
0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2878168, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

ACCEPTED IN IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS (TCAD), ON 29 JULY 2018 1

Machine Learning for Power, Energy, and Thermal
Management on Multi-core Processors: A Survey

Santiago Pagani, Member, IEEE, Sai Manoj P D, Member, IEEE, Axel Jantsch, Senior Member, IEEE, and Jörg
Henkel, Fellow, IEEE

Abstract—Due to the high integration density and roadblock of
voltage scaling, modern multi-core processors experience higher
power densities than previous technology scaling nodes. When
unattended, this issue might lead to temperature hot spots, that
in turn may cause non-uniform aging, accelerate chip failure,
impair reliability, and reduce the performance of the system.
This paper presents an overview of several research efforts
that propose to use machine learning techniques for power and
thermal management on single-core and multi-core processors.
Traditional power and thermal management techniques rely on
a certain a-priori knowledge of the chip’s thermal model, as
well as information of the workloads/applications to be executed
(e.g., transient and average power consumption). Nevertheless,
these a-priori information is not always available, and even if it
is, it cannot reflect the spatial and temporal uncertainties and
variations that come from the environment, the hardware, or
from the workloads/applications. Contrarily, techniques based
on machine learning can potentially adapt to varying system
conditions and workloads, learning from past events in order
to improve themselves as the environment changes, resulting in
improved management decisions.

Keywords—On-chip Resource Management, Power Management,
Energy Efficiency, Thermal Management, Machine Learning, Re-
inforcement Learning, Neural Networks, Multi-core Systems

I. INTRODUCTION

H IGH power densities and temperatures on many-core
systems are the result of ever-increasing transistor inte-

gration coupled with the observed limits on voltage scaling for
next-generation technology nodes, which are the causes behind
the emerging dark silicon problem [1]. Particularly, if we wish
to keep cooling costs constant (by using a common cooling
solution for several scaling generations) without violating the
chip’s thermal constraints, it is no longer possible to simultane-
ously activate all the cores on a chip at the nominal operating
levels [1], [2], [3], [4]. When unattended, this issue might lead
to temperature hot spots, that in turn may cause non-uniform
aging, accelerate chip failure, impair reliability, and reduce the
performance of the system. Therefore, given that this effect

Santiago Pagani is currently with ARM Ltd., Cambridge, UK, and was with
the Chair for Embedded Systems (CES), Karlsruhe Institute of Technology
(KIT), Karlsruhe, Germany. E-mail: santiago.pagani@arm.com

Sai Manoj P D is associated with Department of Electrical and
Computer Engineering, George Mason University, Fairfax, USA. Email:
saimanoj.p.2013@ieee.org

Jörg Henkel is with the Chair for Embedded Systems (CES), Karlsruhe
Institute of Technology (KIT), Karlsruhe, Germany. E-mail: henkel@kit.edu

Axel Jantsch is with the System-on-Chip group, Institute of Computer
Technology, Vienna University of Technology, Vienna, Austria. E-mail:
axel.jantsch@tuwien.ac.at

can slow down the current performance gain trends between
scaling generations, it challenges the viability of further cost-
effective technology scaling [5]. Due of these reasons, effective
power/thermal management techniques are now more relevant,
especially for performance optimization, as they intend to
avoid chips from possible overheating while not incurring in
high cooling costs, thus promising to maintain technology
scaling trends feasible. Moreover, to prolong battery lifetime
of embedded systems or to cut power bills of servers, energy
management for minimizing overall energy consumption while
satisfying performance (or real-time) constraints is another
relevant (almost dual) problem.

In addition to the traditional prediction techniques, ma-
chine learning (ML) based predictors such as Bayesian learn-
ing [6], [7], [8], neural networks [9], reinforcement learn-
ing [10], [11], [12], [13], [14], [15], [16] and regression
analysis [17], [18], [19], [20], [21] are also widely em-
ployed for prediction and to perform DVFS. The ML based
power/performance/temperature management adds the benefit
of learning the characteristics or trends of workloads in order
to take control decisions.

In this paper, we present an overview of several research
efforts that propose to use machine learning techniques for
power (or energy) and thermal management on single-core or
multicore processors. Traditional power and thermal manage-
ment techniques generally rely on a certain a-priori knowl-
edge of the chip’s thermal model, as well as information
of the workloads/applications to be executed (e.g., transient
and average power consumption). Nevertheless, these a-priori
information is not always available, and even if it is, it cannot
reflect the spatial and temporal uncertainties and variations
that come from the environment, the hardware, the input
data, or from the workloads/applications. The system level
power/thermal manager should consider such uncertainty and
variability, while resource and power management techniques
that are statically optimized are unlikely to achieve the best
performance when these characteristics are changing [22],
[23]. Contrarily, techniques based on machine learning can
potentially adapt to varying system conditions and workloads,
learning from past events in order to improve themselves as
the environment changes, resulting in improved management
decisions. In other words, good power/thermal management
controllers should be able to observe, learn, and adapt to
different hardware and working environments [23]. Despite
machine learning being widely employed for different pur-
poses, some of the primary challenges in deploying machine
learning for power management can be outlined as follows: the

mailto:santiago.pagani@arm.com
mailto:saimanoj.p.2013@ieee.org
mailto:henkel@kit.edu
mailto:axel.jantsch@tuwien.ac.at


0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2878168, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

ACCEPTED IN IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS (TCAD), ON 29 JULY 2018 2

amount of data to be learned and processed can be of higher
dimension i.e., processing overheads, high accurate prediction
is needed in some cases, the hardware footprint (if deployed in
hardware layer), and the machine learner should have a smaller
response time. Furthermore, in some of the techniques such as
reinforcement learning (say Q-learning), convergence concerns
are non-trivial to be addressed.

Table I summarizes the state-of-the-art works discussed in
this paper. The works in [24], [25], [26], [6], [7], [27], [28],
[29], [30], [31], [23], [32], [33], [21], [34], and [35] focus on
single-core systems. The works in [15], [14], [36], [18], [37],
[38], [9], [39], [40], [41], [42], [43], [8], [44], [45], [46], and
[47] focus on homogeneous multi-core systems. Finally, [48]
and [16] focus on heterogeneous multi-core systems.

II. BACKGROUND

A. Optimization Goals and Constraints
Computational Performance: Computational performance

refers to how quickly a system can execute an application
or a given set of applications. An application’s performance
can be measured using multiple metrics such as execution
time, throughput, Instructions per Cycle (IPC), Instructions
per Second (IPS), speed-up factor (normalized to a known
reference), and so on. Overall system performance is the term
commonly used for an application set, which is a generic term
that can, e.g., refer to minimizing the longest execution time
among all the applications (i.e., the makespan) maximizing
the summation of the weighted throughput of all applications
(weights add some sort of priority to the applications), and so
on.

An application’s resulting performance will depend on how
the application is executed, e.g., the types of cores which the
application is executed on, the execution frequency of the
cores, in how many threads the application is parallelized,
the simultaneous usage of the shared resources by other
applications (such as caches, the Network-on-Chip (NoC)),
etc. An application’s individual characteristics (e.g., their level
of Instruction- Level Parallelism (ILP) or Thread-Level Paral-
lelism (TLP)) also play a main role in its final performance
and directly impact how this performance scales in regards
to execution frequency and the number of parallel threads.
Applications with a high ILP generally scale well with in-
creasing execution frequencies, while applications with high a
TLP generally scale well when they are parallelized in many
threads.

Overall system performance maximization is normally the
most commonly pursued optimization goal. Nonetheless, for
real-time applications, meeting their hard deadlines can be
formulated as satisfying performance requirements, and hence
performance is considered as a constraint in such cases.

Power and Energy Consumption: Power consumption
produces heat, and every core doing some computation con-
sumes power (unit Watt [W ]). Power consumption is an
instantaneous metric which changes over time. Specifically,
a certain application thread running on a specific core will
consume different amounts of power at different points in time.
Furthermore, the power consumption measured on a core at

a certain time also depends on several parameters, e.g., the
underlying architecture of the core, the technology node, the
voltage/frequency settings, the power mode of the core (e.g.,
active, idle, sleep), the temperature of the core at that point in
time, the current application phase being executed,

Contrarily, the integration of power over time is energy
consumption (units Joule [J ] or Watt second [Ws]). This
means that, if plotted, the energy consumed during a time
interval (e.g., an application instance) is equal to the area below
the power curve during that interval. Thus, when the power
consumption during a time interval remains constant, the
energy consumed during that interval can simply be computed
by multiplying the power by the duration of the time interval.

Overall energy consumption minimization under perfor-
mance/ timing constraints is a common optimization goal for
mobile systems that wish to prolong their battery lifetime. On
the other hand, power consumption itself is rarely optimized,
and thus power is generally viewed as a constraint, e.g., to
run the system under a certain power budget.

Temperature: As mentioned above, heat is generated when
a chip consumes power. Nevertheless, although for practical
purposes power consumption changes can be considered as in-
stantaneous, temperature changes do not occur instantaneously,
as there are thermal capacitances associated to all elements
in a chip. If enough time elapses without changes in power
(not something usually observable in computer systems), the
temperatures throughout the chip would eventually reach its
steady-states. The intermediate temperatures observable until
these steady-state temperatures are achieved are called tran-
sient temperatures.

Keeping the chip’s temperature under a certain thermal
threshold (or critical value) is of paramount importance, as
otherwise high temperatures may cause permanent failures in
a chip’s transistors. In order for this power and temperature to
be dissipated, chips are provided with a cooling solution (e.g.,
the coupling of the thermal paste, heat spreader, heat sink,
cooling fan, etc.). To aid designing the cooling solution for a
certain chip, the common industry practice is to provide the
Thermal Design Power (TDP) of a particular chip, defined as
“the highest expected sustainable power while running known
power intensive real applications” [49]. Hence, given that the
system should be able to safely consume TDP power, manu-
facturers normally recommend to design the cooling solution
to dissipate TDP, avoiding the cooling solution from being
over-dimensioned. However, since TDP is not the maximum
power that can be consumed, chips are also generally provided
with some sort of Dynamic Thermal Management (DTM)
technique. These DTM techniques are very commonly reactive
(i.e., triggered once the critical temperature is exceeded) and
can power-down cores, reduce their supply voltages and exe-
cution frequencies, gate their clocks, boost-up the fan speed,
etc. In other words, if the chip heats up above a critical value
(identified using thermal sensors distributed across the chip),
then DTM is triggered to reduce the temperature.

Thermal constraints are the biggest limiting factors for
maximizing performance, particularly in modern chips that
have very high power densities due to the dark silicon problem.



