
Confidence intervals

We now want to take what we’ve learned about sampling distributions and standard errors
and construct confidence intervals. What are confidence intervals? Simply an interval for
which we have a certain confidence.

For example, we want to to be 90% certain that an interval that we construct, say, (a, b),
contains the true value of something we’re interested in (e.g. µ). A more specific example
might be: we want to be 90% certain that the interval (60, 75) contains the true mean
height (µ) for men in inches.

Usually we are interested in confidence intervals for the mean, µ, but we can also construct
confidence intervals for other parameters such as σ or p (the population proportion). How-
ever, we’ll stick with confidence intervals for µ.

A few things we should notice. First, we calculate our confidence interval (CI) for µ, not
ȳ. We know what ȳ is, so there’s no point in calculating a CI (since we know what it is, it
doesn’t have a CI in any case). We calculate a CI for µ precisely because we don’t know
what µ is, and we want to have some kind of limits for which we’re reasonable sure about
µ. Finally, remember that µ is not a random variable. It’s a constant. That means we
need to be very careful about how we define our limits. More on this last point below.

So how do we calculate a and b for our interval? Let’s review some simple properties of the
normal curve by looking at quantiles and figure out the probabilities associated with some
common percentiles (quantiles) like 90%, 95%, and 99%:

Pr{Z < z} = 0.90 =⇒ z = 1.28
Pr{Z < z} = 0.95 =⇒ z = 1.65
Pr{Z < z} = 0.90 =⇒ z = 2.33

But now we’re interested in an interval, so instead of the bottom 90% (for example), we
want the middle 90%. If we want the middle 90%, this means that we have 90% of our
area in the middle (instead of the lower tail), and have 5% of our area in each tail. We are
saying:

Pr{z1 < Z < z2} = 0.90 =⇒ z1 = −1.65 and z2 = 1.65

Notice that if we want the middle 90% that implies z2 = 1.65 which is the same value for
z if we want the bottom 95%. Here’s what we’re doing in pictures:
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−1.65 1.65
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Similarly, we get:

Pr{z1 < Z < z2} = 0.95 =⇒ z1 = −1.96 and z2 = 1.96 (2 1/2% in each tail).
Pr{z1 < Z < z2} = 0.99 =⇒ z1 = −2.58 and z2 = 2.58 (1/2% in each tail).

So where does this leave us? We need to figure out how to take the above information
and use it to construct our confidence interval. Suppose we took a sample and calculated
ȳ. What we want to do is construct an interval around ȳ in such a way so we can be (for
example) 90% certain that this interval includes µ. Or to put it in a probability statement,
we want:

Pr{y1 < Ȳ < y2} = 0.90

where y1 and y2 are chosen in such a way so that we’re 90% certain they include µ.

As it turns out, we already know how to do this, although it’s not quite obvious. We need
to put all the pieces together. First we remember from above that (for a 90$ confidence
interval):

Pr{−1.65 < Z < 1.65} = 0.90

Now we remember that we can convert from ȳ to z using:

Z =
Ȳ − µ
σ/
√
n

So we substitute this expression for Z in the equation above and get:

Pr{−1.65 <
Ȳ − µ
σ/
√
n
< 1.65} = 0.90

Now we do some algebra (it’s not difficult) and isolate µ in the middle:

Pr

{
Ȳ − 1.65σ√

n
< µ < Ȳ +

1.65σ√
n

}
= 0.90

And from this we can write the following expression that gives us a 90% confidence interval
for µ:

Ȳ ± 1.65
σ√
n

Notice that this expression doesn’t use µ (since that’s what we’re trying to guess at). But
it does use σ. The obvious problem is that we don’t know σ. Well, we could just substitute
s for sigma to get:

Ȳ ± 1.65
s√
n

As hinted in the last chapter, this creates a problem because if we substitute s for σ in the
equations above, we no longer have something that has a normal distribution. Let’s look
at this a bit further. If Ȳ ∼ N (i.e., Ȳ has a normal distribution), then:

Z =
Ȳ − µ
σ/
√
n
∼ N
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The reason for this is that everything on the right hand side of this equation is a constant
(remember, even though we don’t know the value of µ and σ, they are constants). The
only random variable on the right hand side of the equation is Ȳ . So if Ȳ ∼ N , this implies
that Z ∼ N .

But now we have:

Z =
Ȳ − µ
s/
√
n

?? (see below)

This time we have two random variables on the right hand side of the equation, Ȳ and s.
As before, we’ll assume that Ȳ ∼ N . But what about s? What kind of distribution does s
have, and how does it affect Z?

