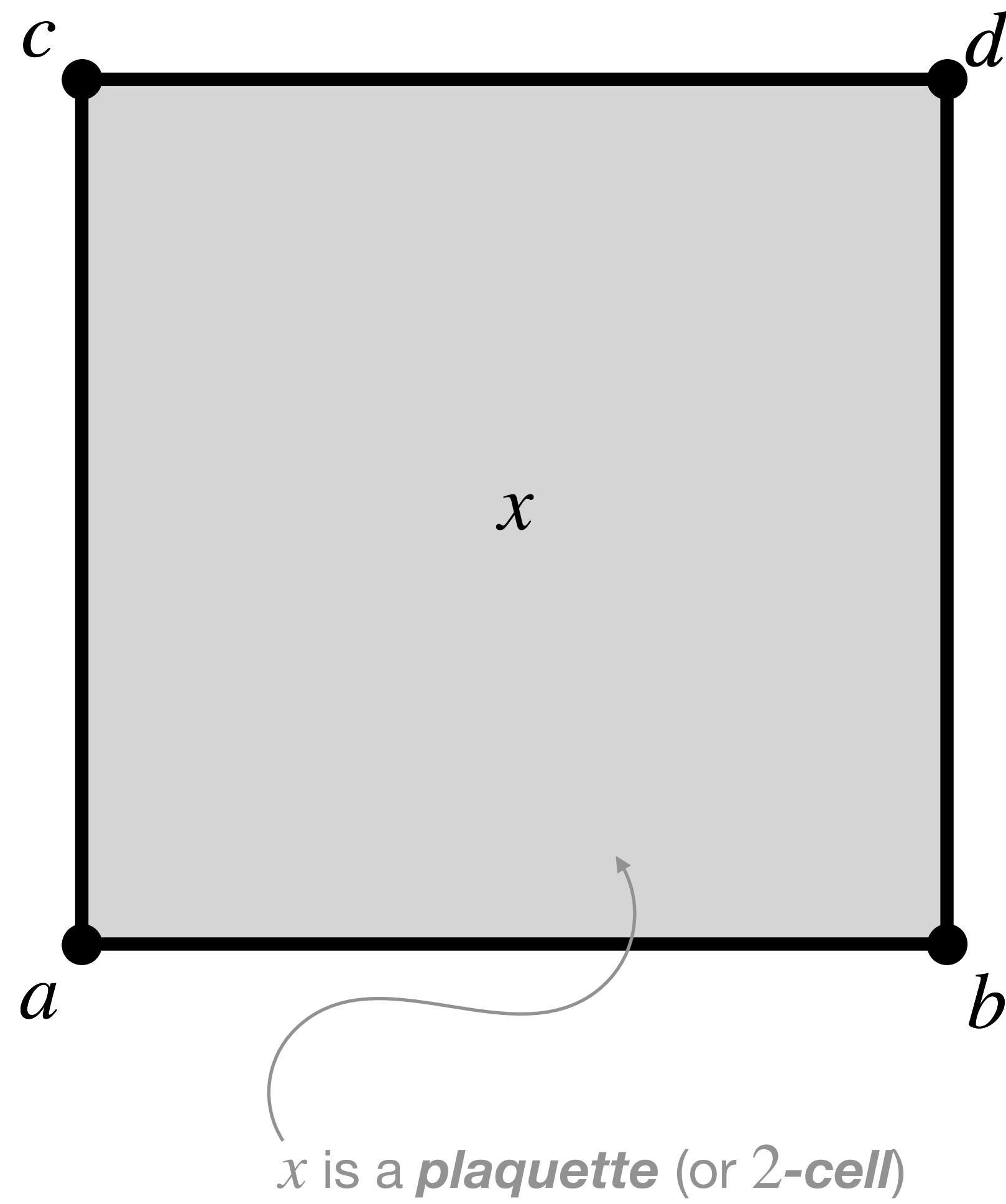
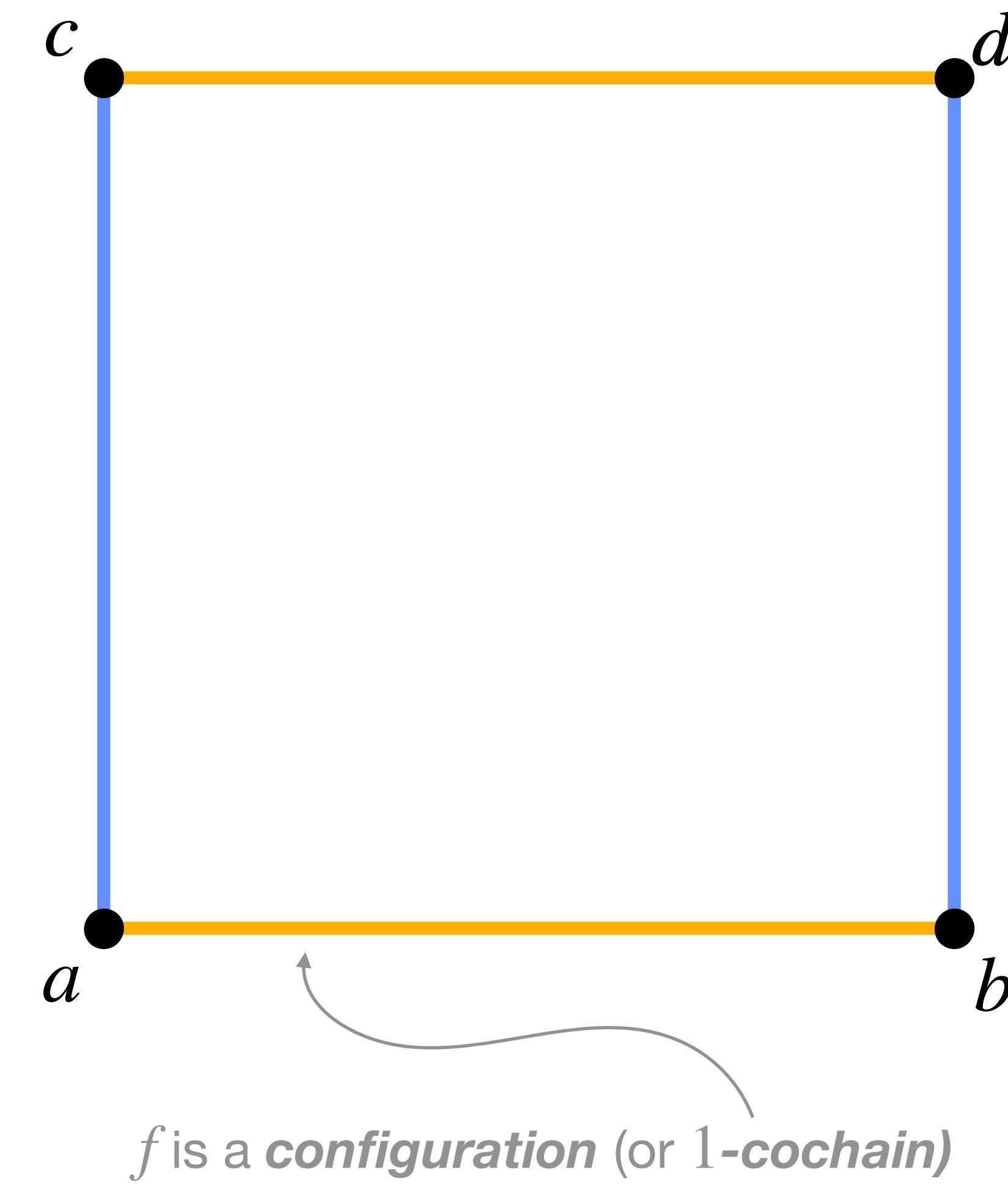
Swendsen-Wang dynamics