0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2878168, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

ACCEPTED IN IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS (TCAD), ON 29 JULY 2018 3

Optimize (G) / Constraint (C) Optimization Knobs Architecture Machine Learning Technique
Year Work - Perfor- Tempe- Task Single Homogeneous Heterogeneous Supervised Unsupervised Reinforcement

mance
Power Energy

rature Allocation
DPM DVFS

Core Multicore Multicore Learning Learning Learning
2016 [48] C G X X X TD(λ)-learning
2015 [15] G C X X Q-learning
2015 [14] G X X Q-learning
2015 [16] G C G/C X X X X Q-Learning
2015 [36] C G X X Clustering
2015 [24] C G X X TD(λ)-learning

2015 [18] C G/C X X
Rigid linear
regression

2015 [37] C G/C X X Q-learning
2014 [38] C G X X X Q-Learning
2014 [9] C G C X X X Neural Network Q-learning
2014 [25] C G X X TD(λ)-learning
2013 [26] C G C X X X Q-learning
2013 [6] C G X X Bayes classifier TD(λ)-learning
2013 [39] Least squares
2011 [40]

C G C X X
regression

2012 [7] G C X X Q-learning
Genetic k-means

2012 [41] G X X
algorithm clustering

2012 [27] G/C G/C G/C X X Q-learning
2011 [28] G/C G/C X X Bayes classifier TD(λ)-learning

k-means
2011 [29] G C X X

clustering
Q-learning

2011 [30] C G X X
Least squares

regression
2011 [42] G/C G/C X X X ad hoc

Least squares k-means
2010 [43] G C X X X

regression clustering
2010 [8] C G X X Bayes classifier

2010 [44] C G/C X X
Least squares

regression

2010 [45] C/G X X X
Observe-decide

act

2010 [31] C G X X
Least mean square

linear predictor
2009 [32] C G X X Q-learning
2009 [33] G G X X X ad hoc
2008 [46] G/C X X LWPR
2008 [47] G G/C X X X X ad hoc

2005 [21] C G X X
Least squares

regression

2002 [34] G/C G X X
Markov Decision

Process
Adaptive

1999 [35] G X X
learning tree

TABLE I: Summary of state-of-the-art works focusing on power, energy, and thermal management using machine learning
techniques. Works are ordered chronologically (from newest to oldest) and categorized according to their optimization goal
(marked as ‘G’), constraint (marked as ‘C’), optimization knobs, target architecture, and the used machine learning technique.

B. Optimization Knobs

Task-to-core Allocation: Due to the characteristics of dif-
ferent types of cores, the core type in which a thread is

executed affects its resulting execution time and power/energy
consumption. Nonetheless, the physical location in which a
thread is executed is also a non-trivial issue, as this impacts



0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2878168, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

ACCEPTED IN IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS (TCAD), ON 29 JULY 2018 4

the resulting temperature distribution throughout the chip (due
to the heat transfer among cores, which can potentially create
or avoid hot spots), as well as the execution time (due to
communication latencies among cores, simultaneous utilization
of shared resources, potential NoC link congestions, etc.).
Thus, task-to-core allocation refers to the decision making
process that determines to which specific core a thread is
mapped to, both in terms of type and physical location of
the core.

Dynamic Power Management (DPM): DPM refers to the
dynamic selection of the power states of individual cores.
Namely, cores can be individually set to execution/active mode,
or they can be individually set to some low-power mode
(e.g., idle/clock-gated, sleep, power-gated, etc.). The specific
low-power modes that are available depend on the chip, and
every different low-power mode has an associated power
consumption, as well as different latencies for transitioning
across power modes.

For DPM, an undesirable situation is when a core is put
to sleep only to be awakened immediately (e.g., when new
service requests arrive earlier than expected), such that the
system pays for the extra energy and latency of waking up the
core to process the new requests. Contrarily, if a core remains
idle and no service requests arrive in that period, then the core
wastes energy by not entering a low-power mode.

There are mainly three classes of DPM policies proposed in
the literature [35]. Fixed time-out policies shut down cores
after they have being idle longer than the fixed time-out.
Adaptive time-out policies are more efficient than their fixed
counterpart as they adapt the time-out value according to past
history. In contrast, predictive techniques do not wait for a
time-out to expire, and rather shut down cores as soon as they
become idle if the idle time is predicted to be long enough to
amortize the cost of shutting down and waking back up.

Dynamic Voltage and Frequency Scaling (DVFS): As
its name states, DVFS refers to the ability of dynamically
scaling the voltage and/or frequency of cores. The maximum
frequency at which a core can be stably executed is limited
by its supply voltage, where higher frequencies can be stably
achieved at higher voltages. As shown in [50], the relationship
between the supply voltage of a core and the maximum
frequency for stable execution can be modeled according to
Eq. (1),

fstable = k · (Vdd − Vth)
2

Vdd
(1)

where fstable is the maximum stable frequency for the core, Vdd
is the supply voltage, Vth is the threshold voltage for the given
technology, and k is an architecture-dependent fitting factor.
For a given Vdd, running at frequencies lower than fstable is
power/energy inefficient, and therefore generally avoided.

The granularity of voltage scaling and frequency scaling
varies across different chips [51]. For example, we could have:
• Global voltage and frequency scaling: All cores in the

chip share a common voltage and frequency.
• Global voltage scaling: All cores in the chip share a

common voltage, but individual cores can change their

frequencies independently.
• Voltage and frequency islands/clusters: Different groups

of cores share a common voltage and frequency.
• Voltage islands/clusters: Different groups of cores share

a common voltage, but individual cores can change their
frequencies independently.
• Per-core voltage and frequency scaling: The voltage and

frequency of all cores is selected individually.
Because of the quadratic relationship between power con-

sumption and voltage, having a system with a single global
supply voltage for all cores can be power/energy/thermal
inefficient. The cause of this inefficiency is that the voltage
of all the cores is then determined by the core that requires
the highest frequency, while other cores that might require
lower frequencies are also forced to run using a high voltage,
hence consuming more power/energy and producing more
heat than needed. Contrarily, to have an individual voltage
for each core is very power/energy/thermal efficient, as each
core could be supplied with the lowest stable voltage for
its required execution frequency. Nevertheless, it has been
suggested by VLSI circuit simulations [52] that it may be
costly for implementation as it can suffer from complicated
design problems. Thus, for multi-core and many-core systems,
cluster-based architectures with multiple voltage islands are a
promising compromise, as different clusters/islands can run at
different voltages at any point in time. For example, Intel’s
Single Chip Cloud Computer [53] clusters cores into groups
of eight cores that share a common voltage, while frequency
can be selected for every tile of two cores, resulting in up to
four different frequencies inside every cluster of eight cores.
Contrarily, in the Exynos 5 Octa (5422) processor [54], all
the cores inside every cluster share both their voltage and
frequency, and hence only frequency settings are exposed
to the operating system, while the voltage is automatically
selected according to the selected frequency.

C. Workloads

As different works employ different benchmarks de-
pending on the application or the need, we summa-
rize the most widely used applications for evaluating
power/performance/temperature management here. Depending
on the necessity the workloads are chosen i.e., to evaluate
data center level power management big-data benchmarks are
chosen, for evaluating commercial microprocessors general
purpose benchmarks are a better choice. Some of the widely
employed benchmarks are listed below: general purpose bench-
marks (memory intensive, I/O intensive, and CPU intensive)
are: SPLASH-2 [55], PARSEC [56], SPEC CPU-2006 [57],
SPEC CPU-2017 [58] big data benchmarks such as HiBench
[59], and BigdataBench [60].

D. Machine Learning
Supervised Learning: Supervised learning is the machine

learning operation of extrapolating a function from labeled
training data consisting on a set of training examples [61].



0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2878168, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

ACCEPTED IN IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS (TCAD), ON 29 JULY 2018 5

In supervised learning, every example is a pair composed by
an input object (typically a vector of inputs) and a desired
output value (also called the supervisory signal). A supervised
learning algorithm will analyze the training data and produce
an extrapolated function, which can be then used for mapping
new examples. For a given set of N training samples i.e., the
labeled data {(x1, y1), (x2, y2), ..., (xN , yN )} where xi repre-
sents the feature vector for i-th input sample correspondingly
labeled as yi (i.e., i-th class), the supervised learner derives
a model F , such that F (X) = Y or F : X → Y based on
the input X with corresponding labels as Y . In an optimal
scenario, the algorithm would be able to correctly determine
the class labels for unseen instances, which would require that
the learning algorithm generalizes from the training data to
unseen situations in a reasonable manner i.e., for a new input
x∗, the supervised learner uses the model F to determine the
corresponding output label y∗ (F (x∗) = y∗).

Some of the commonly used supervised learning techniques
for power, energy, and thermal management are, for example,
online naı̈ve Bayesian classifier (used in [8], [28], and [6]),
neural networks (used in [26] and [9]), least squares regression
(used in [43], [40], and [39]), genetic algorithms (used in
[41]), Locally Weighted Projection Regression (LWPR) (used
in [46]), and adaptive learning trees (used in [35]).

Unsupervised Learning: The main idea of unsupervised
learning is to extrapolate a function that describes a hidden
structure from unlabeled data (i.e., a categorization which is
not included in the list of observations because it cannot be
measured). Given that the examples which are given to the
learning algorithm are unlabeled, as opposed to supervised
learning, the accuracy of the learning process cannot be esti-
mated in any way. For a given unlabeled data {x1, x2, ..., xN}
comprising of N samples, the unsupervised learner attempts
to exploit the relationship among the inputs X so as to
derive association rules or define the boundaries/manifolds that
differentiates one set of data from other. Unsupervised learning
is generally used in clustering and association applications.
Despite the benefit of requiring no labels for data clustering
with unsupervised learning, the associated complexity of unsu-
pervised learning and the accuracy hampers the usage in many
real-world applications.

The most commonly used unsupervised learning technique
for power, energy, and thermal management is the k-means
clustering method (used in [43], [29], and [41]).

Reinforcement Learning: Reinforcement learning is a
type of machine learning technique that mimics one of the
most common learning styles in natural life, which is to
learn to achieve a goal by trial-and-error interaction with a
dynamic/uncertain environment [23], [32]. The interactions
between the learning agent and the environment are generally
modeled using a finite state space S (corresponding to envi-
ronment inputs), a set of available actions A (corresponding
to control/optimization knobs used by the agent), and a reward
function R : S×A→ R (used to decide which action to take
for a given state). The ultimate goal of reinforcement learning
is to figure out a policy π(s) = a, which chooses action a ∈ A
in each state s ∈ S (i.e., a mapping between the states and the

actions), to optimize a reward function (i.e., to maximize the
cumulative rewards over a potentially infinite time span).

Decision epochs are a sequence of points in time
{t0, t1, t2, . . . , tk, . . .} at which an action is chosen and a
state transition may appear. At time tk, when the system just
transitioned to state sk ∈ S, the agent selects an action ak ∈ A.
This action will lead to an instant reward rate r(sk,ak) (t) in
regards to state-action pair (sk, ak). In the next decision epoch
(i.e., at time tk+1), the system switches to state sk+1.

An important issue in reinforcement learning is exploration
vs. exploitation. A reinforcement learning agent must exploit
the best action known so far in order to gain rewards, while
exploring all possible actions such that it can find a potentially
better choice. The risk is thus always choosing the action with
the temporary highest reward, as this can lead to reaching a
local maximum and getting stuck in a sub-optimal solution.

The most commonly used reinforcement learning techniques
for power, energy, and thermal management are Q-learning
(used in [10], [62], [22], [63], [32], [29], [27], [7], [26], [9],
[12], [11], [38], [16], [14], [15], and [13]) and TD(λ)-learning
(used in [28], [6], [25], and [48]).

Q-learning: Q-learning is one of the most popular algo-
rithms used to perform reinforcement learning [23], [32], [64].
In Q-learning, a Q-value is associated to every state-action pair
(s, a), denoted as Q(s, a). The value of Q(s, a) approximates
the expected long-term cumulative reward of taking action a
starting from state s [7]. In this way, the agent decides which
action should be taken in current state in order to achieve
the maximum long-term rewards based on this value function
Q(s, a). Namely, at decision epoch tk when the system has just
transitioned to state sk ∈ S, the action ak with the highest Q-
value will be chosen. Furthermore, given that it is a model-free
learning algorithm, it is not necessary for the Q-learning agent
to have any prior system information, such as the transition
probability from one state to another. Therefore, it is a highly
adaptive and flexible algorithm.

