Fast Sequential Computation of Convex Regions

Anthony E. Pizzimenti
George Mason University
apizzime@gmu.edu

draft: last edited March 24, 2023.

Abstract

Outlier analysis of districting plans — which consists, in part, of generating extremely large sets of valid plans
called ensembles — is a computationally intense task. These ensembles are often constructed using Monte
Carlo Markov chain (or MCMC) techniques, which allow users to tune the likelihood of a plan’s selection to
properties of that plan, or of the districts it defines, via a scoring mechanism. Compactness measures are a
type of numerical score which attempt to detect gerrymandering based on the spatial properties of a given
district; some of these scores rely on the computation of a district’s convex hull. In practice, however, districts
are composed of thousands of individual polygons, which are themselves defined by hundreds or thousands of
individual points: even using optimal general-purpose algorithms, determining the convex bounding regions
of millions of points takes time. This inefficiency is compounded by repeated computation in an MCMC
process, which may constitute hundreds of thousands or millions of steps. Here, we propose methods for
thinning point sets, and algorithms which take advantage of MCMC's structure, to efficiently compute convex
bounding regions at real-world scale.

Contents
1 Introduction
2 Definitions and examples
2.1 Foundations L e
2.2 Compactness MEASUIES v v v et e e e e
2.3 Computational modeling
3 Algorithms
3.1 Theoretical justification
3.2 Programmatic descriptions and correctness
4 Results, discussion, and future work

1

Introduction

TG WwW NN

Rather than evaluating individual districting plans using standalone (and often fundamentally flawed [2, 3])
numerical measures of nefarious intent, the last half-decade has seen a dramatic shift toward context-based
mathematical redistricting investigation. Broadly termed outlier analysis, this family of analytical tools combines
computers and algorithms, mathematical and statistical theory, and political and demographic data to draw
conclusions about individual districting plans by comparing them to (subsets of) the collection of all districting
plans. Generally, these methods of analysis rely on a computer to generate large samples of legally valid plans called
ensembles, then on researchers and experts to perform careful, nuanced comparisons of the algorithmically-drawn
plans to real-world ones.

Recently, Monte Carlo Markov chain or MCMC techniques have emerged as the industry standard for ensemble
generation. These tools combine Markov chains — random processes that serially sample from random variables
— with Monte Carlo algorithms that allow us to simulate these chains. In redistricting contexts, we simulate
Markov chains on the collection of all legally valid districting plans (called the state space) by treating each plan
as a possible state in the chain, drawing a new plan based on the current one using a randomized procedure, and
accepting that plan as the next state in the chain based on certain customizable criteria.

Because these simulated chains — which typically comprise hundreds of thousands or millions of plans — take
time to compute, it is essential that the procedures used to evaluate each plan are as efficient as possible: the time
it takes any individual procedure to judge a single plan is scaled linearly by the number of plans the simulated chain
finds. Evaluation procedures that try to describe compactness are often computational resource sinks because
they operate primarily on detailed spatial data. A typical evaluation procedure computes the Reock score, a
measure of spatial compactness that idealizes districts as circles, comparing the area of a given district to the
area of the smallest circle containing it. The underlying task, finding the minimum bounding circle or smallest
enclosing circle of spatial data, is a well-studied computational geometry problem: given a set of points, find the
circle with smallest possible radius that contains all the points.

Linear-time prune-and-search [5] and expected linear-time randomized [11] algorithms exist for finding minimum
bounding circles, but using them in redistricting MCMC contexts presents two further challenges. First, finely-
detailed spatial data used for redistricting are composed of millions of individual points, which must be stored,
accessed, and operated on efficiently: for example, lowa's 175,199 Census blocks are defined by 3,804,140 unique
points — 8,079,844 when counting duplicates. Such large pointsets, especially ones with multiplicity, can worsen
already-poor linear and possibly quadratic algorithmic running times. Second, we must calculate these minimum
bounding circles for each district in each plan: if we simulate a chain with 500,000 steps (that is, up to 500,000
unique districting plans) and each plan has 20 districts, we compute ten million minimum bounding circles using
a naive implementation.

In this paper, we describe adjustments to both the algorithms and their inputs to massively improve performance
in MCMC-for-redistricting contexts.

2 Definitions and examples

2.1 Foundations

To begin, we provide general, topologically-motivated definitions for two concepts underlying all redistricting work:
states and units.