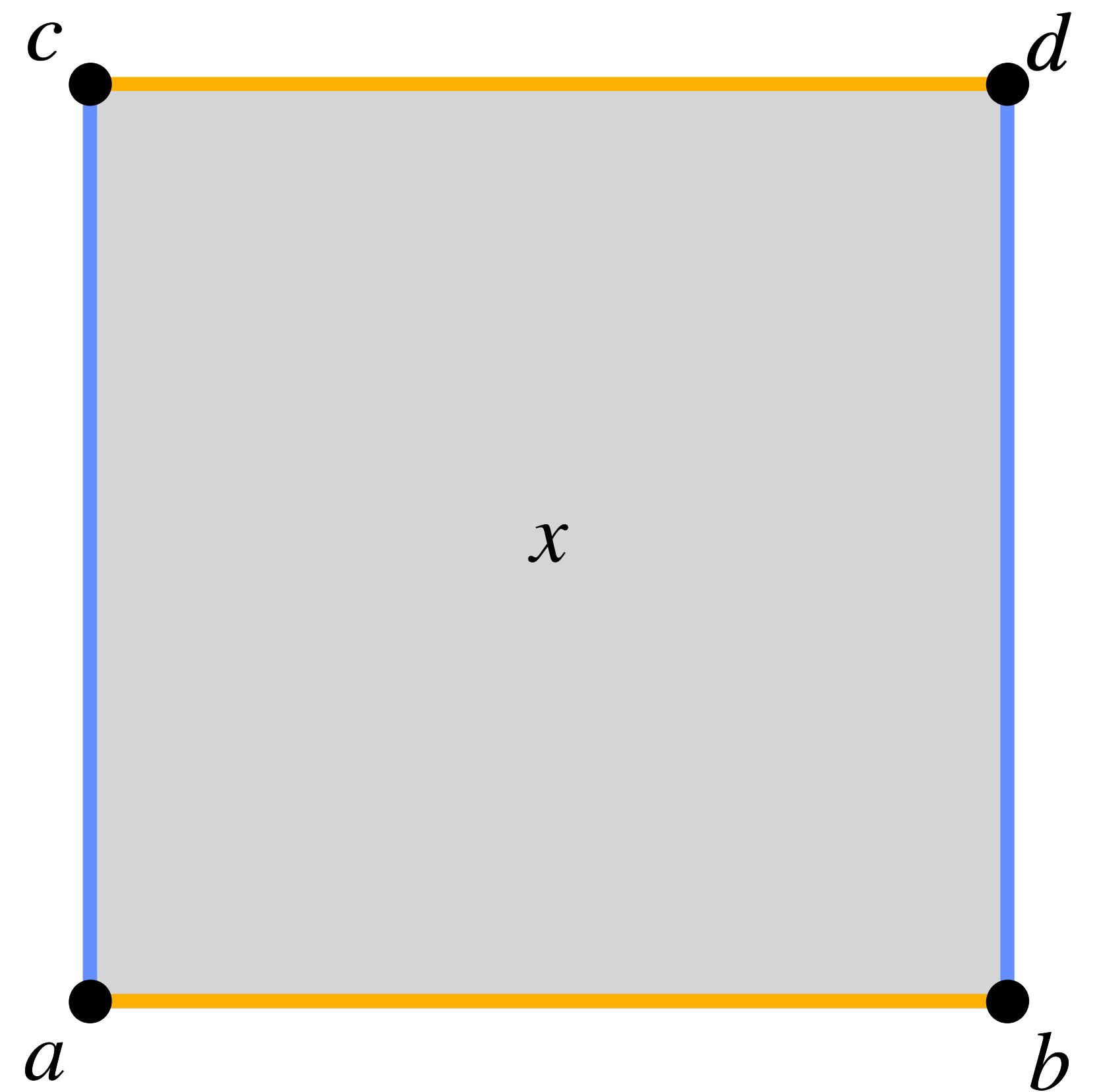
- (1) Given compatible Q_t and f_t ,
- (2) Sample Q_{t+1} from $\text{ES}(\text{---} | f_t)$
(independent percolation over edges with matching spins).
- (3) Sample f_{t+1} from $\text{ES}(\text{---} | Q_{t+1})$
(uniform random over spin configurations constant on components).
- (4) Set $t := t + 1$ and return to Step (1).