The fundamental aspect of the Q-learning algorithm is a
value iteration update of the Q-value function. Particularly,
the Q-value for each state-action pair is initially chosen by
the designer. However, these values are updated every time an
action is issued and a reward is received. That is, at decision
epoch tk+1, the Q-value Q (sk, ak) is updated according to the
received reward as shown in the following expression:

Q(sk, ak)← Q(sk, ak)︸ ︷︷ ︸
old value

+

βk(sk, ak)︸ ︷︷ ︸
learning rate

·


expected discounted reward︷ ︸︸ ︷

rk+1︸︷︷︸
reward

+ γ︸︷︷︸
discount factor

·max
a∈A

Q(sk+1, a)︸ ︷︷ ︸
max future value

−
old value︷ ︸︸ ︷

Q(sk, ak)


(2)

where rk+1 is the reward measured at time tk+1 for having
taken action ak at time tk, value γ ∈ (0, 1) is the discount
factor, and βk(sk, ak) ∈ (0, 1) is the learning rate at time tk
for state-action pair (sk, ak) (which may or may not be equal
for all pairs, and which may be constant or variable in time).
The next time state s is visited, the action with the maximum



0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2878168, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

ACCEPTED IN IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS (TCAD), ON 29 JULY 2018 6

Q-value will be chosen, i.e., π(s) = maxa∈AQ(s, a), and
given that the Q-value was updated, it might be a different
action than the one taken the last time state s was visited.

TD(λ)-learning: In some of the realtime resource and power
management problems, the system may not have predefined
policy or knowledge regarding the state transitions. In such
cases, the system has to learn the policy as well as make
the decision in parallel. The TD(λ)-learning methods can be
applied to learn the policy and perform the decision making.

For every state sk visited at epoch tk, the TD(λ) algo-
rithm chooses an action either with a maximum Q-value, i.e.,
maxa∈AQ(sk, a) for different possible actions a, or by using
the semi-greedy policies given in [65]. The estimated Q-value
is updated in the next epoch based on the action chosen ak and
the next state sk+1. The Q-value update is similar to that of
traditional Q-learning algorithm, but with different estimated
Q-value and error terms, particularly,

∀(s, a) ∈ S×A : Q(s, a)← Q(s, a) + β · εk(s, a)·[
1− e−γτk

γ
r(sk, ak) + e−γτk max

a′∈A
Q(sk+1, a

′)−Q(sk, ak)

]
where the amount of time that system remains in state sk is
given by τk = tk+1 − tk, β ∈ (0, 1) is the learning rate,
1−e−γτk

γ r(sk, ak) is the sample discounted reward received
in τk time units, and Q(sk+1, a

′) is the estimated value of
the state-action pair (sk+1, a

′) with sk+1 being the next state.
The term εk(s, a) represents the eligibility for each state-action
pair, updated as

εk(s, a) = λ · e−γτk−1 · εk−1(s, a) + δ((s, a), (sk, ak))

where δ((s, a), (sk, ak)) is the delta-kronecker function.
Discussion: The complexity, and processing overheads of

different ML techniques not just depends on the class but also
on the underlying principle of the ML techniques. In general
terms of complexity at high-level, the order with increasing
complexity is supervised, reinforcement, and unsupervised
learning. However, there can be some techniques such as neural
networks in supervised learning which have higher complexity
compared to unsupervised learning such as k-means clustering,
and so on. As such, depending on the size of the input
features, and the control knobs the learning technique has
to be chosen. The supervised machine learning approaches
are widely employed when there exists a labeled data i.e.,
input-output mapping is available. This is of great help when
the applications or data that will be executed are known
in-advance or specified such as accelerators or application-
specific processing units. This has lower complexity compared
to unsupervised learning. However, the unsupervised learning
can be deployed for resource management when there exists
no explicit input-output mapping. In case of reinforcement
learning, this has a complexity in between supervised and
unsupervised, and highly suitable when the system has to
learn from its experience or deployed in unseen environments.
However, the convergence issues might arise in reinforcement
learning, which has to be addressed as performed in some of
the works such as [23], [26], [32].

Till now a glimpse of different machine learning tech-
niques, optimization goals and constraints are presented and
an overview is outlined in Table I. Before presenting dif-
ferent works, we outline the general framework details as
follows: most of the works that focus on DVFS/DPM consider
the workload characteristics, and the resource consumption
(power, energy, temperature, or idle time of the processor)
as the main inputs and the temperature, throughput or other
relevant metrics as the constraints and goals. In most of the
works, the input data is captured via application or OS layers
and the DVFS/DPM control is performed at OS (such as
using the task-to-core allocation, scheduling) or at hardware
layers (VF changes or low power mode). Furthermore, the
employed machine learning techniques are widely deployed
in application or OS layer and the control (action) is either
performed at OS or hardware layers.

III. TECHNIQUES FOR SINGLE-CORE SYSTEMS

A. Energy/Power Minimization under Performance Con-
straints

In [35], authors propose a DPM technique for an arbitrary
number of sleep states that shuts down idle components
based on idle period clustering and adaptive learning trees.
Specifically, authors propose to use a learning tree to accurately
predict the duration of future idle periods by observing idle
periods in the recent past. The proposed approach has some
analogy with advanced branch prediction schemes that are
widely used in computer architectures to reduce the penalty
of mis-predicted branches. Moreover, based on the expected
duration of the next idle period and while accounting for the
transition time between sleep states, authors derive a function
that selects the optimal sleep state in which to set the core in
order to reduce the energy consumption. For example, if the
future idle period is very short, then the core remains idle,
as going to a sleep state would not be energy/time efficient.
Contrarily, if the future sleep state is very long, then the core
can enter the deepest sleep state.

In [23], [32] authors propose a DPM technique for an arbi-
trary number of sleep states that minimizes the average power
consumption under a given performance constraint which can
change during runtime. The technique is based on enhancing
the traditional Q-learning algorithm. Specifically, authors pro-
pose a modified cost function by defining a Lagrangian cost
when taking action a from state s, that accounts for the power
consumption and latency caused by the action. Furthermore, in
order to improve the search speed of the Q-learning algorithm,
the technique only searches policies whose actions are not
decreasing with respect to the number of waiting requests.
Finally, authors propose a linear adaption of the Lagrangian
multiplier to search for the policy that minimizes the power
consumption while delivering the exact required performance.
Namely, increasing the Lagrangian multiplier will monotoni-
cally increase the performance and power consumption, but the
exact relationship between the Lagrangian and the performance
cannot be quantified in advance. Thus, for a given performance
constraint, authors present an iterative algorithm that adapts the
Lagrangian multiplier to the most suitable value.



0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2878168, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

ACCEPTED IN IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS (TCAD), ON 29 JULY 2018 7

In [6], authors presented an online hierarchical DPM frame-
work with application-level scheduling for an embedded sys-
tem composed of a core and a connected I/O device. The
main goal is to minimize the average power consumption
and find a good power-latency tradeoff for the connected
I/O device, where the tradeoff of each type of application is
controlled by a user-defined parameter. In order to address the
complexity converns, the proposed technique consists of two
layers: a reinforcement learning-based component-level local
power manager (LPM) and a system-level global power man-
ager (GPM). The LPM employs a TD(λ)-learning algorithm
enhanced from the technique presented in [28] (discussed in
Section III-C) by improving the state-action spaces and making
improvements for handling multiple types of user applications.
Specifically, a more general power management framework is
used, in which each type of application may have its own
performance degradation constraint, defined as the constraint
on the average latency per request of that specific type of
application. Therefore, unlike [28], this DPM framework can
minimize the average component power consumption for each
type of application, while satisfying the application’s perfor-
mance degradation constraint. The cost rate in the TD(λ)-
learning algorithm is a linearly-weighted combination of power
consumption and the number of buffered requests in the service
queue. Also as done in [28], authors incorporate workload
prediction based on an online naı̈ve Bayesian classifier in
order to provide partial information about the service request
state for the LPM. In regards to the second layer, the GPM
acts as a central controller that tries to meet a performance
constraint for the component while minimizing the component
power consumption. Particularly, the GPM interacts with the
CPU scheduler to perform application-level scheduling, thus
enabling the LPM to achieve more component power optimiza-
tions. The fairness issue related to distributing execution times
among different applications is also handled by the GPM.

The work in [24] presents a technique with the same
architecture as in [6]. The LPM policy is pre-specified and
fixed, and it is provided with the timeout policies to perform
state transitions. When a task or workload is idle for more than
the timeout period, it is moved into idle or sleep state. Based
on the present state, the reward and actions are estimated.
The GPM learns based on the temporal differences on Semi-
Markov Decision Process (SMDP). The GPM, although at
a higher level, cannot overwrite the decisions of the LPM.
To perform overwriting, a service flow control (SFC) that
commands the scheduler is embedded into the architecture.
The GPM monitors the service requests in the queue, employs
TD(λ)-learning, and guides the SFC. In order to perform the
policy learning, authors employ a cost function based on the
considered action in TD(λ)-learning, the power consumption,
and the delay in servicing the requests.

In [26], authors extend the work in [27] (discussed in
Section III-C) by adding a Q-learning DPM technique for
peripheral devices (that processes the I/O requests generated by
software applications), as the algorithm from [27] only focuses
on the core and not the peripherals. Namely, two separate Q-
learning algorithm are proposed, one used to select the DPM
state of the peripheral devices (where its workload is captured

by the distribution of idle intervals and the request generation
rate), and another (the one from [27]) used to select the DVFS
level of the core. Similar to [27] in constrained mode, the goal
of this work is to minimize the energy consumption under
performance and temperature constraints. For the Q-learning
algorithm used to manage the peripheral devices, in order to
find the best trade-off between power and performance, authors
define a Lagrangian cost for each state-action pair (s, a) that
combines power consumption and performance penalty (i.e.,
the number of waiting request of current state). Therefore,
the Q-value of state-action pair (s, a) reflects the expected
average power and request delay caused by the action a taken
in state s. Moreover, in order to speed up convergence, authors
propose to update more than one Q-value at every decision
epoch. These state-action pairs are denoted as virtual state-
action pairs, as we assume that the system virtually visits
them and updates their Q-values accordingly, although these
state-action pairs are not currently being visited. Furthermore,
compared to the traditional Q-learning, authors further improve
the convergence speed of the proposed Q-learning algorithm
by adopting a variable learning rate for every state-action pair
(s, a). Hence, the learning rate for state-action pair (s, a) is
inversely proportional to the number of times that the state-
action pair (s, a) has been visited. Finally, a 2-level control
unit tunes the value of the Lagrangian in order to keep the
system aligning to the given constraint. In the first level, a
neural network based coarse grained controller is used to set
the upper and lower bounds of the Lagrangian based on the
long term average workload. In the second level, there is a
feedback controller that fine tunes the value of the Lagrangian
based on the instantaneous workload variations.

For energy or power optimization under the constraints of
the performance in single-core systems, the existing techniques
ensure that the minimal performance criteria is met either by
performing task scheduling, or dynamic power management
(setting the system to low-power or sleep-states) based on
predicted idle time or the idle time window. The major advan-
tage is that the design of power management unit is simpler.
This kind of methodology suffers a drawback when the idle
times are too small or the employed idle time predictions
are inaccurate. Additionally, the task scheduling though is an
effective methodology adds overhead at the middle-ware layers
resulting in additional delays.

