Assumptions

T tests and other hypothesis tests all make assumptions about the data. For the T test
we discussed the assumption of o = 02 vs. o7 # o2, and noted that this is important. In
general, we shouldn’t do hypothesis tests without verifying that the assumptions of these
tests are actually okay. Let’s take a look at some of these assumptions of the two sample
T test, starting with the most important.

The data are random. This assumption is central to all of hypothesis testing. If we pick
and choose the data we want to analyze, then nothing we do is really valid. It is trivial
to show that women are taller than men. We simply pick 10 women that are taller than 6
feet, and then pick 10 men that are shorter than 6 feet tall. If we analyze these data with
a two sample t test, it’ll most likely show that women are taller than men.

Obviously, this sample is biased. We didn’t pick 10 men and 10 women at random. If your
data are biased like this, you can pretty much say anything you want with your hypothesis
test.

The data between samples are independent. This is really a continuation of the first
assumption (random data), but is mentioned separately as we can violate this if we're very
careful. But let’s figure out what we mean.

For a two sample test, we need to make sure that the data in the first sample are collected
independently from the second sample. Just because a data point in the first sample is
in the first row, shouldn’t influence a data point in the second sample being in the first row.

It’s probably best to do a simple example. Instead of biology, let’s look at political affilia-
tion for just a moment. Suppose we want to determine if there’s a difference between men
and women and political party affiliation (e.g., are more men Republican than women?).
To do this correctly, we randomly pick, say, 25 men, and 25 women, and ask each of them
if they are Republican or Democrat.

But suppose we get lazy. Let’s pretend we knock on a door in a neighborhood and the
husband answers the door. We ask him if he’s a Democrat or Republican. He says “Re-
publican”. Now we ask for his wife to come to the door and ask her. What will she most
likely say?? Republican, of course. Most people marry people with similar political and
religious views to themselves.

In this little example we have violated the assumption of independence between our sam-

ples. We will most likely find just as many Democratic men as Democratic women, and
will not find a difference between men and women.

(©2019 Arndt F. Laemmerzahl 1



Assumptions 2

Finally, we should mention that this example can not be analyzed with a two sample ¢ test
- we're really interested in comparing proportions (e.g., the proportion of Democratic (or
Republican) women vs. the proportion of Democratic men).

The data in each sample have a distribution that is approximately normal. This
is where we’ll spend most the chapter. Tests such as the t test are called parametric tests
because the depend on assumptions about the distribution of the data. There are other
tests (non-parametric or distribution free) that do not have assumptions like this. We'll
learn about one of them in the next chapter.

Two sample t tests assume that the data in each sample have a normal distribution. There
are numerous ways of checking this, from statistical tests to graphical methods. We will
briefly discuss statistical tests, and then move on to graphical methods, in particular Q@)
plots.

Statistical tests for normality. Hypothesis tests attempt to test the following hypothe-
ses:

Hy:D~N

Hy:D»~N

So if you fail to reject, you decide in favor of Hy and decide to assume the data are nor-
mal. The problem with hypothesis tests (as mentioned!) is that we can not prove the null
hypothesis. Even if we fail to reject, we do not know if Hj is true, so we can’t be certain
our data are really normally distributed.

For this reason many statisticians do not like tests for normality. However, if you ever do
find yourself in a situation where you need to do a test like this (maybe someone is insisting
on this), then there are two tests available that can help:

Shapiro-Wilks

Kolmogorov

Both let you perform the above hypothesis test. For smaller samples, the Shapiro-Wilks
test is generally preferred. If you want, you can check these out on Wikipedia, as usual.

Incidentally, you should never do a Goodness of Fit test to evaluate normality. It is way
too easy to do anything you want with this test, although it is sometimes recommended in
other textboooks.

Graphical methods to check normality (introducing Q@ plots). There are a va-

riety of graphical methods you can use, but many of them suffer from a similar drawback
as the statistical tests mentioned above. It is easy to see if your data are not normal, but
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more difficult to determine if your data are normal.

For example, here is a histogram where the data are obviously not normal:

Data that are obviously not normal
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On the other hand, here the data might be normal; it’s hard to know. Drawing a normal
curve over the histogram can help, but is still not ideal.
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Are the data normal?
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The same thing happens with boxplots. They can quickly tell you if your data are not
normal, but they’re not so good at telling you if your data are normal.