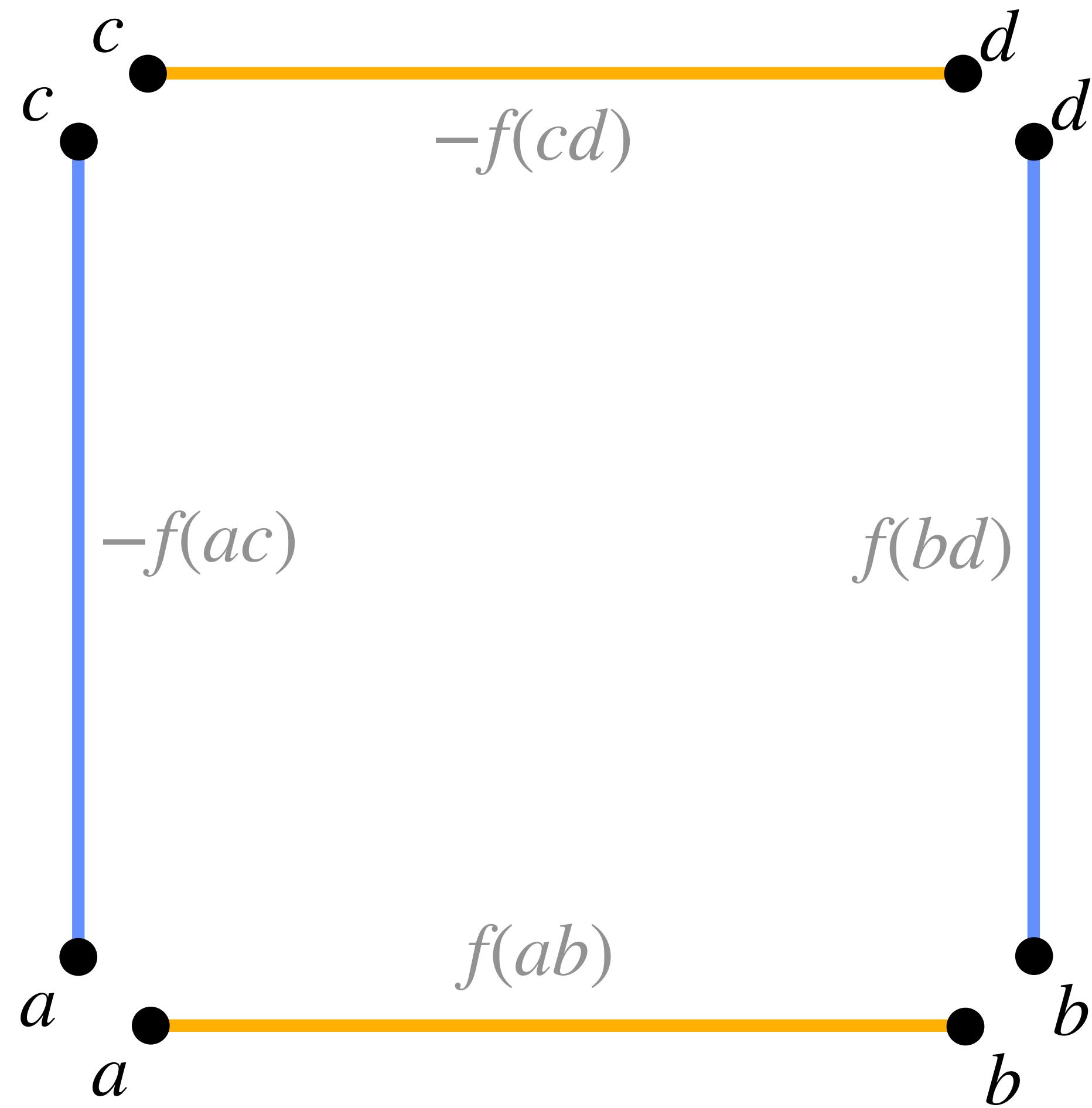


... what if we want to put spins on **edges** instead?

2. homological generalization

Q  f 





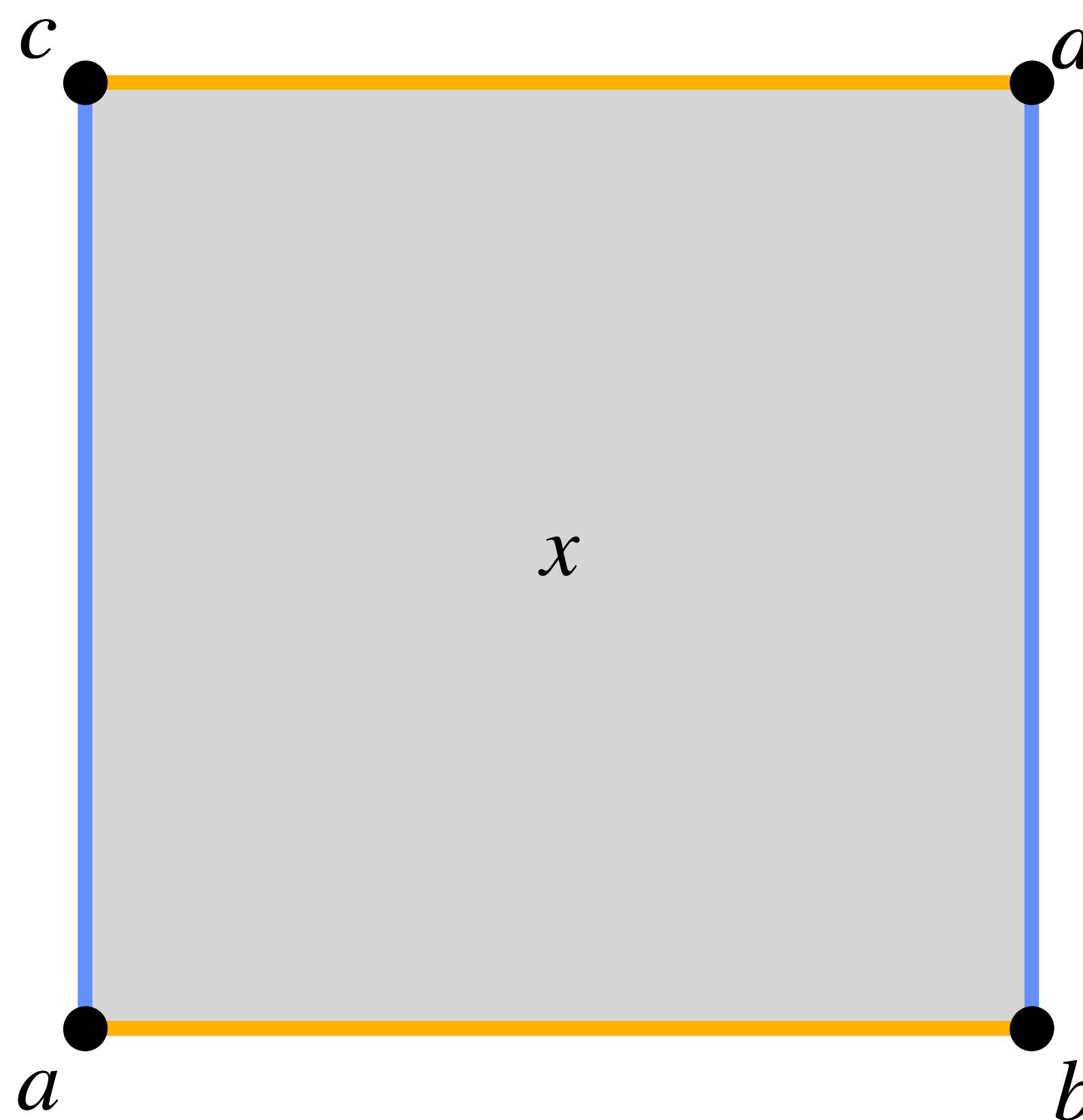
the **coboundary** is the oriented sum of spins on the boundary of x