B. Performance Maximization under Temperature or Energy
Constraints

The work in [29] presents a DTM technique based on Q-
learning in order to minimize the execution time of multimedia
applications under a thermal constraint. Given that most mul-
timedia applications are naturally arranged into frames and the
computation load of processing each frame has high temporal
correlation, the environment observation and policy adaptation
is performed at a single frame granularity. The technique
learns the temperature change and workload switching patterns
by observing the thermal sensor and event counters of the
processor, finding a management policy that provides good
performance-thermal tradeoff during runtime. Particularly, we



0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2878168, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

ACCEPTED IN IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS (TCAD), ON 29 JULY 2018 8

consider the DTM controller as a learning agent and model
the rest of the system (e.g., the temperature, the hardware and
application status) as the environment. Through Q-learning,
at every decision epoch the agent observes the current state
of the environment and chooses the voltage/frequency level
for the next frame according to the Q-values in the Q-table.
After switching to a new frequency, the agent observes the
environment and estimates the reward caused by this action,
learning from this experience and attempting to improve its
future action selection in order to maximize the reward. Since
the temperature of the core is a continuous variable within
a working range, authors discretize it to get a finite set of
states. The region near the thermal constraint is divided in
a fine granularity and the other region is divided in a coarse
granularity, such that the agent can take better control at a finer
resolution when the temperature is approaching the threshold.
For the performance counters, in order to classify the space of
the event counter readings, authors use the k-means clustering
method starting from a small number and gradually increasing
it until the classification error is less than 5%.

The work in [7] presents a model-free reinforcement learn-
ing technique for an adaptive DPM framework in systems
with a hybrid power supply comprised of Li-ion batteries and
supercapacitors. Here, the focus is to minimize the weighted
average of system delay and energy consumption, while the
voltage of the supercapacitor remains within a given range.
Given that the charges of both the battery and supercapacitor
are sampled at regular intervals regardless of system events,
discrete-time Q-learning is used for the power supply manager.
Contrarily, since the device power manager operates in an
event-driven manner with events coming at arbitrary times,
continuous-time Q-learning is used for the device power man-
ager. To deal with the fluctuating part of the load current
demand, authors first focus on integrating supercapacitors with
a battery pack such that they can reduce the battery energy
loss caused by rate capacity effect. Secondly, authors formulate
and solve a joint optimization problem for the hybrid power
supply and load device. The supply power manager is provided
with the load component state (i.e., the status of the battery
bank, the status of the supercapacitor bank, and the load
power demand), and it controls the power supply network by
adjusting the output setups of the converters in an attempt to
minimize the energy loss during a time interval. The energy
loss is computed by subtracting the load energy consumption
and the supercapacitor energy increase from the total energy
drawn from the battery. The device power manager collects
information from both the load component and the power
supply, and it attempts to minimize the weighted average of
system delay and energy consumption, where the energy-delay
tradeoff is controlled by two user-defined parameters. The
device power manager makes two types of decisions. First,
every time the core transitions from active to idle state, it
decides whether to go to sleep immediately or set a timeout.
If a timeout is set and no requests arrive during this period,
the core will subsequently be put to sleep. Second, while the
core is sleeping, the device power manager decides whether
or not to wake it up based on the number of waiting requests
in the queue. The two power managers communicate with

each other to exchange information: the device power manager
provides the supply power manager with the current power
consumption of the core, while the supply power manager
provides the device power manager with the current status of
the supercapacitor.

As the performance of system depends on how fast the
application is executed, the performance maximization ap-
proaches enforce stringent constraints on the runtime i.e.,
minimize the execution time or avoid missing the deadlines
for the applications. In case of the single-core systems, as
there exists only one core, performing DVFS or DTM is more
of a centralized power or thermal management to ensure that
no power or thermal budgets are crossed (for core power
management).

C. Simultaneous Performance, Power/Energy, and Tempera-
ture Management

In [33], authors propose an online learning algorithm to
perform DPM and DVFS. Based on a user-defined constant,
their algorithm can minimize energy consumption, maximize
the performance, or achieve a compromise between both. Both
DPM and DVFS problems, a set of experts is maintained and
the learning algorithm is responsible of selecting the expert
that has the best chance to perform well based on the cur-
rent workload characterization. For DPM, the characterization
focuses on the duration of idle periods, while for DVFS, it
focuses on the CPU/memory intensiveness of the executing
task. Particularly, there is a weight vector associated to every
task, where the value of every weight factor reflects the
performance of an expert. At any point in time and according
to the current workload, the best-performing expert has the
highest probability factor (obtained by normalizing the weight
vector) among all the experts. Hence, the controller simply
selects the expert with the highest probability factor as the
operational expert for the next control period. After the control
period ends, the controller evaluates all the experts and updates
the weight factors depending on how suitable an expert would
have been for the previous control period.

The work in [28] presents an online adaptive DPM technique
based on model-free reinforcement learning, where the tradeoff
between power consumption and latency can be controlled
by a user-defined parameter. The proposed approach can
perform learning and power management in a continuous-
time and event-driven manner. Specifically, the proposed DPM
technique is based on an enhanced TD(λ)-learning algorithm
for SMDP in order to accelerate convergence and alleviate the
reliance on the Markovian property. When the core is in the
idle state, the available actions are a finite set of timeout values,
and the power manager has to learn the best timeout value by
using the TD(λ)-learning algorithm. When the core is in the
sleep state, authors propose to use the N-policy, such that the
core is turned back to the active state in case the number of
waiting requests in the service queue is more than a specified
value denoted as N . Otherwise, the core remains in the sleep
state new requests arrive. The action set can be denoted as a
finite set of integers corresponding to the different specified N
values. The power manager thus learns the best threshold N



0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2878168, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

ACCEPTED IN IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS (TCAD), ON 29 JULY 2018 9

value of waiting request by using a TD(λ)-learning N-policy.
In order to provide estimates of the request inter-arrival times
(i.e., future idle periods) to the DPM agent, authors also present
a workload predictor based on an online naı̈ve Bayes classifier.

The work in [25] compares the technique presented in [28]
(without using the workload classifier) with a traditional Q-
learning approach, both in terms of performance and con-
vergence speed. The experimental results suggest that TD(λ)-
learning can achieve better power savings without sacrificing
latency and that it has faster convergence speed compared to
Q-learning.

In [27], authors presented a Q-learning algorithm for simul-
taneous management of temperature, performance, and energy
using DVFS. The technique has two working modes, free
mode and constrained mode, where the difference between the
two modes is in the calculation of the cost function of each
state-action pair. In free mode, the controller is designed for
exploring the tradeoffs among temperature, performance, and
energy based on user-defined constants, and the Q-learning
algorithm selects the voltage/frequency level to achieve the
required balance. In constrained mode, the controller can set
one or two parameters as constraints while optimizing the third
one (e.g., minimize energy consumption under performance
and temperature constraints), and the Q-learning algorithm will
select the voltage/frequency level accordingly by searching
for policies that minimize the objective penalty. In regards
to the state space of the Q-learning algorithm, temperature,
IPS, and core utilization are discretized, such that the en-
vironment state space is a vector with four components:
frequency, temperature, IPS, and core utilization. IPS and core
utilization are jointly used to estimate power consumption.
The temperature penalty is calculated based on temperature
changes, not on absolute temperature values. Therefore, in case
the temperature constraint is violated, the action leading to
reducing the temperature will result in a negative penalty in
order to reinforce the corresponding action.

Simultaneous power, temperature and performance manage-
ment adds relatively higher complexity in terms of implemen-
tation due to larger search and optimization spaces. This not
only leads in additional area overhead, but as well processing
overheads. As seen from the existing works, many of the
works try to make one of the metrics constant and try to
optimize the others. This aids in optimizing the search space
and reduce the computational delays. Furthermore, the works
suggest employing a controller which is an integration multiple
objective solvers is a viable solution.

IV. TECHNIQUES FOR HOMOGENEOUS MULTI-CORES

A. Energy Minimization under Performance and Temperature
Constraints

The work in [8] presents a supervised learning based power
management framework for energy minimization on a multi-
core chip with per-core DVFS. Particularly, the power manager
uses a probability based learner (i.e., Bayesian classifier) to
predict the performance state of the processor for each incom-
ing task by inspecting some readily available input features
(such as the occupancy state of a global service queue), and

then uses this predicted state to look up the optimal power
management action (i.e., select the voltage/frequency settings
of the cores) from a pre-computed policy table. The motivation
for using a Bayesian classifier is to reduce the overhead of
the power manager that has to repetitively select the volt-
age/frequency settings of every core. The proposed technique
is composed of three parts: extraction, classification, and policy
generation. Essentially, authors aim to use supervised learning
in order to enable the automatic discovery of the relations
between input features and output measures, and to predict
the power consumption of the cores and execution time of
every task by using the classification. In more detail, the first
step is the input features and output measures extraction phase,
where system knowledge is required in order to produce well-
prepared training sets. During the process of feature extraction,
the power manager gathers input features such as the type
of tasks (e.g., high-priority or low-priority), the state of the
service queue, and the arrival rate of tasks (which affect the
performance of the cores). Furthermore, the manager observes
the power consumption of the cores and the execution time
of the tasks as the output measures. Having obtained the
training set, the second step is the classification phase, that
uses supervised learning to train a classifier. The goal here is to
predict the most likely class label of the output features given
the input features, where the class of each output measure is
as a pre-defined range. The third step is the discriminative
Bayesian classifier, whose key advantage is the ability to deal
with missing information during the classification phase (i.e.,
missing input features that are relevant to the identification
of output features). For example, cache miss statistics and
branch misprediction rates, which affect the performance of the
cores, are considered missing input features during practical
implementation of the proposed technique. Finally, the main
goal of the power manager is to derive a DVFS policy
for selecting the voltage/frequency levels of the cores that
minimize the overall energy consumption based on the load
conditions and workload characteristics.

The works in [39], [40] present a distributed thermal man-
agement solution based on model predictive control and self-
calibration in order to minimize energy under performance and
temperature constraints. Particularly, according to the incoming
task workload characteristics, every core first takes as input the
predicted CPI value of the running task for the following time
interval and selects the minimum voltage/frequency level (that
minimizes the power consumption of the core) while meeting
the performance constraints. Secondly, when required, every
core trims the previously selected voltage/frequency in order
to ensure a safe working temperature. Individual cores jointly
optimize global system operation by exchanging a limited
amount of information (temperature in particular) at runtime
with the neighboring cores. Thirdly, the proposed technique
addresses model uncertainty by self-calibration through offline
supervised learning (e.g., by running the self-calibration rou-
tine during start-up phase and each time the model behavior
differs from the measured), where every core learns the local
thermal model by applying a set of training stimuli and
monitoring the thermal response of the neighboring cores.
Specifically, every core implements an ARX (Auto-Regressive



0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2878168, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

ACCEPTED IN IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS (TCAD), ON 29 JULY 2018 10

eXogenous) model that has a single output (the temperature
of the core) and multiple inputs (the power consumption on
the core, the ambient temperature, and the temperatures of
neighboring cores). The self-calibration routine first forces
a Pseudo-Random Binary Sequence (PRBS) power input to
every core, while probing the temperature of the cores. Then
it derives the model’s parameters by solving a least square
problem that minimizes the error.