It’s not important for a class like this, but s has a chi (χ) distribution. The point is, it’s
not a normal distribution. So what do we get if we divide a random variable (e.g., Ȳ ) that
has a normal distribution by s? We do not get a normal distribution. Instead, we get
something called a T distribution. We write:

T =
Ȳ − µ
s/
√
n

The T distribution was developed by William Sealey Gosset. Gosset was very
interested in the quality control of small samples (for brewing beer) at the Guin-
ness brewing company in Ireland, and derived the T distribution while working
for Guinness. He was not allowed to publish under his own name, so he choose
the pseudonym “Student”, and the T distribution has been known as Student’s T
ever since.

How can we use this T distribution? Before we figure that out, let’s look at the T distri-
bution and compare it to the normal distribution:
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Standard normal and T  distributions compared

z or t

−4 −3 −2 −1 0 1 2 3 4

normal
t with df = 2
t with df = 6

First, we see that the T distribution has a parameter we need to know about. This is given
by the Greek letter ν (nu), and in this case is equal to something called the degrees of
freedom, often abbreviated df (or sometimes d.f.).

As ν gets smaller, the tails of the T distribution get fatter. As ν gets larger, the tails of
the T distribution get skinnier. As ν → ∞, the T distributions approaches the normal
distribution.

To use the T distribution, we obviously need to know something about ν. For now, it turns
out that this is fairly simple:

ν = df = n− 1

In other words, ν is just our sample size minus 1. So let’s get back to constructing our
confidence intervals. We can’t use the normal table, but we can use the t−table. If you
look at the t−table, you’ll see that it is arranged backwards from the normal table. That’s
because when we use the t−table we’re almost always interested in reverse lookup. So the
probabilities (or percentages) are arranged across the top of the table, and the t−values
are in the body of the table.
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Suppose you wanted to calculate the middle 90% of a T distribution with ν = df = 5.
Here’s what you want in symbols:

Pr{t5%,5 < T < t95%,5} = 0.90

(With the normal distribution we had Pr{−1.65 < Z < 1.65} = 0.90. We can rewrite this
as Pr{z5% < Z < z95%} = 0.90, since −1.65 = z5%, and 1.65 = z95%.)

Instead of −1.65 and 1.65 from the normal distribution, we now need to look in the t−table.
We look across the top until we see 90%, then go down along the side until we see df = 5.
We see 2.015. So now we can fill in our equation from above:

Pr{−2.015 < T < 2.015} = 0.90

Let’s see if we can now use this to (finally!) construct a confidence interval. We need to
modify the result from above. To construct a 90% CI, we can’t use:

Ȳ ± 1.65
σ√
n

= Ȳ ± z90%
σ√
n

Instead, we use (notice the SEȲ ):

Ȳ ± t90%,ν
s√
n

= Ȳ ± t90%,ν SEȲ

Example: We take 6 ostrich eggs and weigh them and get an average weight of ȳ = 1.4
kg and standard deviation of s = 0.175 kg. We want to construct a 90% CI. We already
know (very conveniently) that t for 90% and df = 5 is 2.015, so we proceed:

ȳ ± t90%,5
s√
n

= 1.4± t90%,5
0.175√

6
= 1.4± (2.015)(0.07144) = 1.4± 0.1440

Now we just have to finish this by subtraction and addition and we get:

90%CI = (1.26, 1.54)

This is a mathematical interval, so make sure you write it correctly. For example, (1.54,
1.26) is not a mathematical interval (always put the smaller number first). Also, make
sure you finish your calculations. 1.4± 0.1440 is also not an interval.
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Before we continue, we need to clear up some possible confusion about subscripts.

First, we’ve been using t90%,ν and t95%,ν in the same equations. But we have
actually been careful. When we say Pr{t5%,5 < T < t95%,5} = 0.90, that means
we want the middle 90%, which corresponds to 5% in the lower tail and 5% in
the upper tail (5% in the upper tail corresponds to the 95th percentile). The t
table is set up so that when we look up t90% it gives us the values for t that put
5% in each tail (remembering to use the negative of the value in the table for the
lower tail).

Second, a lot of textbooks use subscripts differently. Instead of doing t90%,ν , they
will use t0.05,ν . This is because putting 0.05 of the area in the upper tail corresponds
with putting 0.10 (or 10%) of the area in both tails. If you look at our tables, for
example, you’ll see that the one sided probability of 0.05 corresponds with a CI
of 90%. This will become a little more obvious when we do one sided tests, but
for now, you may safely ignore this unless you’re using a different text or different
t−tables.