Data that are obviously not normal

A much better graph is something called a Q@ plot. QQ stands for Quantile- Quantile
(think of these as percentiles). Quantile-quantile plots are quite versatile and can be used
not just to evaluate whether data have a normal distribution, but also numerous other
distributions, although we’re just interested in normally distributed data.
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Many people refer to the plot we are learning as a normal probability plot, which is essen-
tially correct, but we will call the Q) plots since that’s what R calls them.

So how do we do a QQ plot? A QQ plot essentially plots the actual data on the Y-axis,
and the expected value of each data point on the X-axis. If the actual values and expected
values form a line that is more or less straight, we can conclude that our data are approx-
imately normal.

How do we figure out what values we expect? Suppose we have the following 10 random
values for IQ:

101 102 106 120 110 107 119 94 100 95

(Before we go on we should say that there a many, many problems with the IQ scale. It
often does not do what it was designed to do).

Let’s sort these IQ values:
94 95 100 101 102 106 107 110 119 120

Now we ask: in a sample of size 10, where do we expect the smallest value for 1Q to be if
the data have a normal distribution?

Answer: at the 10" percentile. We have 10 data points, so the smallest value should be
at the 10" percentile of our normal curve. We know how to do this! Just use our nor-
mal tables for reverse lookup and find the z-score for the area closest to 0.10 (or just use R).

Then we can proceed with the 20" percentile, the 30*", and so on, all the way up to the
100" percentile. Oops - what is the z-score for the 100" percentile? How far up does the
normal curve go? It goes to +oo.

Before we figure out how to fix this, let’s take a look at a formula for what we’ve been
doing. It’s pretty simple. For each value (where ¢; =i*® quantile) we just used:

7
qi = —

n

Where i is the i*h observation (i.e, i = 1, 2, 3, ..., n). But because this eventually gives us
a 100" percentile, we will modify this formula and use:

1= 1p

n

qi

This will give us almost the same graph and ensure that we can get all the way to 100%.

Comment: R actually uses ¢; = % when n < 10, but for simplicity we’ll stick with the
formula given above. But if the Q@ plot in R looks just a little different than what you do

by hand, that’s probably why.
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So here’s what we do:
1. Sort your data from smallest to largest (this isn’t strictly necessary, but it’ll avoid

confusion).

2. Number your data points from 1 to n. Again, this isn’t really necessary, particularly
with small sample sizes, but it does help keep things straight.

3. For each data point, calculate:
i—1/

n

4;
Make sure you use ¢, not the actual data value in this equation.
4. Use g; in your normal tables and do a reverse look up to get a z-score. You want z,,.
5. Plot your z-score on the x-axis, against the actual data value on the y-axis.

(We'll worry about interpretation a little later).

Let’s continue with our IQ example before we get lost. We already sorted the data, so let’s
add ¢:

IQ: 94 95 100 101 102 106 107 110 119 120
(5 1 2 3 4 ) 6 7 8 9 10

Now let’s start to calculate our quantiles. For : = 1 we have:

1—1/
G = TR 0.05
For i = 2 we have: Sy
— 1/
= =0.1
G2 0 0.15

And so on for ¢ = 3, 4, ..., 10. Let’s add these values to our table:

1Q: 94 9 100 101 102 106 107 110 119 120
(5 1 2 3 4 D 6 7 8 9 10
g: 0.05 015 025 035 045 0.55 0.65 0.75 0.85 0.95

And finally, we do a reverse look up for each of our values of ¢;. For i = 1, we have Z,, =
Zo.os = -1.64; for i = 2, we have Z,, = -1.04, and so on. If we add all these values to our
table we now have:
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1Q: 94 95 100 101 102 106 107 110 119 120
(5 1 2 3 4 5 6 7 8 9 10
Qi 0.06 015 025 035 045 055 0.65 0.75 0.85 0.95
Zgo -1.64 -1.04 -0.67 -0.39 -0.13 0.13 0.39 0.67 1.04 1.64

Finally we are done with our calculations, and we can plot our Q@ plot. We use the values
in the first row on your y-axis (IQ), and the values in the last row on the z-axis (Z,,):

