
Two sample t-tests

Introducing two sample tests

The one sample t-test isn’t terribly useful in biology (or other fields). One of the problems
is that often have no idea what µ should be. For example, why should µ have the following
values?

µ = 100 for IQ.

µ = 69 inches for height in men.

µ = 500 grams for weight of a gray squirrel.

Where do these values come from (i.e., 100, 69, and 500)? Unless we already know some-
thing about our population, we often don’t have any idea what µ should be. Because of
this, if we only have one sample, Confidence Intervals are often a better approach as they
bracket µ without having to guess what µ actually might be.

In biology, we find ourselves much more likely to take two samples and then compare
them to see if we think the populations means are different. The advantage here is that we
don’t need to know anything about the actual value of µ for either of these two samples.
For example, we might want be interested in the following:

Does a new medicine work? We divide our volunteers into two groups, group 1 gets
the new medication, group 2 gets a placebo (so we have two samples). We then
measure to see if there is a statistically significant difference in the two groups.

We want to know if men are the same average height as women. We measure a sample
of men and a sample of women (two samples! ) and see if there is a statistically
significant difference in height.

Do lions and tigers have the same average litter size? We take a sample of litter sizes
from lions and tigers (again, two samples) and compare to see if there is a statistically
significant difference in litter size.

This is different from our one sample test since now we’re comparing two samples. One
big advantage is that we need to know (or guess) nothing about the values of µ in any of
these examples. We’re comparing µ1 with µ2, and this doesn’t require knowing or guessing
anything about any value of µ. For example, our H0 for the above examples would be the
following:
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H0 : population mean for placebo group = population mean for medicated group.

H0 : the population means for the heights in men and women are the same.

H0 : the population mean litter sizes for lions and tigers are the same.

Or in symbols we would say:

H0 : µ1 = µ2

H0 : µmen = µwomen

H0 : µlions = µtigers

This would give us the following alternative hypotheses (this time only in symbols):

H1 : µ1 6= µ2

H1 : µmen 6= µwomen

H1 : µlions 6= µtigers

So we have our null and alternative hypotheses for two sample tests. Next we proceed as
usual and pick our value for α (say, 0.05, or 0.01, or whatever value we want).

Then we need to calculate t∗. The problem is, what is our t∗ now? We have two val-
ues for ȳ and two values for s. How do we combine this and get a single value of t∗?

Introducing Welch’s two sample t-test

As it turns out there are several ways of doing this, although only two are really commonly
used. But even for just these two, we will need to make an assumption. We will need
to assume that the two population variances (careful - not the sample variances) are not
equal. We are assuming:

σ2
1 6= σ2

2

Again, we are making this assumption about the population variances, not the sample
variances. Obviously we could also use σ1 6= σ2, but this particular assumption has always
been referred to by the variances.

If we make this assumption, that let’s us calculate t∗ using something called Welch’s test
or Welch’s t-test. This is to differentiate it from the regular t-test for two samples which
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we’ll learn about a little later:

t∗ =
ȳ1 − µ1 − (ȳ2 − µ2)√

s2
1

n1

+
s2

2

n2

But now we remember that the null hypothesis says the population means are equal
(H0 : µ1 = µ2). This implies that we can simplify our equation:

t∗ =
ȳ1 − ȳ2√
s2

1

n1

+
s2

2

n2

The denominator of this expression (
√
s2

1/n1 + s2
2/n2) is actually the standard error of the

numerator. We say:

SEȳ1−ȳ2 =

√
s2

1

n1

+
s2

2

n2

Remember that the SE can take on different values - a concept we introduced when we
first discussed the SE. In any case, hopefully you can see that this quantity is a type of
average for the two estimates we have of our standard error (i.e., SE1 and SE2). It’s not
a true average, but you can think of it that way (a true average is what we have when we
assume σ1 = σ2, which we’ll talk about later).

Incidentally, notice that we can rewrite our expression for t∗ in terms of the SE’s of ȳ1 and
ȳ2:

t∗ =
ȳ1 − ȳ2√

SE2
ȳ1 + SE2

ȳ2

Now we’re almost ready to look up our tabulated t value and compare it to our value of t∗.
But what are our degrees of freedom. What is d.f. (or what is ν, which = d.f.)? It turns
out this does not have an easy answer:

d.f. = ν =
(SE2

1 + SE2
2)2

SE4
1

n1 − 1
+

SE4
2

n2 − 1

(OUCH!)

