
Analysis of Variance:

At its simplest, analysis of variance is a technique for dealing with more than two samples of 
data.

It works by (indirectly) comparing variances, which is why it's called ANalysis Of 
VAriance.

But this is a gross simplification of things.  ANOVA is generally the main subject in 
“experimental design” type courses.

The reasons for this is that ANOVA can deal with so many different “types” of 
experiments.

Common terms that you may have heard that deal with ANOVA include such things as:

Nested design Replications Blocking

Latin squares Random effects vs. fixed effects

Two way ANOVA Tukey's procedure Contrasts

These are only a few terms associated with ANOVA.  We won't discuss all of these now, 
and we may not discuss some of these at all.

The point is that ANOVA is a complicated topic, and there are whole semester courses 
offered on just ANOVA (including one here at GMU).  

We'll start simple and consider ANOVA as an extension of the two sample t-test to three or more 
samples.

One way ANOVA:

(The presentation in your text is very similar to that in the text for 214/312)

First - why can't we just use t-tests for everything?

Because the probability of making a type I error would explode:

Suppose we wanted to compare three samples, A, B, and C

So we would need to test A vs. B, A vs. C, and B vs. C

That's three t-tests, not one.

Now suppose we pick α = 0.05

What is α?  α = Pr{reject H0} if H0 is true.



So 1-α = Pr{failing to reject H0} if H0 is true

and if α = 0.05 then 1 - α = 0.95.

But now I'm doing three tests.  So I need:

(Pr{failing to reject H0} if H0 is true)3 = 0.953 = 0.86

This implies that α becomes 1-0.86 = 0.14

This is much higher than 0.05.  

In other words, the probability of making a type I error increases 
with the number of tests you actually carry out.

See table 10.1, p. 190 in the text for a complete breakdown.

So we need to use ANOVA because it gives us “one” test instead of three to compare three 
groups (or k groups in general).

So what are our hypotheses?

H0 : μ1 = μ2 = μ3 = μ4 = ... = μk

H1: not all μ's are the same

Let's follow the example in the text (10.1), where we are comparing four different kinds 
of feed and the effect on the weight of pigs raised on these diets:

Feed 1 Feed 2 Feed 3 Feed 4

60.8 68.7 69.6 61.9
67.0 67.7 77.1 64.2
65.0 75.0 75.2 63.1
68.6 73.3 71.5 66.7
61.7 71.8 60.3

i 1 2 3 4
ni 5 5 4 5

Sum = ∑
j=1

ni

y ij 323.1 356.5 293.4 316.2

ȳ 64.62 71.30 73.35 63.24

And the overall mean = ȳ =
323.1 + 356.5 + 293.4 + 316.2

19
= 67.8526



Comment on notation:

Note that “j” refers to the “jth” observation of group “i”.  For example, y31 = 69.6.

Also note:

N = total sample size k = number of groups
ȳ i  = mean of group i ȳ  = overall mean

(if you had ANOVA in 312, N = n* and ȳ = ̄̄y )

The way that ANOVA works is that it compares variances.  In particular, it 
compares the variance within each group (e.g.,. the variance for group 1, the 
variance for group 2, ... , the variance for group k) with the variance between 
groups (e.g., between groups 1, 2, ... , k).

In other words, we need to get an “average” variance with groups, and 
compare this to the variance of the means for the different groups.

To do this, we (of course) need to calculate Sums of Squares.

Let's figure out the total sum of squares first.

Suppose all our data were in a single column, just calculate that sum of 
squares for that column:

SS total =∑
i=1

k

∑
j=1

ni

( yij− ȳ )
2

You're taking each observation, subtracting the grand mean, and then 
squaring this.  It's simply a Sum of Squares for everything.

We could get our usual variance from this, but it's actually not used in 
ANOVA, so we won't.

Here's the total sum of squares for the pig data:

(60.8 - 67.8526)2 + (67.0 - 67.8526)2 +
 ... + (60.3 - 67.8526)2 = 479.6874

Now let's deal with the sum of squares for the means between our groups:

SS groups = SSbetween =∑
i=1

k

n i( ȳ i− ȳ )2 (Your text uses “groups”

   instead of “between”.) 

Here we take each mean, subtract off the grand mean, and square that.



What about the ni?  It's a weighting factor.  Or if you really want the 
details, remember that:
 

s ȳ
2
=

s2

n
which implies s2

= ns ȳ
2

So if we want a variance to compare to another variance, we have to 
multiply by n since otherwise we'd have a variance of ȳ .