So back to CI’s. Suppose for our ostrich egg example we now want to get a 95% CI. We
already did most of the math, but now we need to look up the table value for t95%,5 and
we get t95%,5 = 2.571. So we have:

1.4± (2.571)(0.07144) = 1.4± 0.1837 =⇒ 95%CI = (1.22, 1.58)

Or we could do a 99% CI:

1.4± (4.032)(0.07144) =⇒ 99%CI = (1.11, 1.69)

We can become more and more certain if we want, but as you can see, the CI keeps getting
bigger and bigger. If we want to take this to the extreme, suppose we want to be 100%
certain. The endpoints of the T distribution are at −∞ and ∞. This is useless since this
implies that a 100% CI is given by (−∞, ∞). This just tells us that µ exists (which we
know), but is otherwise useless. In fact, usually we say that a 100% interval does not exist.

So what does a CI actually tell us? It tells us how confident we are that the limits of our
CI contains the true value of µ. For our ostrich egg example, and a 90% CI we say: We
are 90% confident that the true value of µ is between 1.26 and 1.54.

A CI is not a probability statement about µ. The following is wrong :

Pr{20.9 < µ < 42.5} = 0.95 WRONG

Why? Because µ is a constant. It is not a random variable. We don’t know what µ is, but
it doesn’t vary. Suppose, once again, that we do have secret knowledge and somehow did
know that µ = 43.1. What happens to the above probability? It must be 0:

Pr{20.9 < µ = 43.1 < 42.5} = 0.00
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In other words, a probability statement using µ must be 0 or 1. It is true or not true.
This might seem an annoying technicality, but it is actually important to remember what
µ represents.

Here’s another way of looking at CI’s. Suppose we construct 100 90% CI’s (we take 100
samples, and for each sample we construct a CI). On average, 90 of our CI’s will contain
the true value of µ. Ten of them will not contain the true value of µ. The problem is, we
don’t know which of our CI’s contain µ and which ones don’t. If you construct just one
CI you can only be 90% certain your CI contains µ. There’s a 10% chance you’ll miss µ.
(Normally one would only ever take one sample to construct a CI - no one would take 100
samples and construct 100 CI’s).

If you don’t want to make a mistake 10% of the time, you can use a bigger CI. With a
95% CI you’ll only make a mistake 5% of the time. With a 90% CI you’ll only make a
mistake 1% of the time. Problem is, the bigger you make your CI, the less information
about µ your CI has (remember that a 100% CI is silly - and so is a 99.9999999% CI).
When we learn about hypothesis testing we’ll figure out another reason you don’t want to
make your CI too big.

Finally, we want to do one more example in constructing CI’s. This one points out the
limitations of using tables.

Example. We go out and collect 39 eggs from the American toad (Anaxyrus americanus).
We want to construct a 99.9% CI for the diameter of our eggs (99.9% is a bit unusual, as
we explained above). We find ȳ = 1.5 mm and s = 0.25 mm (our ν = df = 38):

ȳ ± t99.9%,38
s√
n

= 1.5± t99.9%,38
0.25√

39
= 1.5± t99.9%,38(0.04003)

Before we can finish this, we need to look up t99.9%,38 in our tables. Unfortunately there is
no row for df = 38. So what do we do?

The quick answer (we’ll explain below) is that we always use the row with less degrees of
freedom than we have. We always round down. In this case we use the row for 35 df .

So we go into our t table and find t99.9%,35 = 3.591 And we get:

1.5± (3.591)(0.04003) =⇒ CI = (1.3562, 1.6438)

And we are 99.9% confident that the true average diameter (µ) of toad eggs is between
1.4089 and 1.5911mm.

So why do we always round down? Let’s take a look at the confidence intervals for both
35 df and 40 df :
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For 35 df we have the CI we calculated above: (1.3562,1.6438).

For 40 df we get t99.9%,40 = 3.551 which gives us a CI of (1.3579,1.6421).

While it isn’t a big difference, notice that the interval for df = 40 is smaller than the one
for df = 35. In other words, the interval for 40 df is too small, while the interval for 35
df is too big. We always want to be at least 99.9% sure. Since the interval for 40 df is to
small, we can’t say this.

We know the interval for 35 df is too big, but that’s okay since we’re at least 99.9% sure
our interval includes µ.

Finally, we could use interpolation, but interpolation is not used much these days as it’s
a bit of a pain and most software will give us the exact values we need in any case. We
can easily ask R and get t99.9%,38 = 3.566 (notice this value is between the two values for t
given above).
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