Fortunately most statistical software will automatically do this for us. Even some calcu-
lators will do this (you want to verify that your calculator does this correctly if you have
one that does). This expression will almost never give you an integer, so we need to round
down the degrees of freedom (always round down) before we can look up a value in the
t-table.
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Once we have all this in place, we can then compare our t∗ to the ttable value and make our
decision the same way we we did for a one sample t-test:

If |t∗| ≥ ttable we reject H0.

If |t∗| < ttable we fail to reject H0.

Or, of course, we could use α and compare this to a p-value to make our decision.

So let’s do some examples. First we’ll use some of the data from snapping turtles that we
used earlier this semester. We want to find out if there’s a difference in length between
male and female snapping turtles.

Let’s set up our hypotheses:

H0 : The true mean length of males is the same as the true mean length of
females.

H1 : The true mean length of males is not the same as the true mean length of
females.

Or in symbols:

H0 : µ♂ = µ♀

H1 : µ♂ 6= µ♀

Let’s pick α = 0.05

We get the following results:

Males Females

n 111 53
ȳ 268 295
s 79.6 65.2
SE 7.56 8.95

So let’s calculate t∗ :

t∗ =
ȳ1 − ȳ2√
s2

1

n1

+
s2

2

n2

=
ȳ1 − ȳ2√

SE2
ȳ1 + SE2

ȳ2

=
268− 295√
7.562 + 8.952

= −2.30

=⇒ |t∗| = 2.30
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Now we need to calculate our degrees of freedom:

d.f. = ν =
(SE2

1 + SE2
2)2

SE4
1

n1 − 1
+

SE4
2

n2 − 1

=
(7.562 + 8.952)2

7.564

110
+

8.954

52

= 123.06

And now we can do our comparison (we need to use d.f. = ν = 100 since 123 is not
in our t-tables):

Since |t∗| = 2.30 ≥ t100,0.05 = 1.984, we reject the null hypothesis.

We conclude that we have enough evidence to show that male and female snapping
turtles are not the same length.

Incidentally, R tells us that t123,0.05 = 1.979, which is pretty close to what we used
from our tables. R also tells us that the p-value is 0.023, which is less than α as
expected.

Our second example of Welch’s t-test looks to see if there’s a difference in fasting blood
sugar levels between men and women. This time we have a sample of 10 men and 10
women, and we get the following results in mg/dL:

Men Women

ȳ 87 89
s 12.1 11.3

Again, let’s set up our hypothesis

H0 : The true mean blood sugar level in men is the same as in women.

H1 : The true mean blood sugar level in men is not the same as in women.

Or in symbols:

H0 : µ♂ = µ♀

H1 : µ♂ 6= µ♀

Let’s pick α = 0.10.
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And then calculate t∗:

t∗ =
ȳ1 − ȳ2√
s2

1

n1

+
s2

2

n2

=
87− 89√

12.12

10
+

11.32

10

= −0.3820

=⇒ |t∗| = 0.3820

Which is a small value for t∗, but let’s do do it right and finish the problem.

We note that:

SE♂ =
12.1√

10
= 3.826

SE♀ =
11.3√

10
= 3.573

So we get:

d.f. = ν =
(SE2

1 + SE2
2)2

SE4
1

n1 − 1
+

SE4
2

n2 − 1

=
(3.8262 + 3.5732)2

3.8264

9
+

3.5734

9

= 17.9

And finally we compare t∗ with ttable :

Since |t∗| = 0.382 < t0.10,17 = 1.740 we fail to reject H0.

We conclude that we don’t have enough evidence to show a difference in fasting blood
sugar levels between men and women.

(And R shows our p-value to be 0.7072, which is larger than α.)

The classic sample t-test (assuming equal variances)

Above was assumed that the (population) variances are not equal. But suppose we somehow
did know enough about our research to assume the variances are equal. In other words, we
assume that σ2

1 = σ2
2 (which is obviously the same as σ1 = σ2).

This is termed the equal variance assumption, or the pooled variance assumption.

Notice that we’re assuming the population variances are the same. It should be obvious
that the sample variances (s2

1 and s2
2) may or may not be the same, regardless of this as-

sumption (they will almost never be identical).
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How does this change our two sample t-test? It turns out our denominator changes; we
now used a pooled estimate for our variance:

s2
pooled =

(n1 − 1)s2
1 + (n2 − 1)s2

2

n1 + n2 − 2

This is a weighted mean of s2
1 and s2

2. It adjusts the overall variance (s2
poooled) for the size

of each sample (the larger sample counts more). In fact, if n1 = n2, then:

s2
pooled =

s2
1 + s2

2

2

We then use s2
pooled in the denominator of our calculation for t∗:

t∗ =
ȳ1 − ȳ2√√√√s2

pooled

(
1

n1

+
1

n2

)
Which isn’t that different from Welch’s formula for t∗.