In [9], authors presents a DPM and task allocation frame-
work based on Q-learning in order to achieve a good tradeoff
between performance and power consumption, while also
maintaining the system under a temperature constraint. The
impact of temperature on leakage power consumption is con-
sidered by integrating the temperatures of the cores into the
framework, thus achieving better energy savings. Particularly,
in order to achieve a trade-off between power and performance,
similar to as done in [23], [26], [32], the reward function used
in the Q-learning model includes a Lagrange multiplier that
allows the power consumption of state-action pair (s, a) to
be added to the result of multiplying the Lagrange multiplier
and the response time of pair (s, a). If the value of the
Lagrange multiplier is changed, the weights of average power
and response time in the reward function are adjusted to satisfy
the system demand, where a larger Lagrange multiplier means
that the response time is more important. Due to the large
design space, which increases exponentially with respect to the
number of cores, authors propose to use a back propagation
neural network to approximate the Q-function in order to
improve the convergence speed of learning process. As a
whole, this neural network describes a nonlinear mapping,
where the state-action pairs are the inputs and the output is the
Q-value corresponding to a given state-action pair. At every
decision epoch, the parameters of the network are updated
in a gradient manner with the help of the back-propagation
algorithm, such that the errors propagate backwardly from the
output nodes to the inner nodes in order to adjust the network’s
weights. Moreover, to avoid local maximums which can occur
when the Q-learning algorithm always takes the action with
the highest Q-value for a given state without exploring new
actions, authors employ a ε-greedy method for action selection.
This greedy method allows the learning agent to reinforce
the evaluation of the actions known to be good, while also
exploring unknown actions in an attempt at avoiding local
maximums. In this way, authors give the action that has the
highest Q-value a high selected probability of (1 − ε), and
all the other actions equally share the remaining probability
ε. Hence, considering for example ε = 10%, there is a
10% probability to select another action instead of the action
with the highest Q-value, hopefully avoiding local maximums.
Furthermore, in case that the current temperature of the core
selected to execute a task is higher than the temperature con-
straint, this action is ignored and the algorithm tries to select
another action from the remaining cores by again using the
ε-greedy concept. Finally, when the number of cores in a chip
is large, authors propose to classify cores with similar states
(e.g., with similar power, queue utilization, and temperature)
into groups, change the action of the neural network from task-
to-core allocation to task-to-group allocation, and then finally

choose a core in the selected group hierarchically.
One more reinforcement learning based approach for per-

forming power management is adopted in [37]. Here, dur-
ing voltage and frequency scaling, the framework considers
workload execution characteristics, processor configurations,
and available DVFS techniques. To avoid the overheads of
scaling, the controller firstly determines the hyper periods for
different tasks, i.e., least common factor (LCM) of periods
among different tasks. This aids in finding the lower bound to
run the set of applications. When an event occurs according to
the scheduling policy, the system invokes the DVFS controller
to determine the voltage and frequency settings. Based on
the power consumption, state, and action pairs, the penalty is
determined and the values are updated. In order to determine
the lowest frequency, the parameters are provided to a Q-
learning algorithm. If the hyper period exists, the controller
calculates the energy consumed and the penalty for the utilized
DVFS settings in the previous hyper period to choose the
DVFS settings for the current hyper period. However, when
there exists no hyper period, then the system determines the
frequency simply based on the previously employed DVFS
settings.

Similarly, a per-core power management with the aid of
modular reinforcement learning (MRL) is proposed in [62]. In
this work, reinforcement learning is employed by considering
the inter- and intra-state of the adjacent cores for a better power
management. Due to smaller dimensionality, the convergence
concern can be reduced. Furthermore, this method achieves
a lower computational complexity as the data considered is
smaller in dimension. However, employing per-core power
management can incur large overhead. In [22], Q-learning
based approach considering the performance variation along
with the workload variations across different applications i.e.,
inter- and intra-workload variations and performance varia-
tions are utilized to perform power management. In contrast
to most of the works where the workload variations are
primarily considered, this work addresses the challenge of
non-consideration of performance variations across different
applications. In contrast to power management with on-chip
power manager, a cloud-based power management for smart
devices that are connected to internet is proposed in [63]. The
learning of data for multiple devices with same learning model
are communicated to cloud via lightweight communication.
This is highly attractive for IoT devices, but with increasing
in heterogeneity and if the data to be transmitted increases,
the communication overhead can be high. Furthermore, use of
cloud resources might be costlier in some cases.

A rigid linear regression with learning based modeling and
DVFS execution is proposed in [18]. The model of the system
is built during runtime based on the sensed values. Firstly, the
operating frequencies are varied and different measurements
such as latency and current are read from the sensors. These
values are averaged over time and used further to test the
hypothesis of the model. Once the model converges or the
testing period is completed, the model is updated and stabi-
lized. Here, the rigid linear regression is used to build and
update the model. Primarily, output current and latency are
the two variables whose models are built to perform DVFS.



0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2878168, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

ACCEPTED IN IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS (TCAD), ON 29 JULY 2018 11

Once the models are built, the models are updated based on
the detected variations in the workload characteristics. Lastly,
a gradient-descent search in the optimization space is utilized
to predict the desired voltage frequency settings. Based on
the determined settings, the workloads are provided with the
corresponding voltage and frequency settings. This work is
light weighted and has a linear computational complexity.
However, the effectiveness of the methodology depends on
the accuracy of the regression model. Furthermore, when the
model does not converge the accuracy of the model is affected.

A simple yet efficient technique considering the hardware
characteristics of the voltage regulators (VRs) is proposed in
[36]. Contrary to other works, this work considers the peak
efficiency and energy saving of the VRs are considered as
constraints to perform DVFS. Based on the demanded voltage
levels of the cores, they are clustered. Based on the driving
capability of the VRs and their peak efficiency characteristics,
the VRs are assigned to the cluster. In this work, the clustering
is performed under the constraints of energy saving and peak
efficiency of the VRs. The proposed technique is effective
in terms of hardware implementation with less computational
complexity. However, monitoring and adapting the character-
istics of the VRs to reflect the real-time scenario is pivotal.

The energy minimization techniques in multi-core systems
have higher computational complexity due to larger feature
space and more control knobs for energy optimization. The
techniques such as using hierarchical, and agent based tech-
niques reduce the complexity are recommended, however
the number of agents required and high-level optimization
might be complex. Furthermore, when using computationally
expensive techniques like Q-learning one or other kind of op-
timizations are recommended to ensure that the convergence is
achieved. Use of low complex and lightweight ML techniques
are encouraged.

B. Performance Maximization under Power or Temperature
Constraints

The work in [47] presents an online thermal management
technique to maximize performance and reduce thermal cycles
and thermal gradients under a temperature constraint, based on
expert and specialist policies selected by using a reinforcement
learning algorithm. An expert policy applies a certain power
management technique (e.g., DPM, DVFS, thread migration,
etc.) in oder to optimize the desired goal. A specialist is a
higher level policy that selects a particular expert to run during
the next control interval. For example, a specialist policy
could simply decide to use one expert policy the entire time
(e.g., a standard reactive DTM technique based on DVFS) or
it may choose to use different experts at given time points
according to certain conditions (e.g., we could have a core
utilization based specialist that uses thread migration when
there is high utilization on a core, DVFS when there is medium
utilization, and DPM when there is low utilization). In the
proposed technique, only one of the expert policy is active at
any given time. The decision to switch to another expert (or to
continue using the current expert) is performed at every control
interval by the specialist currently responsible for making
decisions. After every time interval, the reinforcement learning

algorithm computes a multivariate loss function that provides
feedback on the temperature profile and the performance cost.
Particularly, for the selection of a specialist policy, weight
vectors are maintained for the specialists, and these vectors
get updated at every time interval based on the observed
loss, where the loss is a non-negative value representing how
well a specialist performs in terms of the given objective.
Moreover, in order to reduce complexity, at every iteration,
only the weights of the specialists that are associated with
the active ground expert are updated. For example, if the
active expert policy for the last time interval was DPM, the
learning algorithm only updates the weights of the specialists
that would have selected DPM during that interval. Finally, at
every decision epoch, the specialist with the highest weight
factor is simply selected by the learning algorithm.

The work in [43] presents a thermal prediction methodology
and a simple runtime DTM technique for performance max-
imization under a thermal constraint. The thermal prediction
method is characterized entirely at design-time and the runtime
overheads amount to table lookups and a few arithmetic
operations. The method takes raw performance counter data
(periodically measured for each core during workload opera-
tion) and thermal measurements for each core, and translates
this data into a temperature projection for a future time interval
by using the concept of global workload phases. A phase
is a stage of execution in which a workload exhibits near
identical power, temperature, and performance characteris-
tics (i.e., a workload phase is not identified by individual
applications). Furthermore, the methodology uses Principal
Component Analysis (PCA) to reduce the computational effort
by transforming a number of correlated variables into a smaller
number of uncorrelated variables (or principal components)
while retaining most of the original information. Within the
d-dimensional space defined by the principal component axes,
the method uses k-means clustering to define the global phase
locations that most closely approximate the n observations in
the representative workload data (i.e., it finds a partition of the
n observations into k < n sets). The predictive thermal model
is then learned using least squares regression on the phase
designations calculated for representative workloads gathered
at every operating frequency. The DTM technique uses the
thermal prediction to estimate the future temperatures and
set the voltage/frequency levels of the cores to the maximum
values for which the maximum predicted temperature remains
below the thermal constraint.

The work in [42] presents a hierarchical power budget-
ing trading technique that uses task allocation/migration and
DVFS. The goal is to distribute the temperatures throughout
the chip as evenly as possible in order to reduce the chip’s
peak temperature (such that it can be maintained below a
thermal constraint), while maximizing the performance of best
effort tasks and meeting the timing constraints of real-time
tasks. The technique incorporates a back propagation economic
learning algorithm to improve trading decisions and perform
simple thermal management based on a classification of the
system’s thermal state. The technique is implemented through
core agents (consumers with a fixed income used to buy their
power budget) and market agents (one for every group of



0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2878168, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

ACCEPTED IN IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS (TCAD), ON 29 JULY 2018 12

cores, receiving a power budget from the global power source
and trading it among its core agents), such that it can be
considered as a hybrid that aims to trade-off the effectiveness
of a central approach (with global knowledge of the chip)
against the scalability of a fully distributed approach. The
power budget assigned to a core is scaled according to its
temperature. Cores with low temperatures are able to receive
their entire assigned power budgets, while cores with high
temperatures only receive a fraction of their assigned power
budget, decreased linearly with the measured temperature.
The scaling function that decides what percentage of the
assigned power budget can be used by each core depending
on its temperature is derived by using reinforcement learning.
Specifically, decisions resulting in transitions to good states
(low temperatures) are reinforced, while decisions resulting in
transitions to bad states (high temperatures) are penalized.

In [15], authors present a hierarchical power management
technique that attempts to deliver maximum the energy effi-
ciency (particularly, to maximize the total executed instructions
per joule) under a fixed per-chip power budget (e.g., TDP).
Particularly, this work proposes to apply Q-learning at the
core level in order to learn the voltage/frequency level that
maximizes the performance of the core for the executed
application. The power needed by a core to run at the desired
voltage/frequency is then requested from a chip-level heuristic
controller that dynamically distributes the fixed power budget
of the chip among all cores, while attempting to maximize
the overall chip performance. The chip-level controller first
orders all power requests decreasingly according to the ex-
pected reward of running every core at the voltage/frequency
level learned through Q-learning. Then, without exceeding
the available per-chip power budget, the chop-level controller
verifies if it can grant the requested power to the core with the
highest expected reward while providing the baseline power
(i.e., the power consumption for running a core at the minimum
voltage/frequency level) to all other cores. If this is possible,
the requested power is granted, and otherwise the baseline
power is granted. The process is then greedily repeated until
all cores have an assigned power budget.