$$\begin{aligned}
 (\delta^1 f)(x) &= f(\partial_2(x)) \\
 &= f(ab) - f(ac) + f(bd) - f(cd) \\
 &= 1 - 0 + 0 - 1 \\
 &= 0
 \end{aligned}$$

x is **nonfrustrated** if $(\delta^1 f)(x) = 0$, and **frustrated** otherwise

(Q, f) is a **compatible pair**

$(Q, f) \in Z^1(Q; \mathbb{Z}_q)$



$(\delta^1 f)(x) = 0$ for all plaquettes $x \in Q$

Potts lattice gauge theory (PLGT)

$$\mathbf{H}(f) := - \sum_x \mathbf{1}_{(\delta^1 f)(x)=0} \text{ counts nonfrustrated plaquettes}$$

$$\text{PLGT}(f) = \frac{e^{-\beta \mathbf{H}(f)}}{\mathcal{Z}(q, \beta)}$$

$$\mathcal{Z}(q, \beta) = \sum_f e^{-\beta \mathbf{H}(f)}$$

$$e^{\beta \mathbf{1}_{F(f,x)}} = e^{\beta} \left(p \mathbf{1}_{F(f,x)} + (1-p) \right)$$

$$\sum_f e^{-\beta \mathbf{H}(f)} = \sum_f \prod_x e^{\beta \mathbf{1}_{F(f,x)}}$$

$$\mathcal{Z}(q, \beta) = \sum_f e^{-\beta \mathbf{H}(f)}$$

$$= \sum_f \prod_x e^{\beta} \left(p \mathbf{1}_{F(f,x)} + (1-p) \right)$$

$$= e^{\beta |X|} \left[\sum_Q p^{|Q|} (1-p)^{|X|-|Q|} c(X) |H^1(Q; \mathbb{Z}_q)| \right]$$

of *gauge transformations* (aka the size of the coboundary group $B^1(Q; \mathbb{Z}_q)$)

cohomology of Q

$F(f, x) = \{ x \text{ is nonfrustrated wrt } f \}$

of compatible pairs $= c(X) |H^1(Q; \mathbb{Z}_q)|$

plaquette random-cluster model (PRCM)

$$\text{PRCM}(Q) = \frac{p^{|Q|} (1-p)^{|X|-|Q|} |H^1(Q; \mathbb{Z}_q)|}{\frac{e^{-\beta|X|}}{c(X)} \mathcal{Z}(q, \beta)}$$

$$\begin{aligned}\text{ES}(f, -) &= \sum_Q \text{ES}(f, Q) \\ &= \text{PLGT}(f)\end{aligned}$$

$$\begin{aligned}\text{ES}(-, Q) &= \sum_f \text{ES}(f, Q) \\ &= \text{PRCM}(Q)\end{aligned}$$

$$\text{ES}(f \mid Q)$$

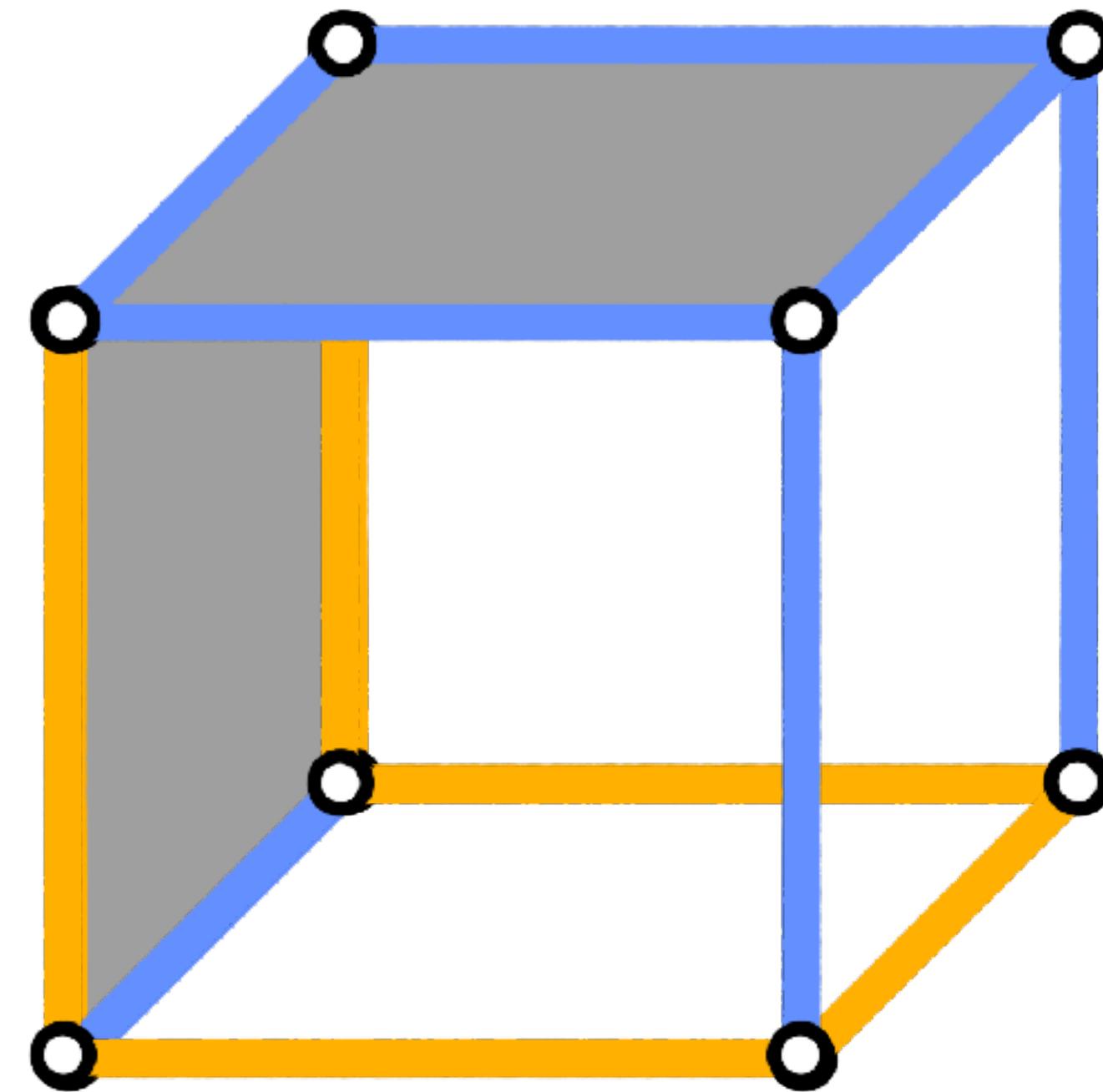
uniform over configurations f compatible with Q