Definition (State, unit). Given a topological space X (typically, X = R? or X = S, under their
respective standard topologies), a state S is a path-connected subset of X.? A unit u; is a path-
connected subset of S; the collection of units U = {uy,...,u,} tiles S. Generally, states and units
are polygons, and units are atomic — that is, units are un-splittable. Any polygon P is induced by
a sequence of points, or vertices, which we denote Vp.

aFor states with islands, like Massachusetts, we generally consider disjoint connected components to be “connected”
to their nearest Euclidean neighbor.

Definition (Boundary unit). Given a state S, a boundary unit is a unit u such that |Ou N dS| # @.
In other words, a boundary unit is a unit whose boundary intersects the state boundary on at least
one point.

We then combine units together to form districts, and collections of districts make up districting plans:

Definition (Districting plan, district). A districting plan is an equivalence relation ¢ on U; a district
is an equivalence class of . Equivalently, a districting plan is a partition ¢ of U, and a district is a
component of .

g

£

§ |
[

Y | L]] - R

Figure 1: lowa’s 99 counties (left), and lowa's 99 counties partitioned to form a districting plan (right).

In most jurisdictions, districts are required to be contiguous, which translates to path-connectedness under the
subspace topology on & — in other words, a person must be able to choose any two places within a district and
walk between them without leaving the district (outside naturally non-contiguous territory, like islands or river
crossings). lowa's! counties, shown in Figure 1, form the set of atomic units U for redistricting in the state:
each county is assigned to one of four districts, and each district is contiguous. Given districts and the plans
they compose, we can use numerical scores to translate spatial, demographic, and election data into summary
statistics. With these statistics in hand, we are then able to compare individual district(ing plan)s head-to-head
or against the backdrop of an ensemble.

2.2 Compactness measures

Compactness measures are a family of scores that attempt to quantify the spatial “weirdness” of a district.
Idealized compactness measures are compactness measures that, given a district D, compare the properties of
D to an idealized counterpart I. For example, given a district D, Polsby-Popper [8] defines I as the circle with
perimeter equal to the perimeter of D, and defines compactness as the ratio of the perimeter of D to the perimeter
of I. Schwartzberg [10] defines I as the circle with the same area as D, and defines compactness as the ratio of
the area of D to the area of I. Because these scores rely only on the area or perimeter of each polygon, they are
trivial to compute.

Two idealized compactness measures, the convex hull score and the Reock score [9], actually require the construc-
tion of an idealized district I: given a district D, each score constructs an I using a subset of D's (polygonal)
vertices, and returns the ratio of the area of D to the area of I.

1The author is from lowa, and greatly appreciates their home state’s ubiquity as a redistricting example.

Figure 2: The convex hull (red) and minimum bounding circle (purple) of lowa’s first (left) and second (right)
Congressional districts.

Definition (Convex hull, Convex hull score). Given a simple polygon P, the convex hull CH(P) of
P is, equivalently:

(a) the intersection of all convex polygons which contain P;

(b) smallest-area convex polygon which contains all points in P;

(c) the polygon induced by the longest subsequence of P's vertices Vp such that, for all pairs of
adjacent vertices (v;, v;), all vertices of P lie to the right of the directed line 1Tv]>

(d) the intersection of all half-planes formed by the v;u; as defined in (c).

The convex hull score of P is then

Area(P)

ocu(P) = Area(CH(P))

Definition (Minimum bounding circle, Reock score). Given a simple polygon P, the minimum bound-
ing circle MinCircle(P) is the minimum-radius circle which entirely encloses P. Equivalently, the
minimum bounding circle of a pointset V' is the minimum-radius circle which contains all points in
V. The Reock score is then

B Area(P)
~ Area(MinCircle(P))

OReock (P)

The convex hull and Reock scores idealize each district as the smallest possible convex region and the smallest
possible circle containing it, respectively. These measures of compactness are more detailed, as they require data
underlying each polygon to give a compactness measurement; Polsby-Popper and Schwartzberg, on the other
hand, require only information about perimeter and area. To demonstrate, consider the polygons Py, and Pg in
Figure 3, each with area 3 and perimeter 8.

