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Potts( f ) ∝ e−βH( f )

Ising/Potts models

Renfrey Potts
c. University of Adelaide

Ernst Ising
c. University of Cologne

Wilhelm Lenz
c. Universität Rostock
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Kees Fortuin
c. The Random-Cluster Model, Geoffrey Grimmett

Piet Kasteleyn
c. The Random-Cluster Model, Geoffrey Grimmett

FK random-cluster model

RCM(Q) ∝ p|Q| (1 − p)|G|−|Q| q (# of components)
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Q f
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 is a compatible pair(Q, f )
(Q, f ) ∈ Z0(Q; ℤq)

  is constant on each component of f Q
(# of components)|Z0(Q; ℤq) | = q

# of compatible pairs (Q, − )
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Potts( f ) =
e−βH( f )

𝒵(q, β)

𝒵(q, β) = ∑
f

e−βH( f )

(# of edges with agreeing spins)H( f ) = −
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setting  and ,p = 1 − e−β F( f, x) = {f(u) = f(v)}

the event that  is compatible with the edge f x = (u, v)

eβ1F( f,x) = eβ (p1F( f,x) + (1 − p))
 when  holds,  otherwise1F( f,x) = 1 F( f, x) 0

∑
f

e−βH( f ) = ∑
f

∏
x

eβ1F( f,x)
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eβ1F( f,x) = eβ (p1F( f,x) + (1 − p))
∑

f

e−βH( f ) = ∑
f

∏
x

eβ1F( f,x)

𝒵(q, β) = ∑
f

e−βH( f )

= ∑
f

∏
x

eβ (p1F( f,x) + (1 − p))

= eβ|G| ∑
Q

p|Q| (1 − p)|G|−|Q| |Z0(Q; ℤq) |

RCM(Q)

# of compatible pairs (Q, − )
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RCM(Q) =
p|Q| (1 − p)|G|−|Q| |Z0(Q; ℤq) |

e−β|G| 𝒵(q, β)

# of compatible pairs (Q, − )
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ES( f, Q) ∝ ∏
x

[(1 − p)1x∉Q + (p)1x∈Q1F( f,x)]
Robert G. Edwards

Alan D. Sokal
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ES( f, − ) = ∑
Q

ES( f, Q)

= Potts( f )

ES( − , Q) = ∑
f

ES( f, Q)

= RCM(Q)

ES( f ∣ Q)
uniform over  constant on components of f Q

ES(Q ∣ f )
independent percolation on edges compatible with f

14
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how do we sample from these distributions?
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single-spin Glauber dynamics
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Swendsen-Wang dynamics
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(1) Given compatible  and ,


(2) Sample  from  
(independent percolation over edges 
with matching spins).


(3) Sample  from  
(uniform random over spin 
configurations constant on 
components).


(4) Set  and return to Step (1).

Qt ft

Qt+1 ES( − ∣ ft)

ft+1 ES( − ∣ Qt+1)

t := t + 1

Swendsen-Wang dynamics
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… what if we want to put spins on edges instead?
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2. homological generalization
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a b

c d

a b

dc

a b

c d

a b

dc
Q f

x

 is a plaquette (or -cell)x 2   is a configuration (or -cochain)f 1
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a b

c d

a b

dc

x
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a
b

c d

a
b

dc

(δ1f )(x) = f(∂2(x))
= f(ab) − f(ac) + f(bd) − f(cd)
= 1 − 0 + 0 − 1
= 0

f(ab)

−f(ac)

−f(cd)

f(bd)

the coboundary is the oriented sum 
of spins on the boundary of x

 is nonfrustrated if , and frustrated otherwisex (δ1f )(x) = 0
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a b

c d

a b

dc

 is a compatible pair(Q, f )
(Q, f ) ∈ Z1(Q; ℤq)

x  for all plaquettes (δ1f )(x) = 0 x ∈ Q
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PLGT( f ) =
e−βH( f )

𝒵(q, β)

𝒵(q, β) = ∑
f

e−βH( f )

 counts nonfrustrated plaquettesH( f ) := − ∑
x

1(δ1f )(x)=0

Potts lattice gauge theory (PLGT)
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𝒵(q, β) = ∑
f

e−βH( f )

= ∑
f

∏
x

eβ (p1F( f,x) + (1 − p))

= eβ|X| ∑
Q

p|Q| (1 − p)|X|−|Q| c(X) |H1(Q; ℤq) |

  is nonfrustrated wrt F( f, x) = { x f }

# of gauge transformations (aka the 
size of the coboundary group )B1(Q; ℤq) cohomology of Q

eβ1F( f,x) = eβ (p1F( f,x) + (1 − p))
∑

f

e−βH( f ) = ∑
f

∏
x

eβ1F( f,x)

# of compatible pairs = c(X) |H1(Q; ℤq) |
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PRCM(Q) =
p|Q| (1 − p)|X|−|Q| |H1(Q; ℤq) |

e−β|X|

c(X) 𝒵(q, β)

plaquette random-cluster model (PRCM)
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ES( f, − ) = ∑
Q

ES( f, Q)

= PLGT( f )

ES( − , Q) = ∑
f

ES( f, Q)

= PRCM(Q)

ES( f ∣ Q)
uniform over configurations  compatible with f Q

ES(Q ∣ f )
independent percolation on nonfrustrated plaquettes wrt f

28
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(1) Given  and ,


(2) Sample  from  
(independent percolation over 
nonfrustrated plaquettes).


(3) Sample  from  
(uniform random over configurations 
compatible with ).


(4) Set  and return to Step (1).

Qt ft

Qt+1 ES( − ∣ ft)

ft+1 ES( − ∣ Qt+1)

Qt+1

t := t + 1

Swendsen-Wang dynamics
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3. practicalities and future work
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our software, ATEAMS, can simulate all these models in arbitrary dimensions.

“Algebraic Topology-Enabled AlgorithMs for Spin systems”
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autocorrelation of H( ft)



Generalized cluster algorithms for Potts lattice gauge theory 37

40 iterations

autocorrelation of H( ft)
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# of occupied cells (negative) total energy
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future work
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1. running even larger systems!

2. computing dynamical critical exponents

3. further optimizing ATEAMS
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thank you!
preprint arxiv.org/abs/2507.13503

software github.com/apizzimenti/ATEAMS

me mason.gmu.edu/~apizzime