Different cores in multi-core system can achieve different
performances depending on the applications they are execut-
ing. In order to achieve high-performance under temperature
and energy/power budget constraints task allocation or mi-
gration and use of distributed management techniques can be
beneficial. This results in an efficient resource utilization.

C. Temperature Minimization
In [46], in order to maintain the chip under a temperature

constraint, authors present an application-oriented learning-
based DTM technique that pro-actively applies DVFS using a
future temperature predictor trained offline through supervised
learning. Particularly, by using Locally Weighted Projection
Regression (LWPR), authors learn a model to predict the future
temperature of an application based on repetitive executions of
the application. LWPR is an incremental learning algorithm
for nonlinear function approximation in high dimensional
spaces, where the key concept is to approximate the underlying
function by local linear models and to compute the final

prediction value as the weighted mean of all linear models. In
regards to the DTM technique, when the average temperature
of more than 30% of cores rises above the thermal constraint,
global DVFS is applied. Otherwise, per-core DVFS is applied
to the cores with a temperature higher than the thermal
constraint. The number of voltage/frequency steps to decrease
is computed according to the current voltage/frequency, the
core’s utilization, and a user-defined constant.

In [41], authors present a phase-aware workload placement
scheme for data centers that helps in maintaining a uniform
thermal profile (i.e., reduce the thermal variance across the
rack) in a cluster of compute nodes, thus optimizing the
cooling requirement and reducing the energy consumption
of the data center. Particularly, the technique is based on
a phase-aware machine learning approach that results in a
node level thermal model used to forecast the server thermal
trends/profile based on input variables like current temperature
and utilization. Micro-architectural event counters are used to
derive the system utilization. The scheme consist of three main
step: model reduction, workload phase identification, and the
thermal prediction model. During model reduction, similar to
[43], PCA is used to transform a set of correlated variables
into a smaller number of uncorrelated variables, thus reducing
the dimensionality of data without the loss of information.
The goal of model reduction is to retain the most significant
datasets that are sufficient to identify the phases of workload
operations that demonstrate time-varying behavior. For the
workload phase identification step, just like in [43], a phase
is a stage of execution in which a workload demonstrates
similar power, temperature, and performance characteristics.
Therefore, the training block performs unsupervised learning
in order to build data structures that partition workloads into
homogeneous clusters, such that similar workload intervals
with similar characteristics are classified within the same class
(i.e., phase). As done in [43] and [29], authors use the k-
means clustering algorithm that partitions the d-dimensional
principal observations into k clusters, such that each observa-
tion is grouped in the cluster with the nearest mean. Finally,
the thermal prediction model is mainly a Genetic Algorithm
block that performs dynamic training in order to construct a
linear model that associates principal components and cluster
assignments to predict the future thermal variations in real-
time. The prediction period is equivalent to one sampling
period that can vary based on the workload type and end-user
requirements. This thermal model is used at a rack granularity
in order to aggregate the predicted temperature and construct
a variance index to identify thermal hotspots and emergencies.
The complete data center is then modeled as a collection of
racks, each rack composed of several stacked server nodes.
The predictive model is integrated into Simple Linux Utility
for Resource Monitoring (SLURM) running on a representative
cluster. Before distributing jobs to nodes, the forecasting model
is used to analyze the job’s impact on performance for the
perspective nodes using statistical simulation. In this way,
thermal prediction allows for the evaluation of a sample job
assignment before the job is committed through workload
placement or migration, thus resulting in an improved thermal
balance.



0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2878168, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

ACCEPTED IN IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS (TCAD), ON 29 JULY 2018 13

The work in [38] presents a dynamic thermal management
technique that adapts to thermal variations within (intra) and
across (inter) applications, with the goal of improving lifetime
reliability (i.e., to maximize the mean time to failure (MTTF))
by reducing average temperature and thermal cycling under
performance constraints. In this technique, a runtime system
interfaces with the on-board thermal sensors and performance
counters in order to compute the thermal stress, aging, and
to monitor performance. Q-learning is then used to learn
the relationship between the mapping of tasks to cores, the
voltage/frequency of a core, and its temperature, where the
stress and aging values form the states of the Q-Table. To
incorporate intra- and inter-application workload variations,
moving averages of the stress and the aging are determined
at the start of every decision epoch.

The work in [14] presents a task allocation/migration
scheme based on Q-learning, which considers the temperature
of the cores and NoC routers, aiming at reducing the peak
temperature of the chip. When doing task allocation, the
scheme uses the current chip temperature information and
stochastic predictions about how each possible task assignment
will affect peak temperature of the chip in the future. In every
decision epoch, the accuracy of the previous prediction is
checked and the model used to make the prediction is updated.
The set of possible states is conformed by taking all thermal
sensor readings from all cores in the chip, i.e., it corresponds
to all possible combinations of temperatures on the chip.
Similarly, the possible actions correspond to the core index
in which to allocate/migrate a task. Due to the large design
space, authors propose a continuous approximated function to
map state-action pairs to Q-values. This approximated function
is a linear combination of a series of basis functions. The
reward function is computed as the difference between the
thermal constraint and the current peak temperature on the
chip, such that a higher reward means that there is a larger
thermal headroom.

Reinforcement learning, though effective in many ways,
adds complexity to the system. For resource constrained and
very light weighted systems, relatively low complex techniques
such as regression could be of aid. Linear modeling based
temperature prediction to perform temperature-aware DVFS is
proposed in [44]. Here, the voltage values and the temperature
values are sensed for different applications that run on the
system. Based on the observed characteristics, a linear model
to determine the temperature based on the DVFS settings and
workload is determined. Under the constraints of temperature,
the DVFS settings are tuned. This work can also be used using
soft sensors, i.e., using performance counters and regression
techniques to augment temperature sensors. Using soft sensors
might be area effective, but adds computational overhead.

Temperature is often a bottleneck, especially in multi-core
systems. However, as the temperature variations are not as
spontaneous as power or energy, use of simple predictors, and
application or task migration which incur significant delays
can also be afforded.

V. TECHNIQUES FOR HETEROGENEOUS MULTI-CORES

A. Energy Minimization under Performance Constraints
The work in [48] presents a reinforcement learning-based

DPM framework for data centers which attempts to minimize
the overall energy consumption of a server pool while main-
taining a reasonable average job response time. Particularly,
a TD(λ)-learning algorithm is used to periodically choose
how many servers from the server pool to turn on or turn
off. The overall profit of the server pool is computed as the
total revenue of processing all the incoming jobs minus the
total energy cost. Moreover, the income made by processing a
job is considered to be inversely proportional to the response
time of that job (including both waiting time in the service
queue and processing time in the server). Therefore, the reward
function for taking action a while in state s is computed as
the negative of the weighted sum of the average job response
time and the average power consumption of the server pool
during that time slot, including a Lagrangian multiplier to
decide the relative weight of the power consumption to the
response time (as already done in [9], [23], [26], [32]). In the
TD(λ)-learning algorithm, Q-value Q(s, a) for state-action pair
(s, a) approximates the expected discounted cumulative return
of taking action a at state s.

Compared to homogeneous multi-core energy minimization,
as different cores consume different energy/power, the cost
function or the system power estimator requires large number
of knobs and have larger complexity. As such use of game-
theory kind of methods can be beneficial as well as the
weighted ML solutions.

B. Performance Maximization under Power and Temperature
Constraints

In [16], authors propose a machine learning-based
power/thermal management technique that uses a heuristic to
limit the learning space by assigning a specific set of available
actions to each existing state. The objective of this work is to
increase the performance while reducing the thermal stresses
(including spatial and temporal temperature gradients and ther-
mal cycles) under power and thermal constraints, by migrating
tasks between cores and by selecting the voltage/frequency
levels of every core. Particularly, a heuristic algorithm assigns
one of seven pre-defined states to each core. For every state,
another heuristic algorithm selects an action set, such that there
is a limited number of actions that can be taken by a core in
a certain state (the idea is that only certain actions can be
potentially beneficial when a core is in a certain state, e.g.,
if the temperature of a core is above the thermal threshold,
there is no point in evaluating an action that would increase
its frequency). There are four action types which the heuristic
can include in an action set: increasing the frequency of a core,
decreasing the frequency of a core, migrating a task from a
core, and migrating a task to a core. Q-learning is then used at
a per-core granularity in order to select the most appropriate
action for the corresponding state of each core which leads to
the highest reward value.

In order to perform performance maximization, the number
of possibilities can be numerous especially when the system



0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2878168, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

ACCEPTED IN IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS (TCAD), ON 29 JULY 2018 14

is heterogeneous. This leads to a bigger optimization space.
As such, employing some heuristics or performing high-levels
tasks such as thread migration, DVFS per core level can be
effective in order to alleviate overheads.

VI. UNCORE POWER MANAGEMENT

In addition to the cores in a multi-core or a single-core sys-
tem, there exists other components such as interconnects (bus,
network-on-chip, I/O peripherals), memory, and cache which
consume power. The two major components that account for
uncore power are memory and interconnects. Considering the
brevity and the focus of the paper, we provide an overview of
power management techniques for them below.
A. Memory Power Management

Memory controllers are widely employed for optimizing or
managing the power of external memory components such as
DRAM [66], [67]. By predicting the idle duration for the mem-
ory, the power saving is achieved. Hardware based approaches
such as scheduling or re-ordering the instructions to reduce
the idle time and improve the performance are provided in
[68]. Throttling based methods in which the power for issued
commands are estimated and power is scaled accordingly, and
also the CPU instruction flow is also administered for enhanced
DRAM power savings [69]. A temperature-based power man-
agement for memory by throttling the memory traffic is
proposed in [70], especially targeting server class systems. The
approaches using either heuristics or regression models [71],
[72], [73] to predict the power-down timeout for the memory
(amount of time spent idle before transitioning to a low-power
state) is limited and mostly static [71]. A comprehensive power
management for memory architectures is outlined in [74]. As
seen, a general trend for uncore power management is either
to predict the workload or memory-access request (or power)
and scale down the voltage-frequency or re-order the requests
in order to maximize the performance and energy efficiency.
B. Interconnect Power Management

Interconnects are another class of uncore component with
significant power consumption. A DVFS controller to keep the
network load at its saturation point is proposed for network-on-
chip in [75]. Based on the network load, the voltage/frequency
levels are altered here. This work considers the sum of entire
workload to perform DVFS, rather than considering at finer
granularity. A per-link DVFS in NoC is proposed in [76]. In ad-
dition to links, DVFS for routers are also proposed, where the
main parameter to perform DVFS are the metrics such as input
queue occupancy for downstream data [77]. A reinforcement
learning based communication power management is proposed
for memory-logic communication is proposed in [10], [11],
[12], [13]. As observed, the interconnect power management
is performed considering either the network traffic (communi-
cation) and the available bandwidth of the network. As there
exists large number of links or interconnects in multi-core
systems lightweight controllers are recommended.

