
Regression II - hypothesis testing

Now that we know how to calculate our least squares line, we need to figure out if the line
means anything (in the statistical sense).

Remember that we are using b1 and b0 to estimate the slope (β1) and the intercept
(β0).

Since both β1 and β0 are population parameters, we could do a hypothesis test for
either of these.

In practice, we usually are only interested in β1.

In particular, we want to test to see if β1 = 0, because that would tell us whether
or not there is a relationship between x and y.

Testing the hypothesis that β1 = 0.

We will use a t-test to do this.

Whenever we do any kind of t-test (e.g., two sample, paired, etc.), we take whatever
we’re interested in (for example, ȳ or (ȳ1− ȳ2)) and divide this by the Standard Error
(SE) of this quantity. For example, we do:

t∗ =
ȳ − µ
SEȳ

=
ȳ − µ
s/√n

or t∗ =
(ȳ1 − ȳ2)

SEȳ1−ȳ2
=

(ȳ1 − ȳ2)√
s2

1

n1

+
s2

2

n2

So in this case, we’re interested in the SE for b1.

In other words, we need to get the SE of b1 to calculate our t∗:

t∗ =
b1

SEb1

The SE of b1 is give as follows:

SEb1 =

√
n∑

i=1
(yi−ŷi)2

n−2√
n∑

i=1

(xi − x̄)2

Okay, so that looks complicated. Let’s take it apart slowly:

The denominator is simply
√
SSx; you should know this by now.
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The numerator is sresiduals =
√

SSresiduals

n−2
. In other words, it’s the standard

deviation of the residuals (although we use n− 2 in the denominator).

(Note that some people like to use different notation here: sresiduals =
sr = se = sy|x).

So, we can rewrite our expression for SEb1 as follows:

SEb1 =

√
SSresiduals

n−2√
SSx

=
sresiduals√

SSx

Before we go on, we need to mention that some texts once again take a slightly
different approach. They define SEb1 as follows:

SEb1 =
se

sx
√
n− 1

So we note the following for the denominator:

sx
√
n− 1 =

√
SSx√
n− 1

×
√
n− 1 =

√
SSx

We will stick with the what we showed above (it’s the more traditional way of
doing things). Note also that for problems (i.e., homework or exams), you’ll be
given SSr, not sr(= se = sy|x).

So, finally, we know how to calculate t∗, and we’re ready to figure out how to do a hypothesis
test:

1. Set up your hypotheses:

H0 : β1 = 0
H1 : β1 6= 0

(Of course we could do < or > for H1).

2. Pick your value for α as usual.

3. Verify your assumptions (more on this soon).
(Don’t forget to make sure your data agree with H1 if you’re doing a one sided test).

4. Calculate t∗ as described above.

5. Compare |t∗| with ttable using n− 2 degrees of freedom.

6. If |t∗| ≥ ttable, we reject the null hypothesis and say the slope is significantly different
from zero.
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Enough theory. Let’s continue with our soil respiration example. Remember we got the
following results:

SSx = 42 SSy = 0.1334 SScp = 2.26 x̄ = 20.5 ȳ = 0.475

To this we now have to add SSr, our Sum of Squares for the residuals. Let’s see how to
get this:

ŷ = −0.62809 + 0.05381x

(If you don’t remember how we got this, review the previous set of notes). So here’s our
data, together with the columns we need in order to calculate SSr (see below):
(X = temperature (Celsius), Y = NCER (µmol/m2)

X Y Ŷ r r2

17 0.31 0.2866667 0.023333333 5.444444e-04
18 0.27 0.3404762 -0.070476190 4.966893e-03
19 0.45 0.3942857 0.055714286 3.104082e-03
20 0.43 0.4480952 -0.018095238 3.274376e-04
21 0.51 0.5019048 0.008095238 6.553288e-05
22 0.55 0.5557143 -0.005714286 3.265306e-05
23 0.65 0.6095238 0.040476190 1.638322e-03
24 0.63 0.6633333 -0.033333333 1.111111e-03
Sum: 0.01179048

We know where the X and Y columns come from - that’s just our original data. Let’s
figure out the rest of the columns.

Our column for Ŷ :

Our Ŷ is the estimated value for Y at each value of X. For example, since
x1 = 17 then we have:

ŷ1 = −0.62809 + 0.05381(17) = 0.2866667

Which is the value you see in the table for Ŷ (in the first numerical row of
the table).

Similarly, we could calculate the estimated value for Y for x3 = 3:

ŷ3 = −0.62809 + 0.05381(19) = 0.3942857

And again, this value is given in the table above.

We need to carry out this calculation eight times to get all the Ŷ values to
fill in our table.
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Our column for r:

This one’s a little easier. We need the actual residual, which is simply
r = y − ŷ. So for x1 = 17 and y1 = 0.31 we have ŷ1 = 0.2866667 (see the
table), and we get:

r1 = 0.31− 0.2866667 = 0.023333333

And again this value is given in the first numerical row in the table above.

Similarly, we can do:

r3 = 0.45− 0.3942857 = 0.055714286

And so on.

Finally, our column for r2:

This is almost trivial, since it’s literally r2 (take r and square it). The values
for the two rows we’ve used in the text just above are also, of course, in the
table.

So where is our SSr? This is the sum of the squared residuals. In other words, we
add up the last column (as should be obvious from the table above).

So now we know how to calculate SSr. Doing our hypothesis test is then pretty
straight forward:
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Set up our hypotheses:

H0 : β1 = 0 (in words, temperature does not affect soil respiration)
H1 : β1 > 0 (in words, increasing temperature increases soil respiration)

Let’s stick with α = 0.05.

Since our b1 > 0 (see the slope for our equation above), we can proceed and
calculate our t∗:

t∗ =
b1

SEb1

=
0.05381√

SSr

n− 2√
n∑

i=1

(xi − x̄)2

=
0.05381√
0.01179048

8− 2
√

42

=
0.05381

.00684015
= 7.867

Without even looking, you should know by now that |t∗| = 7.867 will be signifi-
cant (it’s a large value for t∗).

But, to do it right, ttable = t0.05,8 = 1.860 (one sided), so we reject the null
hypothesis.

Incidentally, R tells us that the p-value = 0.000223, so we’re highly confident
about our result.

We conclude that increasing temperature increases the level of soil respira-
tion.

So we’ve done our first hypothesis test for regression. It’s important to note that we
really haven’t checked our assumptions yet (other than verifying that our data agree
with H1).

It turns out that checking our assumptions is very important in regression. If
you don’t do this, you could be generating nothing but garbage!

We’ll take a look at our assumptions in the next set of notes.


