
Contingency tables

We just got done learning about the goodness of fit test. This test is used for categorical
data where we have only one factor. For example, we are looking at blood type, or color or
similar. But we often have more than one factor. This is where contingency tables are used.

For example, perhaps we’re trying to the distribution of blood types is different in men
and women. Now we have two factors: (1) blood type, and (2) sex. For blood type we
have four categories (A, B, AB, O), and for sex we have two categories (male, female).
If we went out and recorded blood types of 153 men and 162 women, we could analyze
our data with a χ2 contingency table test to see if the distribution of blood types is different.

Let’s provide a more realistic example. In 1988 the state of Florida collected the following
information on the use of seat belts and their relationship to fatalities:

Safety equipment Injury
in use

Fatal Non-fatal Total

None 1,601 165,527 167,128
Seat belt 510 412,368 412,878

Total 2,111 577,895 580,006

We have two factors to consider, Injury and Safety equipment in use. Each has two cate-
gories or levels. Now that we have some data, what might we be interested in? The obvious
question to ask is “do seatbelts save lives?”.

We approach this problem by figuring out the proportion of people who died while not
wearing a seatbelt. We divide the number of people who died while not wearing a seatbelt
(1,601) by the total number of people not wearing a seatbelt (167,128):

Proportion of people who died while not wearing a seatbelt = p̂1 =
1, 601

167, 128
= 0.00958

This doesn’t sound so bad. If you’re in an accident and you’re not wearing a seatbelt you
“only” have a 0.96% chance of dying?

Well, we’re not done yet. We want to compare this to the proportion of people who died
while wearing a seatbelt:

Proportion of people who died while wearing a seatbelt = p̂2 =
510

412, 878
= 0.00124
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This proportion is much lower than the other one, and we begin to see that maybe seatbelts
are in cars for a reason. But how do we turn this into a hypothesis test? What are we
interested in testing? One possibility is to see if the (population) proportion of our two
groups are different. Specifically, let’s do:

H0 : p1 = p2

H1 : p1 6= p2 (does this alternative really make sense?)

Remember that the sample proportion, p̂, estimates p, the true population proportion, so
we have p̂1 estimating p1, and p̂2 estimating p2.

What about our alternative hypothesis? Are we really interested in p1 6= p2? No, we’re
interested in seatbelts saving lives, so really we need a one sided alternative hypothesis.
The proportion of fatalities should be lower if wearing a seatbelt and we should be using:

H1 : p1 > p2

So one way to do a contingency table test is to compare proportions. However, sometimes
we are more interested in establishing dependence or independence between our factors.

Suppose we are interested in two species of mice. Does the presence of species A influence
the presence of species B? In other words, does species B care if species A is around?
Suppose we sample 179 plots along Skyline drive to determine which mice are in each plot.
We get the following:

Species B

Present Absent Total

Species Present 38 53 91
A Absent 68 20 88

Total 106 73 179

Maybe A and B are in competition, or maybe they actually like each other. What kind
of question are we interested in asking? Does it make sense to compare the proportion of
species A that is present when species B is present with the proportion of species A that is
present when species B is absent? Does the previous sentence sound a bit confusing? That
might be an indication that we need to ask the question differently. How about we jump
right to our hypotheses and do:

H0 : Species A and B are independent of each other.
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H1 : Species A and B are not independent of each other (they’re dependent).

That sounds much easier. All we’re asking here is if it makes a different to species A if
species B is there, or vice versa.

The important thing to realize is that we have two contingency tables above; the first asks
a hypothesis about proportions, the second about independence. It takes a little practice to
determine which hypotheses (proportions or independence) you want to use for a particular
problem, but the good news is that the analysis for both cases is exactly the same. Let’s
outline things:

1. Write down your hypotheses:

H0 : p1 = p2

H1 : p1 6= p2 (or one sided (< or >))

or

H0 : Factors A and B are independent of each other.

H1 : Factors A and B are not independent of each other (they’re dependent).

2. Pick a value for α.

3. Calculate your test statistic. This will be the same as for the goodness of fit test,
although the value for c is subtly different:

χ2∗ =
c∑
i=1

(Oi − Ei)2

Ei

where c is now number of cells, not categories. Both our tables have four cells (the
rows/columns with totals do not count).

One thing you might wonder is where we get our expected values - more on that
below.

4. Finally you compare your value of χ2∗ to the χ2
table value using d.f. = (r−1)×(k−1),

where:

r =number of rows (not including totals).

k =number of columns (not including totals).