The Polsby-Popper (resp. Schwartzberg) scores for P, and Pg are the same, as the polygons have equal area

Figure 3: Two different polygons, Pr, and Pr, with equal perimeter and equal area.

and equal perimeter:

1
opp(Py) = T Areall) osan(PL) = remen —
Perim(Py,)’ 2w/ Ared PL)/m
_4m - Area(Pr) _ 1
i — - Perin(P,
Perim(Pg) PV vy /—Ag(a(;i)/ﬂ
= ove(Pr) = 0sch(Pr)

Figure 4: The polygons P;, and Pr have different convex hulls despite having the same area and perimeter.
It is also clear that Py, is its own convex hull, but Pg is not — as a result, these polygons must have different
convex hull scores.

However, by superimposing CH(Pr,) and CH(Pgr) on their respective polygons, as in Figure 4, we can clearly see
that ocu(Pr) # ocu(Pr): Pr is itself convex, while Pg is not. Inherent to their definitions, the convex hull
and Reock scores require far more detailed input data than Polsby-Popper or Schwartzberg do, and are thus more
costly to compute. Furthermore, in practical settings, the number of districts is often much greater than four and
there are far more than 99 base units to play with; the computational cost again increases.

2.3 Computational modeling

By itself, computing the convex hull or Reock score for a given district or districing plan is relatively cheap:
even when the number of points defining each district's polygon is quite large, efficient algorithms on modern
hardware can easily and quickly perform the required operations. Contemporary redistricting analyses, however,
are often based on outlier analysis: the construction of extremely large samples of legally valid districting plans
called ensembles, and the subsequent comparison of individual plans to those ensembles. The industry-standard

method of ensemble generation is via Monte Carlo Markov chain or MCMC techniques: many variations on these
MCMC processes exist, but they are all based on the same underlying principles.

Definition (Random process, Markov chain, Markov property). Given a random variable R, a random
process is a series of repeated draws from R indexed by some set Z, denoted as {R(¢) };cz. Generally,
we set Z = N. A Markov chain is a random process M where the probability that R(i + 1) = r; 41 is
dependent only on the probability that R(i) = r; — this is called the memoryless or Markov property.
We write the Markov property of random processes as

P(R(i+1) =741 | R(i) =1, R(i—1)=7ri—1, ..., R(0) =r10)
=P (R(i+1)=rip1 | R(i) = 1)

Because the number of base units in U is finite, there must be a finite number of equivalence classes ¢ C U X U.
We choose our (finite) sample space to be P, the set of all valid districting plans (equivalently, a subset of all
equivalence classes ¢ on U). The size of P, however, grows astronomically with the number and arrangement of
units: while there are only 117 ways to split a four-by-four grid into four equally-sized pieces, there are more than
706 quadrillion ways to split a nine-by-nine grid into nine equally-sized pieces [7]. This rate of growth, often called
combinatorial explosion, makes enumerating the plans in P impossible: the universe would cease to exist before
our program terminates. Instead, we generate a representative sample of districting plans called an ensemble.

Definition (Proposal function, Monte Carlo Markov chain, ensemble). To simulate a Markov chain
M which samples from P, we define a proposal function ® : P x [0,1] — P which consumes a valid
districting plan P; € P and a real number « in [0, 1], then generates (proposes) a new districting
plan P;y1 € P. Proposal functions ® belong to a class of randomized algorithms called Monte Carlo
algorithms.

We then simulate the Markov chain M by repeatedly applying ® to our initial and subsequent states:
M - (Po,Pl = (I)(Po,ao),Pg = @(Pl,al),...,PN = (I)(PN_l,OLN_l)),

where N is a pre-determined number of iterations in the simulation. The strategy of simulating a
Markov chain via Monte Carlo proposals is called Monte Carlo Markov chain. The resulting sequence
of plans M is an ensemble.

In this work, our simulated Markov chains are ReCom chains [4], where a plan generation function uniformly
randomly chooses a pair of adjacent districts, computes the union of the units those districts comprise, and
re-splits the set of units into two new districts; the resulting plan is proposed as the next iteration of the chain.
An example ReCom step on lowa's counties is shown in Figure 5.

Because raw geometric data is unwieldy, we use a dual interpretation of this redistricting problem, as in [4]: we
first create a dual graph of the units in U, then conduct a random walk on equipartitions of the dual graph, shown
in Figure 6.