It’s not difficult to show that if n1 = n2 or s2
1 = s2

2 (or both), then the two formulas are
actually the same (this is really easy to see in the extremely unlikely case that s2

1 = s2
2). But

if neither of these conditions is true, then the two formulas for |t∗| will give you different
results.

What’s important to realize is that the formula for the d.f. also changes, and that in this
case the two formulas will virtually never give you the same result for d.f., so you have to
be careful to use the correct formula for d.f.. If we assume equal variances, our formula
for the degrees of freedom becomes:

d.f. = ν = n1 + n2 − 2

This is obviously much easier than the other formula for d.f. !

Let’s do an example. We’ll use the fasting blood sugar example from above, but this
time assume that the population variances are the same. Here are the data again (in
mg/dL):

Men Women

ȳ 87 89
s 12.1 11.3

Our hypotheses don’t change (just symbols this time):

H0 : µ♂ = µ♀

©2018 Arndt F. Laemmerzahl



Two sample t-tests 8

H1 : µ♂ 6= µ♀

Let’s pick the same α as before: α = 0.10. And now we calculate t∗ using the formula for
equal variances (first we need to calculate s2

pooled):

s2
pooled =

(10− 1)12.12 + (10− 1)11.32

10 + 10− 2
=

12.12 + 11.32

2
(since n1 = n2)

= 137.05

and now we do t∗:

t∗ =
87− 89√√√√137.05

(
1

10
+

1

10

) = −0.3820

=⇒ |t∗| = 0.3820

Which is the same as our t∗ above since n1 = n2. Let’s now get our degrees of freedom:

n1 + n2 − 2 = 10 + 10− 2 = 18

And finally we compare t∗ with ttable :

Since |t∗| = 0.3814 < t0.10,18 = 1.734 we fail to reject H0.

And just as before we conclude that we don’t have enough evidence to show a difference in
fasting blood sugar levels between men and women. Incidentally, R shows our p-value to be
0.7072, which again is larger than α.)

So what does it all mean? If it is true that σ2
1 = σ2

2, then the equal variance t-test will have
a little more power. It’s not a big difference, but it does give a little more power.

So how much power does Welch’s t-test have if the populations variances are actually equal?
Almost as much. It isn’t a big difference (actual power comparisons like this aren’t really
in the scope of an introductory class).

On the other hand, if σ2
1 6= σ2

2 then what happens? The equal variance t-test can make
bad mistakes:

It can reject when it shouldn’t.
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It can fail to reject when it shouldn’t.

In other words, it can give you badly wrong answers (but see item (3.) below).

In other words, Welch’s t-test often does much better.

So let’s summarize:

If the variances are equal (σ2
1 = σ2

2) then the equal variance t-test has a little more
power than Welch’s test.

If the variances are not equal (σ2
1 6= σ2

2), then Welch’s test can perform much better
(particularly if the sample sizes are also not equal).

So what do you do? Unless you’re pretty certain about the assumption that the popula-
tion variances are the same (σ2

1 = σ2
2), you should always use the unequal variance t-test

(Welch’s test). Welch’s test will do almost as well even if the variances are actually equal.
Some statisticians actually claim there is no difference in power.

A few final comments on all this:

1. How often do you really know enough about your data so you can assume that the
population variances are the same?

Not often. Some people might be able to make educated guesses about the means,
but very few people know enough about their data to do the same for the variances.

2. It is possible to test to see if the population variances are the same:

You could do H0 : σ2
1 = σ2

2.

But remember - just because you fail to reject H0, doesn’t mean that H0 is true! You
can not prove the null hypothesis is true. This test (H0 : σ2

1 = σ2
2) also has awful power

(it’s not a very good test). For these reasons, this procedure isn’t recommended, and
we won’t discuss it any further.

3. If n1 ≈ n2 the equal variance t-test will at least not fail too badly. You should still
use Welch’s test unless you’re certain about the population variances, but at least
the equal variance t-test won’t mess up too badly.

©2018 Arndt F. Laemmerzahl