$$\text{ES}(Q \mid f)$$

independent percolation on nonfrustrated plaquettes wrt f

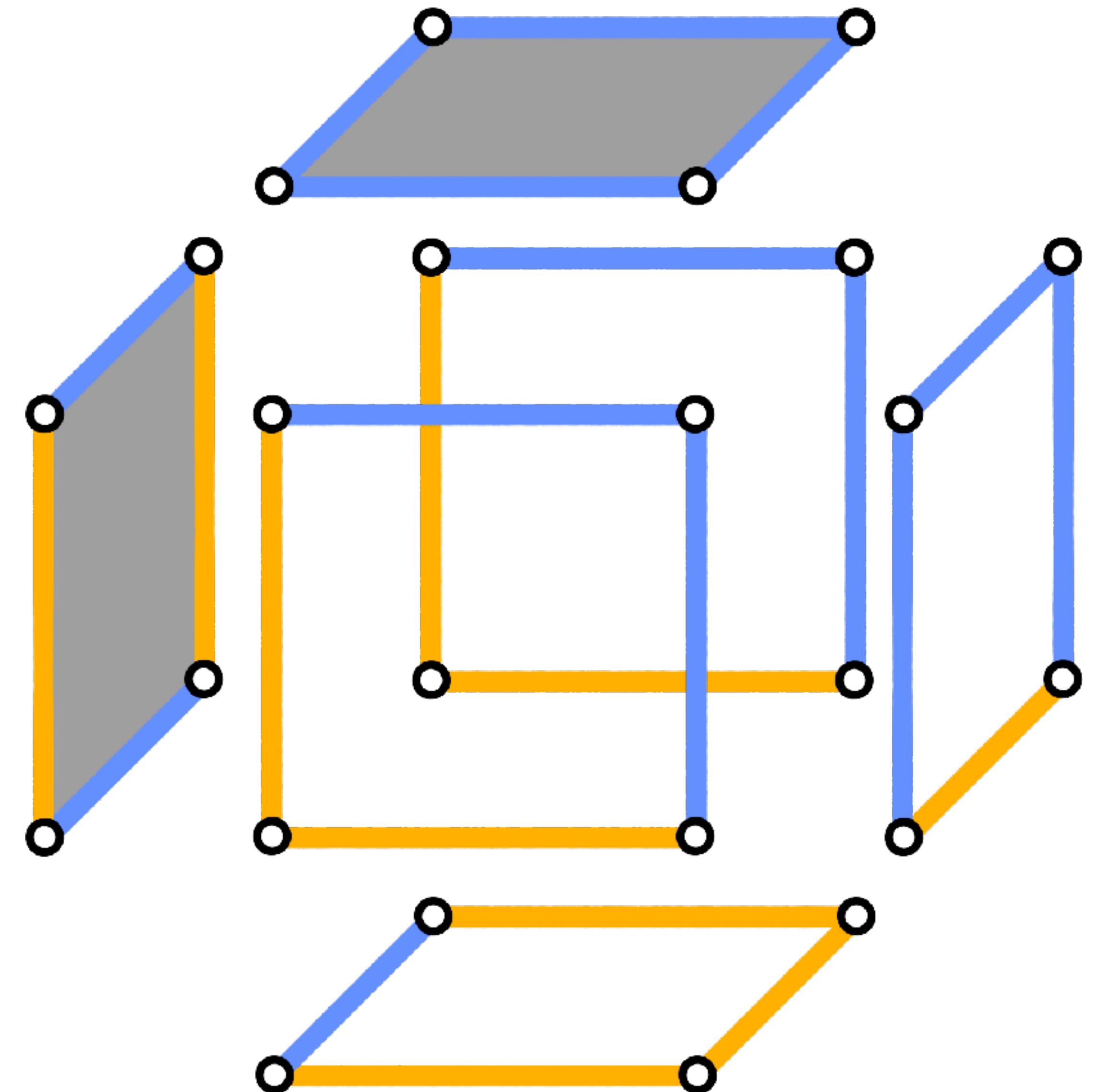
Swendsen-Wang dynamics

(1) Given Q_t and f_t ,



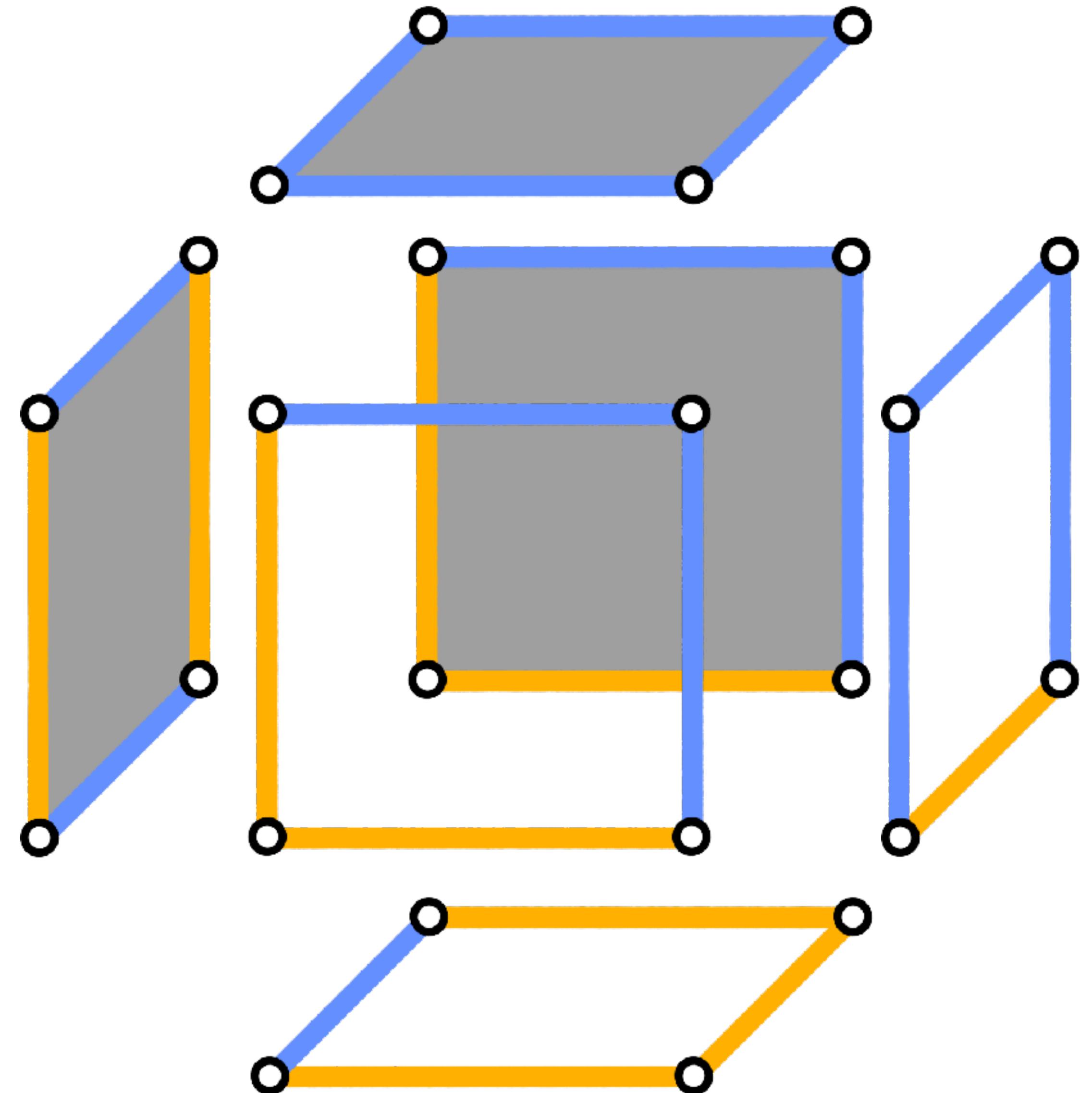
Swendsen-Wang dynamics