Figure 5: lowa's Congressional redistricting plan (left) and a new, population-balanced Congressional districting
plan proposed by ReCom (right). The two adjacent districts selected to be merged and re-split by ReCom
have a colored border.

Definition (Dual graph, equipartition). Given a set of units U, the dual graph Gy = (Vg, Eg) is
constructed in the following way: each vertex v; in Vg corresponds to a unit u; in U, and an edge
(vj,vg) is drawn if j # k and |Ou; N Qug| > 1 (i.e. u; and uy, are adjacent: the intersection of u;'s
and uy's boundaries contains more than one point). Because the units in U are path-connected and
tile S, Gy is planar. Each vertex v; in Vi is assigned a nonnegative weight, usually set to the total
population of its corresponding unit w;. An equipartition is an equivalence relation ¢ on Vg such
that the subgraphs induced by equivalence classes of ¢ are connected and have equal weights (up to
some weight tolerance 0 < ¢ < 1).

T P
assibtes
‘upgir. ll
-VAVA'AVAVA'AVAvA'A"
NN oS
wn...aumam

AVAVAVAVAAYATAYAV,
00000060 %y

)
AT INATT IS
IVAVAVAVAVAVAVAVA'A =
AT IN L dS
vn...am\\
SVAVAVAVAYAYAYAVAY,
.......ony

Figure 6: Equipartitions of the dual graph of lowa’s counties, which correspond to the districting plans shown
in Figure 5. Cut edges, edges whose incident vertices are in different equivalence classes (i.e. different districts),
are lighter-weight; boundary vertices have colored borders.

Treating redistricting as a graph partitioning problem lets us take advantage of efficient graph algorithms rather
than deal with cumbersome spatial data. In this setting, we are able to associate election, spatial, demographic,
and other data from each unit to its respective vertex in the dual graph; this association lets us operate on these
data at each iteration of the simulated chain. For our experiments, we assume that the points defining each
unit u; are associated to their respect — that is, each vertex “knows” spatial information about its geometric
counterpart. We can additionally classify the vertices of our dual graph Gy, based on this information:

Definition (Boundary vertex, internal vertex, cut edge, cut vertex). A boundary vertex is a vertex
v; whose corresponding unit u; is a boundary unit. An internal vertex is a vertex which is not a
boundary vertex. Equivalently, because Gy, is planar, a boundary vertex is a vertex adjacent to the
external face of G;. A cut edge is an edge (u,v) where u and v belong to different districts; both
u and v are the cut vertices.

Next, we propose algorithms which take advantage of the self-similarity of sequential plans proposed by ReCom,
as well as a minimal set of input data, to efficiently compute convex hulls and the scores dependent on them.

3 Algorithms

3.1 Theoretical justification

Core to efficient minimum bounding circle computation is the size reduction — in fact, minimization — of the
input data set. Because commonly-used minimum circle-finding algorithms take linear (with large constants) or
expected-linear (but worst-case quadratic) time, it is important to drastically reduce the number of points the
algorithms are asked to handle. To do so, we state and prove three lemmas which justify important optimizations.

Lemma 3.1 (Equality of minimum bounding circles). Given a polygon P,

MinCircle(P) = MinCircle(CH(P)) .

Proof. Given a polygon P, its minimum bounding disk B (which is bounded by the minimum bound-
ing circle S) is a convex region containing P. Because CH(P) is the intersection of all convex
regions containing P, one of those convex regions must be B, so B must contain CH(P). As such,
MinCircle(P) = MinCircle(CH(P)). []

Lemma 3.1 asserts that the minimum bounding circles of a polygon and its convex hull are the same. In practice,
given a district D made up by a set of units p C U, we can first compute the convex hull of the points inducing
the units in Up, then compute the minimum bounding circle of the resulting hull. In addition to reducing the
amount of geometric information required to compute minimum bounding circles by first finding the hull of each
district, we can reduce the number of units required to find each hull via another lemma:

Lemma 3.2 (Donut). Let D be the union of units Up = {uy,...,ur}. Next, let E be the set of
units u; € Up which contain a point on the boundary of D; these are exterior units. Let I be the
set of remaining units. Then,

CH(U E) = CH(D).

Lemma 3.2 is called the Donut lemma because the sets £ and I are disjoint, and make a “donut” and “donut
hole" out of the units in Up, respectively.