Using our pig data we get:

5(64.62 - 67.8526)2 + 5(71.30 - 67.8526)2 + 
4(73.35 - 67.8526)2 + 5(63.24 - 67.8526)2 = 338.9372

Finally, let's get a sum of squares for within groups:

SS within =∑
i=1

k

∑
j=1

ni

( y ij− ȳ i)
2

Now we're getting the sum of squares for each group, then adding the 
sum of squares of the next group, and so on.

But what we're measuring is actually the sum of squares within groups.

Again, using our pig data:

(60.8 - 64.62)2 + ... + (68.7 - 71.30)2 + ... + (69.6 - 73.35)2 +
 ... + (61.9 - 63.24)2 + ... = 140.7500

Now we have all our Sum of Squares.  Next we need to convert these into something 
that resembles a variance:

Normally we take our sum of squares and divide by n-1.  This quantity (n-1) is 
also called the degrees of freedom.

So for our sums of squares above, we need to know:

dfbetween = k - 1

dfwithin = N - k

dftotal =  N - 1

This will then give us our variances, which are called “Mean Squares” in 
ANOVA:



MS between =
SS between

k−1

MS within =
SS within

n*
−k

(and we don't bother with MStotal since it's not used.)

So we need to get MSbetween and MSwithin for our pigs:

MSbetween =
338.9372

4 − 1
= 112.9791

and

MS withn =
140.7500
19 − 4

= 9.3833

And we're almost done with our calculations.  But before we go on, something to think about:

If H0 is true, then you would expect that there would not be a lot of difference in the 
ȳ 's.  In fact, our variance, MSbetween, would be almost the same as our MSwithin.  

If H0 is false, then MSbetween should be nice and big, much bigger than MSwithin, since the 
means should be “more different” than the individual observations in each group.

(Think about what would happen to the above calculations if you added 40 to each of 
the weights for feed 4:

MSwithin would basically not change, but MSbetween would explode.)

What we wind up doing is comparing MSbetween with MSwithin.

Finally, we take all of the above stuff that we calculated and arrange it into an ANOVA table:

ANOVA table for Pig data:

Source SS df MS F prob.

groups = between 338.9374   3 113.9791 12.04 0.00029
within = error = residuals 140.7500 15     9.3833

TOTAL 479.6874 18

So what does it all mean?



Introducing the F distribution:

Generally speaking, if one divides one variance by another, one gets an F distribution.  
In other words, s1

2/s2
2 is distributed as F.  Since our MS’s above are variances, we 

shouldn’t be surprised to see that if we calculate MSbetween/MSwithin, we get an F-
distribution. 

Just like the t-distribution, there are many different F-distributions.  The F distribution 
depends on two parameters, the “numerator degrees of freedom” and the “denominator 
degrees of freedom”.  

Instead of just one value for df, we now need to worry about two.

But at least it doesn’t involve complicated formulas.

- the numerator degrees of freedom is simply the df from the dfbetween row, and the 
denominator is the df from the dfwithin row.  

To look up an F-value, go into the table B.4, p. 680 in your text and look up the 
appropriate value using the numerator df at the top, the denominator df from the 
side, and then the appropriate column for whatever alpha you want.  Some F-
tables are set up differently, but you should be able to figure them out.

Then you proceed as always.  Compare your F* to the tabulated F, and if 
F* ≥ Ftable, you reject and conclude - ?? - what do you conclude??

At least one of the means is not the same as the others.

So for our pigs, we go into the F table with 3 and 15 d.f., and α = 0.05, and we 
get Ftable = 4.15

Since our F* = 12.04 ≥ Ftable = 4.15, we reject our H0 and conclude that at 
least one feed type is different (causes a different weight in our pigs).

What about that last column?  The one labeled “prob”?  Most computer packages will 
simply give you an F* value, and then give you the associated probability in the last 
column.  This makes it easy (remember, all you need to do is compare α to this p-value, 
and if the p-value ≤ α, you reject).

Doing ANOVA in R:

You need to put your data in the right format (using different columns works, but get's 
increasingly cumbersome in R (or any other statistical packages for that matter)).



So for our pig data you need to do:

60.8 feed1
67.0 feed1
. .
. .
. .
68.7 feed2
67.7 feed2
. .
etc.

In other words, put all your measurements in the first column and an “identifier” 
(e.g., feed1, feed2, feed3, feeed4) in the second column.