(1) Given Q_t and f_t ,



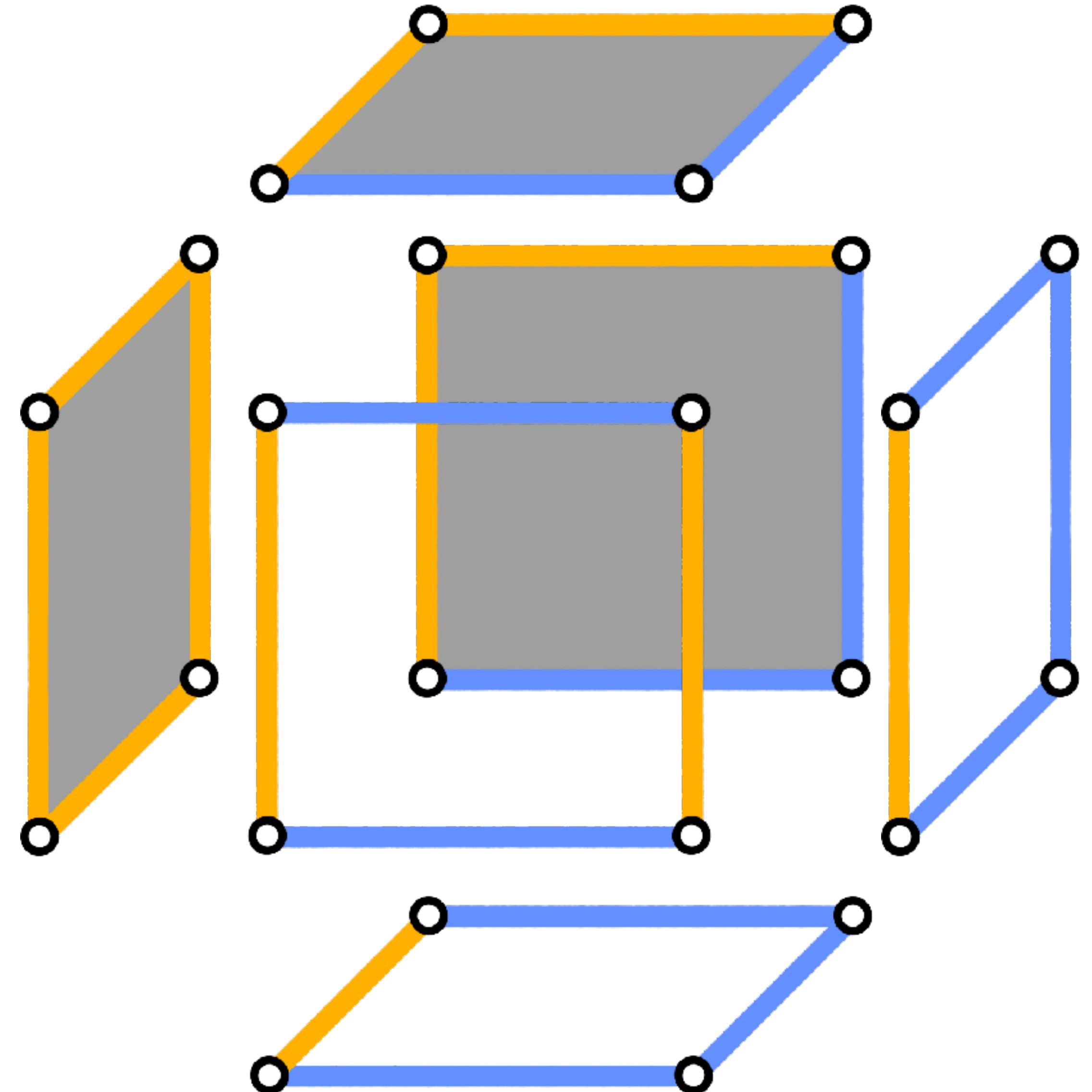
Swendsen-Wang dynamics

- (1) Given Q_t and f_t ,
- (2) Sample Q_{t+1} from $\text{ES}(- \mid f_t)$
(independent percolation over nonfrustrated plaquettes).