Normal QQ plot

Actual 1Q

Z-score

Why don’t we use convert our Z,, values into ezpected 1Q) values? Because it doesn’t make
any difference to the plot. It will look the same whether we plot Z,, values or the expected
IQ values. Let’s do the plot again using expected 1Q values, but first let’s calculate all the
expected 1Q) scores:

The lowest expected IQ score would be:

I(Q); = —1.64 x 8.95+ 105.4 = 90.68

The second lowest expected 1Q score would be:

IQy = —1.04 x 895+ 105.4 = 96.13

And so on. Notice that for this it’s fine to use the sample mean (y and sample standard de-
viation (s) instead of p and o. All 10 expected IQ scores (from lowest to highest) would be:

Expected IQ: 90.7 96.1 99.4 102.0 104.3 106.5 108.8 111.4 114.7 120.1
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And now we can plot the actual IQ values on the y axis, and the expected 1Q values on
the x axis:

Normal QQ plot

Actual IQ

90 95 100 105 110 115 120

Expected |Q scores

Notice that the plot appears identical to the one above using Z,,. So we can save a step
by just plotting the actual data values versus the z-scores.

Interpreting QQ plots. So we now know how to make a Q@ plot. How do we interpret
it? If the data are perfectly normal (no real data will ever be perfectly normal) then the
points on the graph will form a straight line. Normally you will see some small squiggles or
deviations from a straight line. Don’t worry about these. Both of the graphs above (which
are really identical) are good examples of data that are reasonably normal.

So what does a bad (non-normal) Q@ plot look like? Generally, if you see points far away
from the line (particularly at the ends) or if the points make a curve, that means you need
to look closer at your plot. Let’s list some of the problems you can encounter:

1. If you see a backwards S-shaped curve (the ends of the curve point up or down) this
shows that your data have long tails. This is bad and can be difficult to work with. In
addition, if some of your points are far away from the rest, this can indicate outliers,
which are often a symptom of long tails.

2. If you see a regular S-shaped curve (the ends of the curve point sideways) this shows
data that have short tails. This isn’t as bad as long tails.

3. if you see just one curve (i.e., the points curve up or down, but don’t make an S),
this shows skewed data. Depending on the severity of the skewness, this can also be

bad.
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Examples of all three of these problems in addition to another Q@ plot for normally dis-

tributed data are in the graphs:

QQ plot showing data that are approximately normal
(Notice data follow line)
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QQ plot showing data with short tails
(Notice S shape)
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QQ plot showing data that are skewed left
(Notice short tail on right, long tail on left)
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QQ plot showing data with long tails
(Notice backwards S shape)

Z-scores

A word of caution. Some software (e.g., Minitab) will reverse the axes on a Q@ plot. In
other words, the actual data are now on the z-axis and the z-scores on the y-axis. This
means that your interpretations change. For example, a regular S-shaped curve now has
long tails. In this class we will never reverse the axes, but you need to know about this in
case you use different software or look at someone else’s Q@ plots. Always check the axes
before you figure out what the problems might be.

Incidentally, the normal distribution assumption applies to each sample. To check if your
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data are normal, you need to make a Q@) plot for each sample. If you’re comparing blood
oxygen levels in men vs. women after exercise, you need to make two Q@) plots. One for
men, and another for women. If either one (or both) is not normal you need to worry about
the normal distribution assumption. In more advanced classes you can learn about a short
cut that does let you make one plot, but this requires a lot more explanation.

So how does all this affect the normal distribution assumption? Or, what does this mean
for our t test?

This depends on how badly not normal our data are. Remember, the CLT will eventually
take care of data that are not normal, so you can still use a ¢ test. However, this might
require a large sample size if the data are seriously not normal. Let’s try to summarize
some of this:

If the data have long tails, this is particularly bad. The CLT may take a while before
the means start to behave normally. In this case you may need a large sample size
(e.g., 40 or 50, depending on how bad the problem is).

If the data have short tails, that’s not so bad. The CLT will start to work much
quicker. A sample size of 20 or 25 might be enough for you to be able to use a t test.

If the data are skewed, this could be bad. It depends on how badly skewed they are.
If you have a really long tail on one side, you're back to needing large samples for
the CLT to work (e.g., 40 or 50). If the data are only slightly skewed, you could get
away with smaller sample sizes (20 or 25).

Remember that the above summary applies to each sample for a two sample ¢ test.
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