function g = gpsNewtons(x0,y0,z0,d0)
format long;
iv = [x0;y0;z0;d0];
x=x0;
y=y0;
z=z0;
d=d0;
c=299792.458;
A1=15600;
B1=7540;
C1=20140;
t1=0.07074;
A2=18760;
B2=2750;
C2=18610;
t2=0.07220;
A3=17610;
B3=14630;
C3=13480;
t3=0.07690;
A4=19170;
B4=610;
C4=18390;
t4=0.07242;
f1=(x-A1)^2+(y-B1)^2+(z-C1)^2-(c*(t1-d))^2;
f2=(x-A2)^2+(y-B2)^2+(z-C2)^2-(c*(t2-d))^2;
f3=(x-A3)^2+(y-B3)^2+(z-C3)^2-(c*(t3-d))^2;
f4=(x-A4)^2+(y-B4)^2+(z-C4)^2-(c*(t4-d))^2;
F=[f1;f2;f3;f4];
J=[(2*x-2*A1) (2*y-2*B1) (2*z-2*C1) (-2*c^2*d+2*c^2*t1);
(2*x-2*A2) (2*y-2*B2) (2*z-2*C2) (-2*c^2*d+2*c^2*t2);
(2*x-2*A3) (2*y-2*B3) (2*z-2*C3) (-2*c^2*d+2*c^2*t3);
(2*x-2*A4) (2*y-2*B4) (2*z-2*C4) (-2*c^2*d+2*c^2*t4)];
v = -J\F;
xv = v+iv;
steps=10;
for i=1:steps
x=xv(1);
y=xv(2);
z=xv(3);
d=xv(4);
f1=(x-A1)^2+(y-B1)^2+(z-C1)^2-(c*(t1-d))^2;
f2=(x-A2)^2+(y-B2)^2+(z-C2)^2-(c*(t2-d))^2;
f3=(x-A3)^2+(y-B3)^2+(z-C3)^2-(c*(t3-d))^2;
f4=(x-A4)^2+(y-B4)^2+(z-C4)^2-(c*(t4-d))^2;
F=[f1;f2;f3;f4];
J=[(2*x-2*A1) (2*y-2*B1) (2*z-2*C1) (-2*c^2*d+2*c^2*t1);
(2*x-2*A2) (2*y-2*B2) (2*z-2*C2) (-2*c^2*d+2*c^2*t2);
(2*x-2*A3) (2*y-2*B3) (2*z-2*C3) (-2*c^2*d+2*c^2*t3);
(2*x-2*A4) (2*y-2*B4) (2*z-2*C4) (-2*c^2*d+2*c^2*t4)];
v = -J\F;
xv = v+xv;
end
xv
x=xv(1)
y=xv(2)
z=xv(3)
d=xv(4)
end
Not enough input arguments.
Error in gpsNewtons (line 11)
iv = [x0;y0;z0;d0];