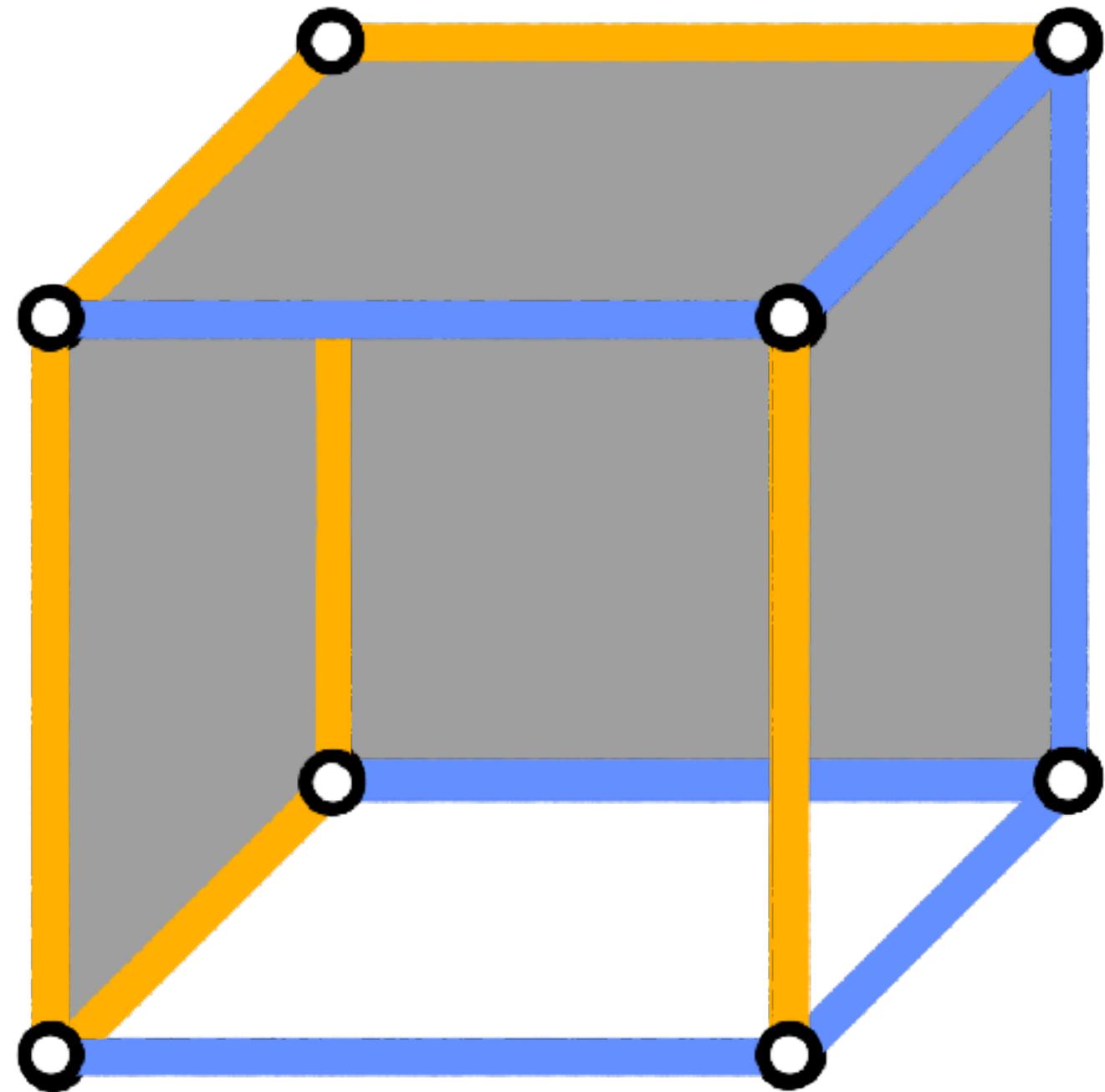
Swendsen-Wang dynamics

- (1) Given Q_t and f_t ,
- (2) Sample Q_{t+1} from $\text{ES}(- \mid f_t)$
(independent percolation over nonfrustrated plaquettes).
- (3) Sample f_{t+1} from $\text{ES}(- \mid Q_{t+1})$
(uniform random over configurations compatible with Q_{t+1}).



Swendsen-Wang dynamics

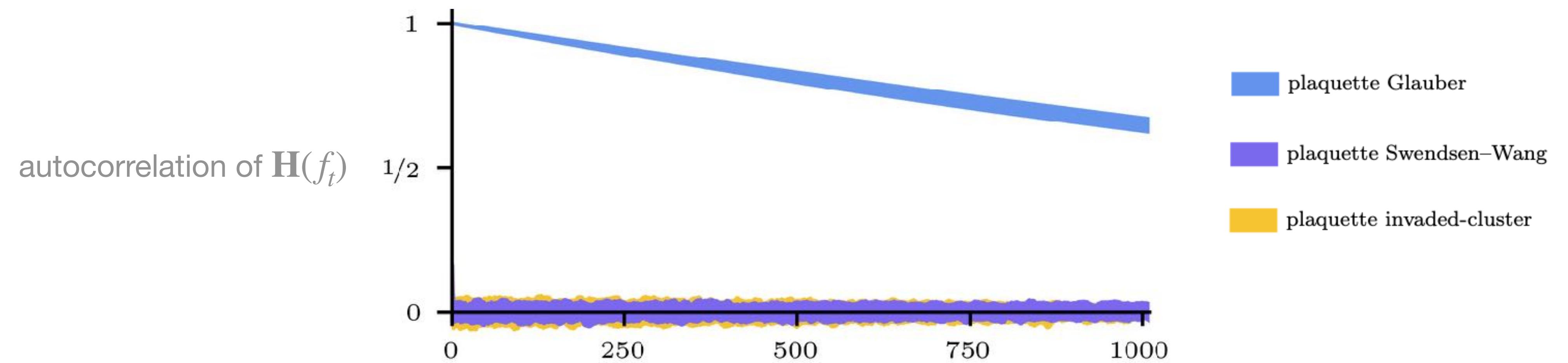
- (1) Given Q_t and f_t ,
- (2) Sample Q_{t+1} from $\text{ES}(- \mid f_t)$
(independent percolation over nonfrustrated plaquettes).
- (3) Sample f_{t+1} from $\text{ES}(- \mid Q_{t+1})$
(uniform random over configurations compatible with Q_{t+1}).
- (4) Set $t := t + 1$ and return to Step (1).

