
Logistic regression - a very brief introduction

We simply don’t have the time to go into the details here, so a brief outline will have to
do.

Logistic regression is usually used if the response variable (our Y ) has only two
possible outcomes. For example, present vs. absent or 0 vs. 1, etc.

It can also be used if there are more than two outcomes (e.g., three or four), but
the math gets more complicated.

We can’t use a linear regression approach since the usual regression equation, Ŷ =
b0 + b1X assumes that Y is continuous and (presumably) can take on any value
between −∞ to +∞.

Instead, we have to use a non-linear approach. We model the following equation:

Pr(Y = 1) =
eb0+b1x

1 + eb0+b1x

In other words, as usual, we find an estimate for β0 and β1. This equation then give
us the probability of getting the specified value of Y .

To illustrate this, let’s use an example based on the BIOL 214 text (Statistics
for the Life Sciences, Samuels, Witmer & Shaffner, 4th ed.):

We’re interested in predicting whether or not a tumor has spread, so we let
Y = 1 indicate that the tumor has spread and let Y = 0 indicate that the
tumor has not spread.

Then we measure the size of the tumor, and try to use this to predict whether
or not the tumor has spread.

We can then use the equation above to tell us the probability of the tumor
having spread.

Some comments on the calculations:

We can not solve this equation analytically and get values for b0 or b1.

So how do we get values for b0 and b1?

We use an approach based on something called maximum likelihood. We
can’t really explain this without a lot more lecture (and math!), but essen-
tially we look for the values of b0 and b1 that are most likely to have given
us the data we observe.
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(A really simple example: suppose we somehow didn’t know the value
for p (the probability of heads for a coin). So we toss a coin 10 times
and get five heads, the most likely value for p is 0.5).

Unfortunately, even using a maximum likelihood approach, there is no an-
alytical solution (we can’t get values of b0 and b1 just by solving various
equations).

To figure out the values of b0 and b1 we need to use some sophisticated
guesswork (well, it’s not really guesswork).

We make an educated guess (or let R do this) at the values of b0 and b1.

Then we use a series of iterative steps to find a solution (some of these
are based on ideas developed by Newton!).

Eventually, these iterations will yield values of b0 and b1 that we can
show are the solutions to the equation.

We will not learn how to do this. Instead we’ll walk through an example
using R to see what logistic regression is all about.

Let’s walk through the example in the 214 textbook. We are given the following data:

Tumor size (cm), X Spread, Y Tumor size (cm), X Spread, Y
6.5 1 6.2 1
6.3 0 2.0 0
3.8 1 9.0 1
7.5 1 4.0 0
4.5 1 3.0 1
3.5 1 6.0 1
4.0 0 4.0 0
3.7 0 4.0 0
6.3 1 4.0 0
4.2 1 5.0 1
8.0 0 9.0 1
5.2 1 4.5 1
5.0 1 3.0 0
2.5 0 3.0 1
7.0 1 1.7 0
5.3 0

From this we want to predict whether or not a tumor is present.

Let’s walk through the steps in R:
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First, we enter the data as usual:

size <- scan(nlines = 2) 6.5 6.3 3.8 7.5 4.5 3.5 4.0 3.7 6.3 4.2 8.0 5.2

5.0 2.5 7.0 5.3

6.2 2.0 9.0 4.0 3.0 6.0 4.0 4.0 4.0 5.0 9.0 4.5 3.0 3.0 1.7

spread <- scan(nlines = 1) 1 0 1 1 1 1 0 0 1 1 0 1 1 0 1 0 1 0 1 0 1 1 0

0 0 1 1 1 0 1 0

Then we tell R to do a logistic regression (note the use of glm, which stands for
General Linear Model, which is an extension of lm):

tumormodel <- glm(spread ∼ size, family = binomial(link = "logit")

summary(tumormodel)

And R will give us the following result:

Call:

glm(formula = spread ~ size, family = binomial(link = "logit"))

Deviance Residuals:

Min 1Q Median 3Q Max

-2.0657 -1.1288 0.5657 0.9844 1.4185

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.0858 1.2256 -1.702 0.0888 .

size 0.5117 0.2561 1.998 0.0457 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 42.165 on 30 degrees of freedom

Residual deviance: 37.002 on 29 degrees of freedom

AIC: 41.002

Number of Fisher Scoring iterations: 4

If we look at this, we can then plug in the the estimates for b0 and b1 into our equation:

Pr(Y = 1) =
e−2.0858+0.5117x

1 + e−2.0858+0.5117x

(Which, incidentally, matches what’s in the 214 textbook).
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So what does it all mean?

Let’s graph this equation and see what it looks like, together with the original data:
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Arrows show probability = 0.7929 that 
 tumor has spread if tumor size is 6.7cm

From the graph we see the original data plotted at Y = 1 or Y = 0.

Using the equation for the probability that Y = 1 as given above, we generate the
curve drawn on the graph.

We can also use our equation to calculate the probability of the tumor has spread if
we have a tumor of a certain size.

For example, if we have tumor that’s 6.7 cm in size, we can do the following:

Pr(tumor has spread) =
e−2.0858+0.5117(6.7)

1 + e−2.0858+0.5117(6.7)
=

e1.34259

1 + e1.34259
=

3.8289

4.8289
= 0.7929

This is indicated by the arrows in the graph above.
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So let’s make some final comments on logistic regression:

Logistic regression is useful when we are trying to predict the probability of an event
with (usually) two outcomes.

It is not the only way of doing this - other techniques include Poisson regression or
Probit models (there are others).

Logistic regression can easily be expanded to multiple logistic regression (including
techniques similar to stepwise, etc.).

Logistic regression does have some assumptions, but they’re not as strict as those for
least squares regression (what we’ve been doing up until now):

Probably the most important you need to worry about are the usual assumption
about random data, and the assumption that all the Y ’s are independent (which
should be obvious since we’re looking at the probability of Y ).

There are several other assumptions, but we will not discuss them as they require
quite a bit more explanation. Let’s just say if you find you need to use logistic
regression a lot, you should probably look into this or talk to someone.