Proof. First, note that Up is the disjoint union of E and I, and D is the union of |JE and |JI.
Next, let V* be the set of points which define CH(D). As each point in V* must be on the boundary
of D, we know that they must also be on the boundary of some unit in E; further, we know that no
point on the boundary of D can be on the boundary of any unit u; € I, otherwise u; would be in E.
Thus, we have

CH(U E) = CH(UEU UI)

= CH(D).

Lemma 3.2 provides us with an additional optimization by ignoring units whose points are irrelevant to the
computation of minimum bounding circles. In practice, this is readily attainable in ReCom chains: the dual graph
G marks vertices on the boundary of the region and similarly tracks vertices incident to cut edges (as in Figure
6) [6]. Determining the exact set of vertices required — and, by duality, the exact set of units E — is at worst
linear in the total number of vertices of G. Additionally, by using the ReCom proposal scheme, we must only
re-identify the cut edges for the two districts which were modified. Finally, we posit an important lemma, called
the approximation lemma:

Lemma 3.3 (Approximation). Let U be the union of units {u,...,ux}, and U* the union of
{uf,...,ui}, where uf = CH(u;). Then,

CH(U) = CH(U™)

Corollary 3.3.1. Let U be the union of units {u, ..., ux}, and U* the union of {u],...,uj}, where
uf = CH(u;). Then, any point on CH(U) induces one of the u}.

Proof. Let V be the sequence of vertices (points in the plane) which define CH(U), and V* the
sequence of vertices which define CH(U*). We proceed iteratively by constructing V' and V* in the
fashion of the monotone chain algorithm [1]. In brief, we show that the upper (and, by symmetry,
lower) hulls of U and U* are the same: we first establish a point that must be on the upper hull of
both U and U*, then show that each following point on the upper hull of U must also be in U*, and
so must also induce the upper hull of U*. We conclude by “reversing” the iterative process to show
equality of the lower hulls.

Let u; be the unit induced by the vertex with the smallest z-coordinate of all vertices in U; call this
vertex v;. Because v; has the smallest z-coordinate of all vertices, it has the smallest xz-coordinate
of all vertices of w1, and so must be on u}j. Now, because v; is the leftmost vertex and induces both
uy and v — and is thus contained in U and U* — it is the first vertex in both V' and V*. In other
words, vy is a vertex of the convex hulls of U and U™.

Choose v5 to be the next vertex on V, and let uy be the unit induced by vo. (Note that it is possible
for u3 = us.) Now, vs is the vertex with the smallest a-coordinate such that all vertices in U lie in
the half-plane bounded by the directed line v1v5. Because all vertices in U lie in this half-plane, all

vertices of us lie in this half-plane. Thus, all vertices of us lie to the right of the half-plane bounded
by the directed line v*vy, where v* is the vertex on u3 which immediately precedes vz, so vz is on
ul. Because vq is on both V' and u} and no preceding point on u; or us (which necessarily includes
points on u} and u}) forms a bounding half-plane with vy, v2 must be on U*.

We continue in this manner until we reach the rightmost vertex (that is, the point with the largest
x-coordinate), which is guaranteed to be on both U and U*, thus verifying that the upper hulls of
U and U* are the same. To show that the lower hulls are the same, we execute a similar iterative
process: we start at the rightmost vertex and choose the vertex with the /argest x-coordinate such
that all other vertices lie in each respective half-plane at each step. We continue until we reach the
leftmost vertex, at which point we have constructed both the upper and lower hulls.

Because each sequence contains the same vertices in the same order, we have V = V*, so CH(U)
CH(U™).

 Emmme |

= _E L_ \

“ (P smg T,.E?f

i

: E<E

Figure 7: The points inducing voter tabulation districts (VTDs), a typical set of base units, in a suburb of
Indianapolis. Left shows the points which define the units themselves; right shows the points which define the
convex hulls of the same. Polygonal approximation, for the purpose of computing minimum bounding circles,
is justified by Lemma 3.3.

Broadly, Lemma 3.3 says that, regardless of whether we use exact or approximate polygonal data, the resulting
convex hulls are the same. With these optimizations in hand, we can describe and compare a range of approaches
for repeatedly computing convex hull and Reock scores. In practice, the application of this lemma greatly reduces
computational cost: Figure 7 demonstrates the stark difference between the number of points defining polygons
and the number of points defining those polygons’ convex hulls.