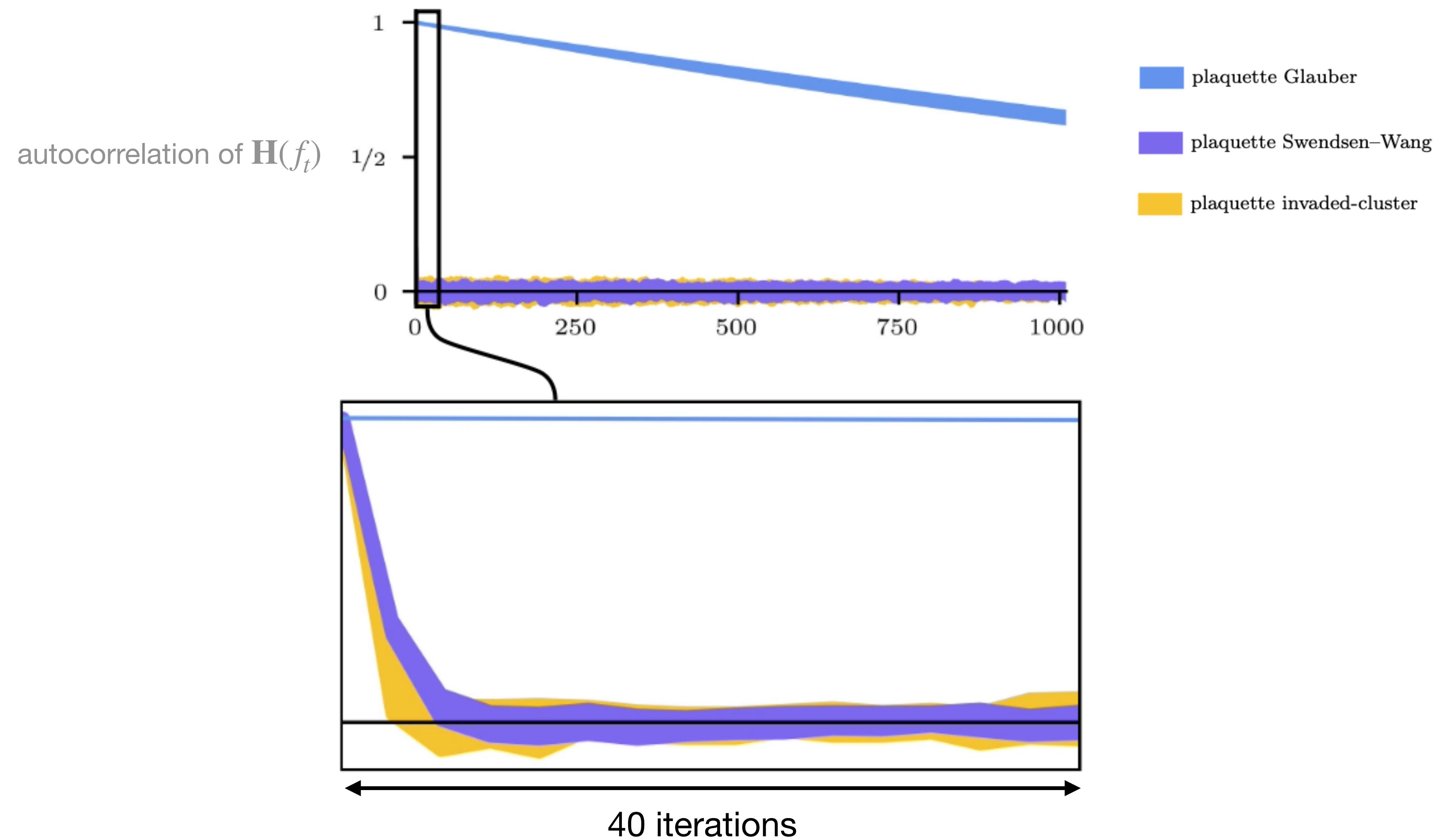


3. practicalities and future work

“Algebraic Topology-Enabled Algorith**M**s for Spin systems”

our software, **ATEAMS**, can simulate all these models in arbitrary dimensions.





L	Plaq	Field	s/it
10	60,000	\mathbb{Z}_2	0.206
		\mathbb{Z}_3	0.132
		\mathbb{Z}_5	0.093
		\mathbb{Z}_7	0.091
20	960,000	\mathbb{Z}_2	3.161
		\mathbb{Z}_3	1.683
		\mathbb{Z}_5	1.076
		\mathbb{Z}_7	0.888
30	4,860,000	\mathbb{Z}_2	28.550
		\mathbb{Z}_3	12.539
		\mathbb{Z}_5	6.381
		\mathbb{Z}_7	5.234
40	15,360,000	\mathbb{Z}_2	224.594
		\mathbb{Z}_3	79.565
		\mathbb{Z}_5	27.017
		\mathbb{Z}_7	19.159

30	4,800,000	Z_5	6.381
		Z_7	5.234
40		Z_2	224.594
40		Z_3	79.565
40		Z_5	27.017
40		Z_7	19.159

L	# of occupied cells		(negative) total energy	
	τ_N	τ_N [28]	τ_E	τ_E [28]
4	2.0096 ± 0.2742	2.1169 ± 0.0018	2.3419 ± 0.3041	2.3697 ± 0.0021
6	2.4980 ± 0.3181	2.7257 ± 0.0026	2.8717 ± 0.3529	3.0618 ± 0.0031
8	3.0887 ± 0.3735	3.2298 ± 0.0033	3.5027 ± 0.4125	3.6496 ± 0.0040
12	3.7788 ± 0.4355	4.0638 ± 0.0047	4.2931 ± 0.4783	4.6314 ± 0.0058
16	4.2462 ± 0.4757	4.7701 ± 0.0027	4.8360 ± 0.5214	5.4588 ± 0.0033
24	5.3386 ± 0.5612	5.9567 ± 0.0083	6.3495 ± 0.6384	6.8408 ± 0.0102
32	6.5786 ± 0.6560	6.9303 ± 0.0074	7.4935 ± 0.7220	7.9625 ± 0.0090
48	7.4909 ± 0.7219	8.5612 ± 0.0073	8.7650 ± 0.8142	9.8308 ± 0.0090

future work

1. running even larger systems!
2. computing *dynamical critical exponents*
3. further optimizing *ATEAMS*

thank you!

preprint arxiv.org/abs/2507.13503

software github.com/apizzimenti/ATEAMS

me mason.gmu.edu/~apizzime