Make sure your identifier variable is actually considered a factor in R (or you 
can get weird results).  This is particularly important if you used numbers (e.g., 
1,2,3, etc.) as your identifier.  If you called your identifier variable “diet”, you 
would do:

diet <- factor(diet)

Now you can just do:

pigs <- aov(weight~diet)
summary(pigs)

And here is the result, which should be self explanatory:

            Df Sum Sq Mean Sq F value   Pr(>F)    
diet         3  338.9  112.98   12.04 0.000283 *** 
Residuals   15  140.8    9.38                     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Some comments about ANOVA:

If you only have two groups, what should you use?  ANOVA works just fine for 
two groups:

 As it turns out, ANOVA for two groups is identical (in terms of 
power/decision) to a t-test with pooled variances.  So it doesn’t make any 
difference which you use if you can assume equal variances.

You can do a one sided ANOVA with just two groups, but it's a bit silly.  
Just do a t-test instead



Our table does give you one sided values, but you should 
probably just ignore them.

This raises the question: what are the assumptions of ANOVA?

They're identical to the pooled variance t-test

- equal variances

- data in each group is normally distributed

- as usual, data is random (though we'll learn lots of ways to deal 
with partially non-random data).

What happens if you violate the assumptions?  As usual, this depends, 
although ANOVA is fairly robust (robust = it can deal with violating the 
assumptions).

- if sample size is large, don’t worry about the normal assumption 
too much.

- if the n’s (i.e. sample sizes) are similar, don’t worry about the 
variance assumption too much (remember -the formulas for the t* 
are identical if n1 = n2 - a similar thing happens here).

- but if you have seriously non-normal data, and n’s that are very 
different, then you probably ought to worry.  Talk to a 
statistician!!

- there is a non-parametric test similar to the Mann-Whitney U-
test (the Kruskall-Wallace test) that's pretty good and we will 
learn it

For two groups, it will give the same results as the Mann-
Whitney U-test.

Multiple comparisons procedures (emphasizing Tukey's procedure):

Often, when you're done with the initial ANOVA, you want to find out which means are 
different from each other.

ANOVA only tells you that at least one of the means is different.  But you don't know 
which one.

Tukey's is one of a whole group of what are called “post-hoc” tests.  Sometimes also called “all 
pairwise comparisons”.



There are many others:

SNK

Fisher's least significant difference

Dunnet's

Scheffe

Bonferroni

REGWQ

We won't go into any of these (except, briefly, the last two).  Tukey's is a pretty good test 
compared to most of these (except the last).

In all cases, the results are presented the same way (by you! - you need to arrange and present 
the results):

1) Arrange the means from smallest to larges.  For example:

B E A C D

(B would be the smallest mean, D, the largest)

2) Draw lines over (or under) the means that are not significantly different:

_______ _______
B E A C D

This would show that B and E are not significantly different, and C and D are not 
significantly different.  Everything else is significantly different.

_______
_______ _______

B E A C D

This would show that B and E are not significantly different, E and A are not 
significantly different and C and D are not significantly different.  However, what about 
B and A?  They are significantly different!

Remember, if something is N.S., this does not mean they're the same.

We can not “prove” the null hypothesis!

So: we have enough evidence to show B and A are different, but not enough 
evidence to show B and E or E and A are different.  It does, actually, work.



Fortunately, this doesn't happen too often (but it does happen!)

Incidentally, here's what the picture would look like if B and A had been the same (note 
the difference):

_____________ _______
B E A C D

3) You should always include this diagram after the result of any significant ANOVA.

Multiple comparisons are an add on to ANOVA.  You really shouldn't do these unless you've 
done an ANOVA first.

You will find a difference of opinion on this sometimes (particularly with Tukey's 
procedure)

However, we'll assume you did the ANOVA first (you probably really should).

NEVER do any multiple comparison procedure if the ANOVA is not significant.

The details of Tukey's procedure:

Tukey's procedure is a way to figure out which means are different from each other (out of all 
pairwise comparisons) while preserving the overall level of α.

Tukey's is very similar to doing a series of t-tests (kind of what was discouraged right at the 
outset here).

However, it uses a different distribution (q) instead of the t-distribution.

It also uses a different way of computing the denominator.

Tukey's procedure can be used in two different ways.  Both are given in your text (they're 
identical, just two different ways of looking at things:

Do individual tests on each pairwise comparison

Look at the confidence intervals between all possible pairs

If the CI includes 0, then “fail to reject” or we don't see a difference.

We'll stick with the second approach (it's what R does, and in this case it's easier to do than to 
print out a whole bunch of different tests).

Your text shows Tukey's in chapter 11.