Finally, these results lead to an important corollary, which justifies thinning our geometric dataset before any
computation takes place.

Corollary 3.3.2 (Minimality of &?). The set
2 = | CH(w)
ueU

is the minimal (with respect to inclusion) set of points sufficient to compute the convex hull of any
union of units — in particular, any district — exactly.

10

Proof. Let &2~ be a strict subset of & such that & — &~ = {p}. Let U = {uq,...,uy,}, with
D =|JU. Suppose that p is a point inducing D, so p belongs to one of the w;.

Without loss of generality, suppose that w; is an external unit on D, and suppose that p induces the
convex hull of D. Then, by Lemma 3.3, p must induce uf = CH(u;). As &~ does not contain p,
we have

CH(2™) # CH(#) = CH(D),

so &~ does not admit the same convex hull as &?. As such, no proper subset of & is guaranteed
to admit the convex hull of D, so &2 is the minimal subset which does so. [|

3.2 Programmatic descriptions and correctness

In programmatic settings, each plan P is treated as a function which maps district labels ¢ € {1,...,k} to sets
of units U;, such that P(i) = U;: for example, the units in district 1 can be obtained by P(1) = U;. Next, we
have a routine POINTS which takes collections of units Uf; as input, and outputs the union of those units' point
sets. Finally, the routine MINCIRCLE implements a minimum enclosing circle-finding algorithm such that, given
a set of points P, the return values of MINCIRCLE are the radius and center of MinCircle(P).

Algorithm 1 (NAIVE) a naive algorithm for computing minimum enclosing circles for each district in a plan P;.
At iteration ¢t = 1, we must compute the minimum bounding circles for all districts, as they have not been “seen”
by the algorithm before. At any iteration ¢ > 1, all but two districts ¢ and j in the plan P; remain the same, so
we must only re-compute scores for districts 7 and j.

if £ =1 then

M+ {1,...,k} > Initially, we compute circles for all districts.
else

M+ {i,j} > Only districts ¢ and j were modified by ReCom.
end if

for each district index d in M do

Sq = POINTS(P,(d)) > Points defining units in district d.
Cy = MINCIRCLE(S,) > Compute the minimum bounding circle of d.
end for
return (C1,...,Cy) > Sequence of minimum enclosing circles.

Correctness. Algorithm 1 is trivially correct: the minimum bounding circle of each district is deter-
mined by first finding all units U/; composing district d, then computing the minimum bounding circle
C, of the points defining the Uy, for all d in M. |

NAIVE is an easily implemented but demonstrably slow algorithm. It suffers under extremely large input sizes:
in lowa, for example, a single district built out of counties is defined by 72,043 unique points. If we instead
use Census blocks, 836,419 unique points define the same district — this results in at least a ten-fold increase
in algorithmic running time. To reduce the number of points, we take advantage of the approximation lemma.
Here, we define a routine HULLPOINTS which takes collections of units U; as input, and outputs the union of
the points defining those units' convex hulls.

11

Algorithm 2 (ConvexHuLL) computes minimum bounding circles using only the points defining the convex
hull of each unit comprising each district, rather than using points defining the entire unit.
if t =1 then

M+ {1,... k} > Initially, we compute circles for all districts.
else

M« {i,j} > Only districts ¢ and j were modified by ReCom.
end if

for each district index d in M do

Sq¢ = HULLPOINTS(P,(d)) > Points defining convex hulls of units in district d.
Cy = MINCIRCLE(S,) > Compute the minimum bounding circle of d.
end for
return (C1,...,C%) > Sequence of minimum enclosing circles.

Correctness. Algorithm 2 only slightly modifies Algorithm 1: instead of computing the minimum
bounding circle of all points on units composing district d, it computes the minimum bounding
circle of points on the convex hulls of units in d. By Lemma 3.3, we know that the convex hull
of the union of polygons is the same as the convex hull of the union of the polygons’ convex hulls.
This algorithm then correctly computes convex hulls, and consequently correctly computes minimum
bounding circles. |

Next, we can introduce a second optimization justified by Lemma 3.2. This algorithm uses a subroutine called
BOUNDARY which, given a district index d, finds the units on the boundary of d. Though this is somewhat difficult
in a geometric setting — finding which units’ boundaries touch the dividing line between two districts, or coincide
with the boundary of the entire jurisdiction — our dual environment lets us abstract geometric coordinates away
in favor of adjacency relationships. Our graph-based abstraction secures an important computational advantage,
as it strips out unnecessary information and allows us to pre-compute boundary vertices and quickly identify cut
vertices, which is important in the use of Lemma 3.2.