VII. DISCUSSION AND ANALYSIS

Based on the above discussed power, performance, and
temperature management methodologies for core, and uncore

components and other referred works, we present the fol-
lowing analysis. The stochastic or heuristics-based methods
are lightweight, low complex and are efficient when high-
precision predictions or modeling is not the major concern
for performing the optimization. Even some lightweight ma-
chine learners can be employed for such scenarios. These
kinds of techniques are more suitable for online control or
low-latency decision making scenario. However, the machine
learning based approaches provide two main benefits when
employed for resource management: a) the control for resource
management is more accurate/precise and aids to perform re-
source management even under uncertainties such as sporadic
variations in the power demands, or memory-access and so on;
and b) the machine learning techniques such as reinforcement
learning, or heavy weighted classifiers such as neural networks
are efficient to handle scenarios where the system is not trained
for, despite using these techniques are resource consuming. In
terms of power or performance optimization using machine
learning in multi-core systems, the posed challenges are the
response time, captured/observed data accuracy to perform
decision making (DVFS, task scheduling, and so on), and most
importantly the involved complexity, computational power, and
required hardware footprint are the main challenges. As such
depending on the affordable resources and performance loss
the machine learning solutions can be opted in future systems.

VIII. CONCLUSIONS

In this paper we have presented an overview of several re-
search efforts that propose to use machine learning techniques
for power and thermal management on single-core and multi-
core processors. Techniques based on machine learning can
potentially adapt to varying system conditions and workloads,
learning from past events in order to improve themselves as
the environment changes, resulting in improved management
decisions. In addition, the uncore power management method-
ologies are outlined.

ACKNOWLEDGMENT

This work was partly supported by the German Research
Foundation (DFG) as part of the Transregional Collaborative
Research Centre Invasive Computing [SFB/TR 89].

REFERENCES

[1] M. Shafique, S. Garg, J. Henkel, and D. Marculescu, “The EDA
challenges in the dark silicon era: Temperature, reliability, and vari-
ability perspectives,” in the 51st ACM/EDAC/IEEE Design Automation
Conference (DAC), 2014, pp. 185:1–185:6.

[2] H. Esmaeilzadeh, E. Blem, R. St.Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in the 38th
International Symposium on Computer Architecture (ISCA), 2011, pp.
365–376.

[3] M. B. Taylor, “Is dark silicon useful?: harnessing the four horsemen
of the coming dark silicon apocalypse,” in the 49th ACM/EDAC/IEEE
Design Automation Conference (DAC), 2012, pp. 1131–1136.

[4] P. D. S. Manoj, J. Lin, S. Zhu, Y. Yin, X. Liu, X. Huang, C. Song,
W. Zhang, M. Yan, Z. Yu, and H. Yu, “A scalable network-on-chip
microprocessor with 2.5D integrated memory and accelerator,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 6,
pp. 1432–1443, June 2017.



0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2878168, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

ACCEPTED IN IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS (TCAD), ON 29 JULY 2018 15

[5] J. Henkel, H. Khdr, S. Pagani, and M. Shafique, “New trends in dark
silicon,” in the 52nd ACM/EDAC/IEEE Design Automation Conference
(DAC), June 2015, pp. 119:1–119:6.

[6] Y. Wang, M. Triki, X. Lin, A. C. Ammari, and M. Pedram, “Hierarchical
dynamic power management using model-free reinforcement learning,”
in International Symposium on Quality Electronic Design (ISQED),
March 2013, pp. 170–177.

[7] S. Yue, D. Zhu, Y. Wang, and M. Pedram, “Reinforcement learning
based dynamic power management with a hybrid power supply,” in
30th IEEE International Conference on Computer Design (ICCD), Sept
2012, pp. 81–86.

[8] H. Jung and M. Pedram, “Supervised learning based power manage-
ment for multicore processors,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD), vol. 29, no. 9, pp.
1395–1408, Sept 2010.

[9] R. Ye and Q. Xu, “Learning-based power management for multi-
core processors via idle period manipulation,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD),
vol. 33, no. 7, pp. 1043–1055, July 2014.

[10] D. Xu, N. Yu, H. Huang, P. D. S. Manoj, and H. Yu, “Q-learning
based voltage-swing tuning and compensation for 2.5D memory-logic
integration,” IEEE Design and Test, vol. 35, no. 2, pp. 91–99, April
2018.

[11] H. Hantao, P. D. S. Manoj, D. Xu, H. Yu, and Z. Hao, “Reinforcement
learning based self-adaptive voltage-swing adjustment of 2.5D I/Os for
many-core microprocessor and memory communication,” in IEEE/ACM
Int. Conf. on Computer-Aided Design (ICCAD), 2014.

[12] D. Xu, P. D. S. Manoj, H. Huang, N. Yu, and H. Yu, “An energy-efficient
2.5D through-silicon interposer I/O with self-adaptive adjustment of
output-voltage swing,” in IEEE/ACM International Symposium on Low
Power Electronics and Design (ISLPED), 2014.

[13] P. D. S. Manoj, H. Yu, H. Huang, and D. Xu, “A Q-learning based self-
adaptive I/O communication for 2.5D integrated many-core micropro-
cessor and memory,” IEEE Transactions on Computers, vol. 65, no. 4,
pp. 1185–1196, April 2016.

[14] S. Lu, R. Tessier, and W. Burleson, “Reinforcement learning for
thermal-aware many-core task allocation,” in 25th Great Lakes Sym-
posium on VLSI (GLSVLSI), 2015, pp. 379–384.

[15] M. Otoom, P. Trancoso, H. Almasaeid, and M. Alzubaidi, “Scalable and
dynamic global power management for multicore chips,” in 6th Work-
shop on Parallel Programming and Run-Time Management Techniques
for Many-core Architectures (PARMA-DITAM), 2015, pp. 25–30.

[16] A. Iranfar, S. N. Shahsavani, M. Kamal, and A. Afzali-Kusha, “A
heuristic machine learning-based algorithm for power and thermal
management of heterogeneous mpsocs,” in IEEE/ACM International
Symposium on Low Power Electronics and Design (ISLPED), July 2015,
pp. 291–296.

[17] H. Sayadi, N. Patel, A. Sasan, and H. Homayoun, “Machine learning-
based approaches for energy-efficiency prediction and scheduling in
composite cores architectures,” in IEEE International Conference on
Computer Design (ICCD).

[18] S. Yang, R. A. Shafik, G. V. Merrett, E. Stott, J. M. Levine, J. Davis, and
B. M. Al-Hashimi, “Adaptive energy minimization of embedded het-
erogeneous systems using regression-based learning,” in International
Workshop on Power and Timing Modeling, Optimization and Simulation
(PATMOS), Sept 2015, pp. 103–110.

[19] P. D. S. Manoj, H. Yu, and K. Wang, “3D many-core microprocessor
power management by space-time multiplexing based demand-supply
matching,” IEEE Trans. on Computers, vol. 64, no. 11, pp. 3022–3036,
Nov 2015.

[20] P. D. S. Manoj, K. Wang, and H. Yu, “Peak power reduction and
workload balancing by space-time multiplexing based demand-supply
matching for 3D thousand-core microprocessor,” in ACM/EDAC/IEEE
Design Automation Conf., 2013.

[21] K. Choi, R. Soma, and M. Pedram, “Fine-grained dynamic voltage and
frequency scaling for precise energy and performance tradeoff based

on the ratio of off-chip access to on-chip computation times,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 24, no. 1, pp. 18–28, Jan 2005.

[22] R. A. Shafik, S. Yang, A. Das, L. A. Maeda-Nunez, G. V. Merrett,
and B. M. Al-Hashimi, “Learning transfer-based adaptive energy mini-
mization in embedded systems,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 35, no. 6, pp. 877–890,
June 2016.

[23] W. Liu, Y. Tan, and Q. Qiu, “Enhanced q-learning algorithm for
dynamic power management with performance constraint,” in Design,
Automation and Test in Europe (DATE), March 2010, pp. 602–605.

[24] M. Triki, Y. Wang, A. Ammari, and M. Pedram, “Hierarchical power
management of a system with autonomously power-managed compo-
nents using reinforcement learning,” Integr. VLSI J., vol. 48, no. C, pp.
10–20, Jan 2015.

[25] M. Triki, A. C. Ammari, Y. Wang, and M. Pedram, “Reinforcement
learning algorithms for dynamic power management,” in World Sym-
posium on Computer Applications Research (WSCAR), Jan 2014, pp.
1–6.

[26] H. Shen, Y. Tan, J. Lu, Q. Wu, and Q. Qiu, “Achieving autonomous
power management using reinforcement learning,” ACM Transactions
on Design Automation of Electronic Systems (TODAES), vol. 18, no. 2,
pp. 24:1–24:32, Apr. 2013.

[27] H. Shen, J. Lu, and Q. Qiu, “Learning based DVFS for simultaneous
temperature, performance and energy management,” in 13th Interna-
tional Symposium on Quality Electronic Design (ISQED), March 2012,
pp. 747–754.

[28] Y. Wang, Q. Xie, A. Ammari, and M. Pedram, “Deriving a near-optimal
power management policy using model-free reinforcement learning and
bayesian classification,” in 48th Design Automation Conference (DAC),
2011, pp. 41–46.

[29] Y. Ge and Q. Qiu, “Dynamic thermal management for multimedia appli-
cations using machine learning,” in 48th Design Automation Conference
(DAC), 2011, pp. 95–100.

[30] M. E. Salehi, M. Samadi, M. Najibi, A. Afzali-Kusha, M. Pedram,
and S. M. Fakhraie, “Dynamic voltage and frequency scheduling for
embedded processors considering power/performance tradeoffs,” IEEE
Trans. Very Large Scale Integr. Syst., vol. 19, no. 10, pp. 1931–1935,
Oct 2011.

[31] B. Dietrich, S. Nunna, D. Goswami, S. Chakraborty, and M. Gries,
“Lms-based low-complexity game workload prediction for dvfs,” in
2010 IEEE International Conference on Computer Design, Oct 2010,
pp. 417–424.

[32] Y. Tan, W. Liu, and Q. Qiu, “Adaptive power management using
reinforcement learning,” in International Conference on Computer-
Aided Design (ICCAD), 2009, pp. 461–467.

[33] G. Dhiman and T. Rosing, “System-level power management using
online learning,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), vol. 28, no. 5, pp. 676–689,
May 2009.

[34] E.-Y. Chung, L. Benini, A. Bogliolo, Y.-H. Lu, and G. D. Micheli,
“Dynamic power management for nonstationary service requests,” IEEE
Transactions on Computers, vol. 51, no. 11, pp. 1345–1361, Nov 2002.

[35] E.-Y. Chung, L. Benini, and G. De Micheli, “Dynamic power man-
agement using adaptive learning tree,” in International Conference on
Computer-Aided Design (ICCAD), Nov 1999, pp. 274–279.

[36] W. Lee, Y. Wang, and M. Pedram, “Optimizing a reconfigurable power
distribution network in a multicore platform,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 34,
no. 7, pp. 1110–1123, July 2015.

[37] F. M. M. u. Islam and M. Lin, “A framework for learning based
dvfs technique selection and frequency scaling for multi-core real-
time systems,” in IEEE International Conference on High Performance
Computing and Communications, Aug 2015, pp. 721–726.