So here is how it works:

1) Calculate:

( ȳ1 − ȳ2)± (qα , ν , k )(SE )

where q = q from table B.5, p. 717 with:

ν = error d.f. =  N - k
k = number of groups
α = α, as usual

and:

SE = √ s2

n

where:

n = sample size of each group (assuming all n's are equal)
s2 = error mean square from the ANOVA table.

or, if the n's are not all equal:

SE = √ s2

2 ( 1
nb

+
1
na

)
with the same definitions as above (nb and na ought to be obvious).

2) Note that the SE only changes if the sample sizes are different (otherwise you get to 
use the same SE every time (which does make things a bit easier)

3) If the CI includes 0, that implies no significant difference.

4) Your test suggests starting with the biggest difference of means, then proceeding from 
there.

If a difference is N.S., then you shouldn't do any more comparisons of means 
within this difference.

For example, suppose we have 

_____________ _______
B E A C D

If you test B vs. A, and it's N.S., you should NOT test B vs. E or E vs. A 
(because B and A are N.S.)



This is irrelevant if all the n's are the same or very close.  But it can occasionally 
give you contradictory results (e.g., B vs. A is N.S. and B vs. E is significant) if 
the n's are very different.

5) R prints all the results in any case; but if you wind up with something weird, you 
should check out point (4).

Let's do just part of an example (it's too tedious to do everything, and R does all this for you).  
Let's look at the pig feed example again, and compare means 3 vs. 4:

73.35 − 63.24 ± qα , ν ,k √ 9.38
2 (1

5
+

1
4 )= 10.11 ± 4.076 (1.453) = 10.11 ±5.92 = (4.19,16 .03)

Then you would do all the others (3 vs. 1, 3 vs. 2, 2 vs. 4, 2 vs. 1, 1 vs. 4).  Yes it's tedious, and 
much easier with R.

Doing Tukey's in R:

This is fairly straightforward.  Once you've done your ANOVA, just do:

TukeyHSD(pigs)

Assuming you did “pigs <- aov(weight~diet)”; in other words, make sure you do your 
ANOVA first and assign it to a variable (“pigs” in this example).

The results are then:

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = weight ~ diet)

$diet
              diff        lwr       upr     p adj
feed2-feed1   6.68   1.096263 12.263737 0.0168421
feed3-feed1   8.73   2.807553 14.652447 0.0034914
feed4-feed1  -1.38  -6.963737  4.203737 0.8906642
feed3-feed2   2.05  -3.872447  7.972447 0.7530266
feed4-feed2  -8.06 -13.643737 -2.476263 0.0041505
feed4-feed3 -10.11 -16.032447 -4.187553 0.0009497

And then note that feeds 4 and 1 are shown to be N.S., and feeds 3 and 2 are shown to be N.S. 
(their CI's include 0)

Incidentally, notice that 4 vs. 3 (at the bottom) gives us the same results as the manual 
calculation above (except (-), because R did 4 vs. 3, and I did 3 vs. 4.  But this is irrelevant!



Tukey's defaults to 95% CI's.  If you want to change that, do:

TukeyHSD(pigs, conf.level = 0.99)

(or whatever you want to use).

Finally, we want to take all the means and arrange them into our little graph (abbreviating 
“feed” with “f”:

_______ _______
f4 f1 f2 f3

And we are finally done with Tukey's.

Final comments:

Remember - you should do a pairwise comparison after you do an ANOVA.

Never do a pairwise comparison if the ANOVA is N.S.

Two other procedures worth considering:

1) Bonferroni:

This is really (really) easy to do, and works under any circumstances (not just ANOVA):

a) Figure out how many comparisons you're making.  Let's call this “c”.

b) Take α and divide it by “c”: 

New α =
Old α

c

c) proceed with your test using this new value of α:

- if you want to do t-tests, do however many you want, just use this new value 
for α.

- if you want to do a bunch of correlations, again, just use the new value of α.

- whatever it is you want to do, just use the new value of α.

d) the problem:

- Bonferroni has very low (= terrible) power.  You really shouldn't use it unless 
you don't have another choice.



2) REGWQ

This test is actually names after 4 different people, and the letters are the first letters of 
their last names (look it up!) (Q stands for “q” distribution or test).

It is actually quite good, and not as conservative as Tukey's (it has a bit more power).

If you really get into doing a lot of pairwise comparisons, you should check it out, as it 
can do better than Tukey's.

It's not as well established as the others, but it is in R (you'll have to install an add-on 
package (look for the “mutoss” package)).