So we have: χ2
table = χ2

α,(r−1)×(k−1)

5. Then as usual, if χ2∗ ≥ χ2
table (or if p−value ≤ α) we reject H0.
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So how do we get our expected values? Unlike the goodness of fit test, there are no numbers
(proportions) in the null hypothesis. We need to calculate our expected values.

Let’s use our mouse example (species A versus species B) as an example. We will assume,
as usual, that our null hypothesis (H0) is true. This says that species A shouldn’t be
affected by species B.

Let’s figure out the proportion of plots with species A. To do this, we can just use
the totals column. We have:

Proportion of plots with species A =
number of plots with A

total number of plots
=

91

179
= 0.508

In other words 50.8% of plots have species A present.

The null hypothesis implies that it shouldn’t make any difference if species B is
present or not. So, for example, if we have 106 plots (which is the number of plots
with species B present), 50.8% of them should have species A present. That’s an easy
calculation:

0.508× 106 = 53.9

In other words, if we have 106 plots, we expect 58.8 of them to have species A. We
just calculated our first expected value and we can add this to the table as follows
(in parenthesis and italics):

Species B

Present Absent Total

Species Present 38 (58.9 ) 53 91
A Absent 68 20 88

Total 106 73 179

We can do the same for the 73 plots that do not have species B:

0.508× 73 = 37.1

So we expect 37.1 plots to have species A when species B is absent, and again we can fill
this into our table:
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Species B

Present Absent Total

Species Present 38 (58.9 ) 53 (37.1 ) 91
A Absent 68 20 88

Total 106 73 179

We can continue the same way for the second row, but let’s think a little more about what
we’re doing. We’re taking the row total and dividing this by the grand total and then
multiplying this number by the column total. In other words, we are doing:

expected value =
row total

grand total
× column total

And this gives us a formula that is easy to remember:

expected value =
row total× column total

grand total

So for any expected value, we can simply that the row total for the cell we want, multiply
by the column total for the cell we want, and divide this by the grand total:

expected value for cell in first row and first column =

row one total× column one total

grand total
=

91× 106

179
= 58.9

So now we know how to calculate our expected values. Let’s do a few examples, starting
with the seatbelt/fatality problem:

H0: The proportion of people killed is the same whether or not they are wearing a
seatbelt.

H1: The proportion of people killed while not wearing a seatbelt is higher than the
proportion killed while wearing a seatbelt.

or, in symbols:

H0: p1 = p2

H1: p1 > p2
(See above for the explanation for using a one sided alternative).
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Let’s pick α = 0.05.

Before we move on, we need to make sure that our data agree with our alternative
hypothesis (we’re doing a one sided test!):

p1 = 0.00958 > p2 = 0.00124, so yes, our data agree with H1.

Now we calculate our expected values:

Our first expected values (for row “None” and column “Fatal”):

2, 111× 167, 128

580, 006
= 608.28

Our second expected value (“None” and “Non-fatal”):

577, 895× 167, 128

580, 006
= 166, 519.72

Our third expected value (“Seat belt” and “Fatal”):

2, 111× 421, 878

580, 006
= 1, 502.72

And finally, our last expected value (“Seat belt” and “Non-fatal”):

577, 895× 421, 878

580, 006
= 411, 375.28

And we can add these into our table so we have everything in one place:

Safety equipment Injury
in use

Fatal Non-fatal Total

None 1,601 (608.28) 165,527 (166,519.72) 167,128
Seat belt 510 (1,502.72) 412,368 (411,375.28) 412,878

Total 2,111 577,895 580,006
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Now we can calculate our value for χ2∗ :

χ2∗ =
(1, 601− 608.28)2

608.28
+

(165, 527− 166, 519.72)2

166, 519.72

+
(510− 1, 502.72)2

1, 502.72
+

(412, 368− 411, 375.28)2

411, 375.28

= 2, 284.25

Finally, we look up our critical value of χ2 in our tables and get χ2
0.05,1 = 2.71 (make

sure you use the one sided value).

From this we conclude that since our critical value is larger than the table value we
reject our H0 and conclude that seatbelts save lives.

Incidentally, R says that our p-value is tiny (we have an absurdly large value of χ2∗):
p < 1.1e − 16, so if we compare this to α we reject as expected. (The p-value is so
small, R can only give us a maximum value for p).