Algorithm 3 (DonNuUT) computes minimum bounding circles using only the points defining the convex hull of
each unit comprising each district, rather than using points defining the entire unit.

if t =1 then

M+ {1,... k} > Initially, we compute circles for all districts.
else

M« {i,j} > Only districts ¢ and j were modified by ReCom.
end if

for each district index d in M do

B; = BOUNDARY(d) > Units forming the “donut” around d.
Sq¢ = HuLLPOINTS(By) > Points defining convex hulls of the donut of d.
Cy = MINCIRCLE(S,) > Compute the minimum bounding circle of d.
end for
return (C1,...,C%) > Sequence of minimum enclosing circles.

12

Correctness. Algorithm 3 adds a single step to Algorithm 2 as we incorporate the use of Lemma 3.2.
Because Lemma 3.2 says that we can use only the boundary units (and, by extension, the points
defining those units) to correctly compute global convex hulls, and the other steps in this algorithm
are justified by the proof of Algorithm 3, this algorithm correctly computes minimum bounding
circles. |

Finally, we are able to complete the optimization by using Lemma 3.1: rather than compute the minimum
bounding circle of each set of hull points S, we first compute the convex hull CH(S;) of the units, then compute
MinCircle(CH(Sy)).2

Algorithm 4 (CoMBINED) computes minimum bounding circles using only the points defining the convex hull
of each unit comprising each district, rather than using points defining the entire unit.

if t =1 then

M+ {1,...,k} > Initially, we compute circles for all districts.
else
M + {i,j} > Only districts 7 and j were modified by ReCom.
end if
for each district index d in M do
B; = BOUNDARY(d) > Units forming the “donut” around d.
Sq¢ = HuLLPOINTS(By) > Points defining convex hulls of the donut of d.
Cq = MINCIRCLE(CH(Sy)) > Compute MinCircle() of d based on its convex hull.
end for
return (C1,...,C%) > Sequence of minimum enclosing circles.

Correctness. Algorithm 4 adds a single step to Algorithm 3 in its use of Lemma 3.1. Because this
lemma shows that the minimum bounding circle of S; is the same as the minimum bounding circle
of the hull of Sy, this algorithm correctly computes minimum bounding circles. |

4 Results, discussion, and future work

To test our theoretical findings, we simulate a Markov chain, generating 1,000 nine-district Congressional district-
ing plans in the state of Indiana.3> We then program subroutines for each of the minimum bounding circle-finding
algorithms described in Section 3.1 and perform these subroutines on every plan produced by the chain: this way,
we can directly compare the efficiency of each algorithm, as they are performing different operations on the same
input data. Table 1 shows a sample of these results, and they clearly show the benefits of these optimizations —
they reduce the time it takes to find minimum bounding circles by literally thousands of times.

As expected, Algorithm 1 (NAIVE) performs abysmally, requiring more than eight hours of processing time to
compute 9,000 minimum bounding circles. As expected from our earlier point-counting estimates, CONVEXHULL
makes an immediate and considerable performance improvement: it needed no more than 20 minutes to compute

2Lemma 3.1 is used implicitly in each of the preceding algorithms, as the minimum bounding circle of U{; depends on the convex hull
of U;. However, we use it here as an explicit optimization to reduce the number of points involved in the calculation, rather than
treat it solely as justification for using convex hulls of individual units.

3We use a short-length chain for this experiment: shorter chains are easily repeatable, and neither the autocorrelation of districts or the
convergence of the chain to its stationary distribution have any bearing on the efficiency of minimum bounding circle computation.

13

Naive | ConveExHuLL | DonuT | COMBINED
35.4941 1.0452 0.0374 0.0306
37.3586 0.9975 0.0363 0.0261
— | 37.6074 1.0829 0.0344 0.022
2 | 37.5681 1.0738 0.0364 0.0326
S | 39.7257 1.2078 0.0422 0.0491
L1 29.0643 1.2098 0.0559 0.0413
g | 24.8241 1.2456 0.0366 0.0398
F | 18.0935 1.2292 0.0471 0.0194
34.0147 1.259 0.0353 0.0382
19.6954 1.065 0.04 0.0277

Table 1: Minimum bounding circle computation times for a uniformly random sample of 10 plans from the
1,000-plan ensemble. Lemma 3.3 is a home run, improving computation times by (at most) a factor of 40;
Lemma 3.2 also provides significant efficiency advantages, further reducing running times by similar amounts.

