
Power analysis

When we do what’s called a power analysis, we need to be aware of several different quan-
tities that all affect the power of a test. But before we dig into the details, it might be best
to remember what power is:

Power = 1− β = Pr{reject H0 if H0 is false}

When we discussed power earlier, we never talked about calculating power. And in one
sense, it’s just a little bit silly because to calculate power we have to make guesses as to
the value of the parameters in the alternative hypothesis. But it can be a very useful tool
in designing experiments.

1 The basic idea

Let’s start off with a simple example. We will once again assume that we know the true
value of σ. This isn’t necessary, but it makes the sample calculations a lot simpler, and all
we really want to do is to understand the idea. Once we do, we can let R take over as usual.

We’ll use the deer hind/fore foot example from our discussion on paired tests. You may
remember that for this example we used d̄ instead of ȳ as we were interested in looking at
the differences. We will use the calculated value of sd for σ to give us:

sd = σ = 0.97

Now let’s consider the following hypotheses (using α = 0.05):

H0 : µ = 0

H1 : µ 6= 0

We need to consider for what values of d̄ we would reject. It turns out we can calculate
this easily if we assume we know σ:

To get the smallest value for d̄ for which we would reject we do µ− z0.025 σ√
n

To get the largest value for d̄ for which we would reject we do µ+ z0.025
σ√
n

This would give us:
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For the smallest value: 0− 1.960.97√
8

= −0.672

For the largest value: 0 + 1.960.97√
8

= 0.672

In other words, if d̄ ≤ −0.672 or d̄ ≥ 0.672 we would reject.
So how does this help us in calculating the power of our test? Well, suppose the alternative
hypothesis is true and µ is really equal to 1.7 instead of 0. Our first normal curve (the one
assuming H0 is true) is centered at 0. If H1 is true and we somehow knew that µ = 1.7 the
normal curve for H1 would be centered at 1.7.

So let’s draw both normal curves on the same axis (that’s important). The question is,
how much of the curve for µ = 1.7 is above the cut-off of 0.672 ? But we can calculate this!

If µ = 1.7, σ = 0.97, and n = 9, what is Pr{d̄ > 0.672}?

z =
0.672− 1.7

0.97√
8

= −3.00

And from this we get Pr{Z > −3} = 0.9987. In other words, the power of our test is
0.9987. That’s pretty good - it means if the true value for µ really is 1.7 we would almost
certainly reject.

Two normals centered at μ = 0, and μ = 1.7, both with σ = 0.97 8

Rejection region

Shaded area of this 
 curve = power

-1.275 -0.850 -0.425 0.000 0.425 0.850 1.275 1.700 2.125 2.550 2.975
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In order to do calculations of this type, we actually needed to know three of the following
four quantities:

1. The value of α.

2. The sample size (n).

3. The alternate value of µ (i.e., the value of µ if H1 is true).

4. The power (1− β).

We used the first three to calculate the fourth (power). But we can actually calculate any
of these quantities if we know the values of the other three.

We also need to mention that item (3.) is often called the effect size. This describes the
observed effect that we see. For example, the difference between our H0 : µ = 0 and our
assumed value of µ under H1 is 1.7 (using the absolute value):

µH0 − µH1 = 0− 1.7 = −1.7

A very common preliminary item when in a study might be to determine what sample size
we need to detect a given effect size at desired power. For example, we might want to be
able to discover an effect size of 0.67, with a power of 0.85 using α = 0.05. As mentioned,
if we have three of the items in our list above, we can calculate the fourth.

It should also be mentioned that the effect size is usually standardized by dividing by the
(in this case common) standard deviation. So our standardized effect size would be:

Effect size =
0− 1.7

.97
= 1.75

An obvious question is “what is a good effect size”. The obvious answer is that it depends
on what you’re trying to do and what the science behind your analysis is. There are some
general guidelines about what makes a good effect size, but it really does depend on the
specific situation. Cohen’s d is one of the most commonly used measures of effect size and
is a slight variation of what is given above (using estimates instead of parameters - which
actually makes more sense):

d =
ȳ1 − ȳ2
s

Cohen goes on to define the following effect sizes:

Cohen’s d Effect size
Small 0.2

Medium 0.5
Large ≥ 0.8
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But as mentioned, this really depends on the science. Cohen, for example, was a behavioral
scientist and worked mostly in psychology.

So where does that leave us? We will, as usual, resort to R to do our calculations.

2 Power analysis in R

To do power analysis in R we need to use the pwr package. This will calculate any of the
four quantities given above if you give it the other three. Assuming it’s installed and loaded
(e.g., library(pwr)) here is a simple example using our above analysis, but now using the
(correct) t-test approach instead of what we did above which was based on σ instead of s:

library(pwr)

pwr.t.test(n = 8, d = 1.75, sig.level = 0.05, type = "one.sample")

Most of the options should be obvious, but let’s define them anyway:

n = is the sample size (should be obvious for paired or one sample tests; for two
sample tests, n is the sample size in each sample assuming n1 = n2. If you have
unequal sample sizes for a two sample test use the pwr.t2n.test instead.

d = is the effect size.

sig.level = is our desired value of α.

type = is the type of t.test. Valid options are "one.sample", "two.sample",

"paired". The function defaults to a two sample test.

There are two more options not visible above:

p = is the power you want; we didn’t use this because we are interested in calculating
the power. Remember this function can calculate any of the four quantities (sample
size, power, effect size, significance level) given the other three.

alternative = tells us if the alternative hypothesis should be directional; options
are "two.sided", "less", "greater". The function defaults to a two sided alter-
native.
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In any case the above command gives results in R:

Two -sample t test power calculation

n = 8

d = 1.75

sig.level = 0.05

power = 0.9874334

alternative = two.sided

NOTE: n is number in *each* group

From this we can see that the power is 0.9874334. The difference in power here compared
to what we calculated above is that R is (correctly) using the t distribution (with the ap-
propriate df) instead of the normal distribution. If you remember, the t distribution has
fatter tails, particularly at low n, so there will be more overlap between the distributions
and the power will be lower.

The pwr package also has commands for tests of proportion, ANOVA (one way, equal n),
χ2, correlation as well as for a general linear model approach. For all of these, the idea is
the same: give R three of the four quantities, and it will calculate the missing quantity.
For more details you might look up Power Analysis on the “Quick-R” web page:

https://www.statmethods.net/stats/power.html

(This is a pretty decent collection of web pages for simple explanations on using R).
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