How about our other example? Let’s take a look at our two species of mice, but we’ll skip
some of the details this time:

H0 : Species A and B are independent of each other.

H1 : Species A and B are not independent of each other (they’re dependent).

Set α = 0.05.

Filling in the rest of our expected values in our table:

Species B

Present Absent Total

Species Present 38 (58.9 ) 53 (37.1 ) 91
A Absent 68 (52.1 ) 20 (35.9 ) 88

Total 106 73 179

And our χ2∗ is (we didn’t write down the middle two terms):

χ2∗ =
(38− 58.9)2

58.9
+ ...+

(20− 35.9)2

35.9
= 23.4
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And since our value of χ2∗ is larger than the (two sided) table value (χ2
0.05,1 = 3.84)

we reject H0.

Since we rejected, we want to take this example a step further. Our question now becomes,
do the two mice attract each other (are there more of species A present when B is present)
or do the repel each other (are there less of species A present when B is present). To do
this we need to figure out some proportions. Let’s calculate the proportion of species A
that is present when species B is present:

p̂1 =
38

106
= 0.358 or 35.8%

Now let’s do the proportion of species A that is present when species B is absent:

p̂2 =
53

73
= 0.726 or 72.6%

Which of these is higher? There are more of species A present when species B is absent,
so they repel each other (they don’t like to share plots).

You may need to calculate proportions like this to figure out which way a relationship in
a contingency table is going. The calculation isn’t difficult, although sometimes it’s a bit
confusing to know which numbers to use. It turns out, it doesn’t make any difference.

We used the row 1 cell numbers and divided by the column totals. You can use the row 2
cell numbers and divide by the column totals. You can also use the column 1 cell numbers
and divide by row totals, or the column 2 cell numbers and divide by row totals.

In other words, you will always get the same answer about attraction or repelling. You
may need to think a bit about what the p̂ ’s that you’re calculating represent, but as long
as you do this, you’ll be fine.

What about bigger tables? So far we’ve looked at table with 2 rows and 2 columns. Bigger
tables are referred to ash R ×K tables. This is pretty standard language in statistics, so
you’ll have to remember that anything bigger than 2× 2 is R×K.

The good news is that the math and everything else is the same as for a 2× 2 table. Let’s
do a quick example.

We want to know if there’s a difference in food preference in three species of squirrel. We
put out peanuts and walnuts for our squirrels and get the following results:
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Nut type

Peanut Walnut Total

A 21 32 53
Species B 10 15 25

C 15 12 27

Total 46 59 105

H0 : The proportions of peanuts and walnuts are the same for all three species.

H1 : The proportions are not the same.

(Note that we can’t do a one sided test since our table is bigger than 2× 2).

Set α = 0.05.

We will not go through all the calculations, but here are a few steps:

Our first expected value (“Species A” and “Peanut”) is 46×53
105

= 23.2

And so on for the other expected values.

Our χ2∗ = (21−23.2)2

23.2
+ ... = 2.0381

We find that χ2
table = χ2

0.05,2 = 5.991, so we fail to reject and conclude that we can’t
find a difference in food preference in our squirrels (our d.f. = ν = (r − 1)(k − 1) =
2× 1 = 2).

Finally, a few comments about contingency tables.

For 2×2 tables we can calculate something called the Relative Risk. This tells us what the
risk is of one thing happening compared to another. For example, if we think back to the
seatbelt example, what is the risk of dying if you’re not wearing a seatbelt as opposed to
wearing a seatbelt? We simply compare the proportions:

R̂R =
p̂1
p̂2

=
0.00958

0.00124
= 7.73

This tells us that the risk of dying in a car crash is 7.73 times higher if you’re not wearing
a seatbelt (a good reason to wear your seatbelt!).

The relative risk is used extensively in medical trials and such (e.g, the risk of getting a
heart attack if you take this medicine is twice that if you don’t, and so on).
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The relative risk is easy to calculate but does have some drawbacks. For reasons we don’t
want to get into, it isn’t always appropriate to use the relative risk. For this reason statis-
ticians have developed a related quantity called the Odds ratio which is used even more
often than the relative risk. Unfortunately, it’s a little too complicated to explain here. If
you’re interested, you can check it out on Wikipedia.

What about the assumptions? They’re identical to that of the goodness of fit test:

Random data.

Smallest expected value ≥ 5.

There is a nice alternative if you violate the second assumption - it’s called Fisher’s exact
test. Again, you can look it up on Wikipedia if you’re interested.
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