40
Combined === Convex Hull Combined
Donut

1200 4

Donut

1000 4

30 A

800 4

600 -

400 -

Cumulative time (seconds)
Cumulative time (seconds)
W

200

0 200 400 600 800 1000 0 200 400 600 800 1000

Figure 8: Direct comparison of CONVEXHuLL, COMBINED, and DONUT (left); direct comparison of COM-
BINED and DONUT, the two best-performing algorithms (right).

the same number of bounding circles. To re-frame this result, CONVEXHULL required only four percent of the
time that NAIVE did to compute exactly the same information. Figure 8 zooms in on these performance gains,
making plain the superiority of DONUT: it needed only three percent of the time that CoNvExXHuLL did to find
the same results. Compounded, DONUT is nearly a thousand-fold efficiency increase over NAIVE. Using all the
results together, COMBINED is a slight performance boost over DONUT.

Though we provide substantive theoretical and practical improvements for handling geometric data in MCMC
contexts, more work in this area remains. Storing and accessing geometric data is, at present, prohibitively
clunky: points which induce k polygons are stored k times, leading to unnecessarily bloated datasets; retrieving
geometric information associated to vertices in the dual graph requires a linear-time scan at each step of the chain
per district modified. We also want to better characterize the “shape” of our input data: based on its underlying
algebraic and topological structure, can we determine whether specific configurations of units might occur? Are
there easy ways to identify such configurations on-the-fly, and can we tailor algorithms to specially handle them?

Because these MCMC-based techniques require both substantial time and computing resources, and because the
redistricting investigations they support move rapidly, algorithmic efficiency is of key importance. Rectification of
civil rights harms simultaneously demands care and speed: these problems are firmly entrenched in our electoral
systems, and do material harm to those who suffer them. Well-designed, thoughtful algorithms can lead to better
representational outcomes, and the improvements described here are a small but meaningful step in that direction.

14

References

[1]
[2]
3]
[4]
[5]

[6]
[7]
[8]

[
[10]

[11]

A.M. Andrew. Another efficient algorithm for convex hulls in two dimensions. Information Processing Letters,
9(5):216-219, 1979.

Mira Bernstein and Moon Duchin. A Formula Goes to Court: Partisan Gerrymandering and the Efficiency
Gap. Notices of the American Mathematical Society, 64(9):1020-1024, 2018.

Daryl DeFord, Natasha Dhamankar, Moon Duchin, Varun Gupta, Mackenzie McPike, Gabe Schoenbach, and
Ki Wan Sim. Implementing partisan symmetry: Problems and paradoxes. Political Analysis, page 120, 2021.

Daryl DeFord, Moon Duchin, and Justin Solomon. Recombination: A Family of Markov Chains for Redis-
tricting. Harvard Data Science Review, 3(1), mar 31 2021.

Nimrod Megiddo. Linear-Time Algorithms for Linear Programming in R and Related Problems. SIAM
Journal on Computing, 12(4):759-776, 1983.

MGGG Redistricting Lab. GerryChain. https://github.com/mggg/GerryChain.
MGGG Redistricting Lab. The Known Sizes of Grid Metagraphs, 2018.

Daniel D. Polsby and Robert D. Popper. The Third Criterion: Compactness as a Procedural Safeguard
against Partisan Gerrymandering. Yale Law and Policy Review, 9(2):301-353, 1991.

Ernest C. Reock. A Note: Measuring Compactness as a Requirement of Legislative Apportionment. Midwest
Journal of Political Science, 5(1):70-74, 1961.

Joseph E. Schwartzberg. Reapportionment, Gerrymanders, and the Notion of Compactness. Minnesota Law
Review, 50, 1965.

Emo Welzl. Smallest enclosing disks (balls and ellipsoids). In Hermann Maurer, editor, New Results and New
Trends in Computer Science, Lecture Notes in Computer Science, page 359370, Berlin, Heidelberg, 1991.
Springer.

15