[38] A. Das, R. A. Shafik, G. V. Merrett, B. M. Al-Hashimi, A. Kumar,



0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2878168, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

ACCEPTED IN IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS (TCAD), ON 29 JULY 2018 16

and B. Veeravalli, “Reinforcement learning-based inter- and intra-
application thermal optimization for lifetime improvement of multicore
systems,” in 51st Design Automation Conference (DAC), 2014, pp.
170:1–170:6.

[39] A. Bartolini, M. Cacciari, A. Tilli, and L. Benini, “Thermal and energy
management of high-performance multicores: Distributed and self-
calibrating model-predictive controller,” IEEE Transactions on Parallel
and Distributed Systems (TPDS), vol. 24, no. 1, pp. 170–183, Jan 2013.

[40] A. Bartolini, M. Cacciari, A. Tilli, and L. Benini, “A distributed
and self-calibrating model-predictive controller for energy and thermal
management of high-performance multicores,” in Design, Automation
and Test in Europe (DATE), March 2011, pp. 1–6.

[41] R. Khanna, J. John, and T. Rangarajan, “Phase-aware predictive thermal
modeling for proactive load-balancing of compute clusters,” in Interna-
tional Conference on Energy Aware Computing (ICEAC), Dec 2012,
pp. 1–6.

[42] T. Ebi, D. Kramer, W. Karl, and J. Henkel, “Economic learning for
thermal-aware power budgeting in many-core architectures,” in 7th
International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS), 2011, pp. 189–196.

[43] R. Cochran and S. Reda, “Consistent runtime thermal prediction and
control through workload phase detection,” in 47th Design Automation
Conference (DAC), 2010, pp. 62–67.

[44] J. S. Lee, K. Skadron, and S. W. Chung, “Predictive temperature-aware
dvfs,” IEEE Transactions on Computers, vol. 59, no. 1, pp. 127–133,
Jan 2010.

[45] F. Sironi, M. Triverio, H. Hoffmann, M. Maggio, and M. D. Santam-
brogio, “Self-aware adaptation in fpga-based systems,” in 2010 Inter-
national Conference on Field Programmable Logic and Applications,
Aug 2010, pp. 187–192.

[46] W.-J. Kim, J. W. Song, and K. S. Chung, “On-line learning based
dynamic thermal management for multicore systems,” in International
SoC Design Conference (ISOCC), vol. 01, Nov 2008, pp. I–391–I–394.

[47] A. K. Coskun, T. S. Rosing, and K. C. Gross, “Temperature manage-
ment in multiprocessor socs using online learning,” in 45th Design
Automation Conference (DAC), 2008, pp. 890–893.

[48] X. Lin, Y. Wang, and M. Pedram, “A reinforcement learning-based
power management framework for green computing data centers,” in
IEEE International Conference on Cloud Engineering (IC2E), April
2016, pp. 135–138.

[49] Intel Corporation, “Dual-core intel xeon processor 5100 series
datasheet, revision 003,” August 2007.

[50] N. Pinckney, K. Sewell, R. G. Dreslinski, D. Fick, T. Mudge,
D. Sylvester, and D. Blaauw, “Assessing the performance limits of
parallelized near-threshold computing,” in the 49th Design Automation
Conference (DAC), 2012, pp. 1147–1152.

[51] S. Pagani, “Power, energy, and thermal management for clustered
manycores,” Ph.D. dissertation, Chair for Embedded Systems (CES),
Department of Computer Science, Karlsruhe Institute of Technology
(KIT), Germany, November 2016.

[52] S. Herbert and D. Marculescu, “Analysis of dynamic voltage/frequency
scaling in chip-multiprocessors,” in the International Symposium on
Low Power Electronics and Design (ISLPED), 2007, pp. 38–43.

[53] Intel Corporation, “SCC external architecture specification (EAS), re-
vision 0.98,” July 2010.

[54] Samsung Electronics Co., Ltd., “Exynos 5 Octa (5422),” www.samsung.
com/exynos.

[55] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 programs: Characterization and methodological consider-
ations,” SIGARCH Comput. Archit. News, vol. 23, no. 2, pp. 24–36,
May 1995.

[56] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC bench-
mark suite: Characterization and architectural implications,” Princeton
University, Tech. Rep. TR-811-08, January 2008.

[57] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” SIGARCH
Comput. Archit. News, vol. 34, no. 4, pp. 1–17, Sep 2006.

[58] SPEC, “Spec cpu 2017,” Online, 2017, https://www.spec.org/cpu2017/.
[59] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, “The HiBench bench-

mark suite: Characterization of the mapreduce-based data analysis,” in
IEEE Int. Conf. on Data Engineering Workshops, 2010.

[60] Z. Jia, J. Zhan, L. Wang, C. Luo, W. Gao, Y. Jin, R. Han, and L. Zhang,
“Understanding big data analytics workloads on modern processors,”
IEEE Trans. on Parallel and Distributed Systems, vol. 28, no. 6, pp.
1797–1810, June 2017.

[61] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of Machine
Learning. The MIT Press, 2012.

[62] Z. Wang, Z. Tian, J. Xu, R. K. V. Maeda, H. Li, P. Yang, Z. Wang,
L. H. K. Duong, Z. Wang, and X. Chen, “Modular reinforcement
learning for self-adaptive energy efficiency optimization in multicore
system,” in Asia and South Pacific Design Automation Conference (ASP-
DAC), 2017.

[63] G. Y. Pan, B. C. C. Lai, S. Y. Chen, and J. Y. Jou, “A learning-
on-cloud power management policy for smart devices,” in IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), 2014.

[64] P. D. S. Manoj, “3D I/O designs for energy-efficient memory-logic
integration towards thousand-core on-chip,” Ph.D. dissertation, School
of Electrical and Electronic Engineering, Nanyang Technological Uni-
versity, Singapore, November 2015.

[65] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA: MIT Press, 1998.

[66] I. Hur and C. Lin, “A comprehensive approach to DRAM power
management,” in IEEE Int. Symp. on High Performance Computer
Architecture, 2008.

[67] V. Delaluz, M. Kandemir, N. Vijaykrishnan, A. Sivasubramaniam, and
M. J. Irwin, “DRAM energy management using software and hardware
directed power mode control,” in Int. Symp. on High-Performance
Computer Architecture, 2001.

[68] B. K. Mathew, S. A. McKee, J. B. Carter, and A. Davis, “Design of a
parallel vector access unit for SDRAM memory systems,” in Int. Symp.
on High-Performance Computer Architecture, 2000.

[69] W. Felter, K. Rajamani, T. Keller, and C. Rusu, “A performance-
conserving approach for reducing peak power consumption in server
systems,” in Int. Conf. on Supercomputing, 2005.

[70] J. Lin, H. Zheng, Z. Zhu, H. David, and Z. Zhang, “Thermal modeling
and management of DRAM memory systems,” SIGARCH Comput.
Archit. News, vol. 35, no. 2, pp. 312–322, Jun 2007.

[71] Y. Lu, D. Wu, B. He, X. Tang, J. Xu, and M. Guo, “Rank-aware dynamic
migrations and adaptive demotions for DRAM power management,”
IEEE Trans. on Computers, vol. 65, no. 1, pp. 187–202, Jan 2016.

[72] H. Huang, K. G. Shin, C. Lefurgy, and T. Keller, “Improving energy
efficiency by making DRAM less randomly accessed,” in Int. Symp. on
Low Power Electronics and Design, 2005.

[73] H. Huang, P. Pillai, and K. G. Shin, “Design and implementation
of power-aware virtual memory,” in USENIX Annual Technical Conf.,
2003.

[74] Y. Lu, B. He, X. Tang, and M. Guo, “Synergy of dynamic frequency
scaling and demotion on DRAM power management: Models and
optimizations,” IEEE Trans. on Computers, vol. 64, no. 8, pp. 2367–
2381, Aug 2015.

[75] G. Liang and A. Jantsch, “Adaptive power management for the on-
chip communication network,” in EUROMICRO Conference on Digital
System Design, 2006.

[76] L. Shang, L. Peh, and N. K. Jha, “Power-efficient interconnection
networks: Dynamic voltage scaling with links,” IEEE Computer Ar-
chitecture Letters, vol. 1, no. 1, pp. 6–6, Jan 2002.

[77] A. K. Mishra, R. Das, S. Eachempati, R. Iyer, N. Vijaykrishnan, and
C. R. Das, “A case for dynamic frequency tuning in on-chip networks,”
in IEEE/ACM Int. Symp. on Microarchitecture (MICRO), 2009.

www.samsung.com/exynos
www.samsung.com/exynos
https://www.spec.org/cpu2017/


0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2878168, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

ACCEPTED IN IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS (TCAD), ON 29 JULY 2018 17

Santiago Pagani is currently a Firmware Devel-
opment Team Lead at ARM Ltd., Cambridge, UK,
where he runs an Agile firmware development team
working on key components for the next genera-
tion Mali GPU products. He received his Diploma
in Electronics Engineering from the Department
of Electronics, National Technological University
(UTN-FRBA), Argentina in 2010. He received his
Ph.D. in Computer Science from the Karlsruhe Insti-
tute of Technology (KIT) with “Summa cum Laude”
in 2016. From 2003 until 2012, he worked as a

hardware and software developer in the industry sector for several companies
in Argentina, including 2 years as technical group leader. From 2012 until
2017, he worked as a research scientist (doctoral researcher and later post-doc)
as part of the research staff at KIT. He received two Best Paper Awards (IEEE
RTCSA in 2013 and IEEE/ACM CODES+ISSS in 2014), one Feature Paper
of the Month (IEEE Transactions on Computers in 2017), and three HiPEAC
Paper Awards. He received the 2017 ACM SIGBED “Paul Caspi Memorial
Dissertation Award” in recognition of an outstanding Ph.D. dissertation.
His interests include embedded systems, real-time systems, energy-efficient
scheduling, power-aware designs, and temperature-aware scheduling.

Sai Manoj P D (S’13-M’15) is a postdoctoral fellow
and research group leader at Accelerated, Secure &
Energy-efficient Computing (ASEEC) Lab at George
Mason University. Prior joining to George Mason
University, he was a post-doctoral research scientist
at the System-on-Chip group, Institute of Computer
Technology, Vienna University of Technology (TU
Wien), Austria. He received his Ph.D. in Electrical
and Electronics Engineering from Nanyang Techno-
logical University, Singapore in 2015. He received
his Masters in Information Technology from Inter-

national Institute of Information Technology Bangalore (IIITB), Bangalore,
India in 2012. His research interests include Self-aware SoC design, Machine
learning for image processing and time-series analysis, emerging memory
devices and integration techniques and wireless communications. His paper
is nominated for Best Paper Award in Design Automation & Test in Europe
(DATE) 2018, and won Xilinx open hardware contest in 2017 (student
category). He is the recipient of the “A. Richard Newton Young Research
Fellow” award in Design Automation Conference, 2013.

Axel Jantsch is Professor of Systems on Chips at
the Institute of Computer technology at the Vienna
University of Technology since September 2014.
Between 1997 and 2002 he was Associate Profes-
sor at KTH, The Royal Institute of Technology, in
Stockholm, and from 2002 to 2014 he was full
Professor in Electronic Systems Design at KTH.
There he has built up the research groups for Formal
Systems Design and for Networks on Chips, which
are now successfully headed by his former Ph.D.
students. Between 2009 and 2014 he was head of

the department of Electronic Systems with 6 professors, 7 senior researchers
and over 40 Ph.D. students. He came to Sweden with an Alfred Schrödinger
Scholarship in 1992 before he moved for 2 years to Siemens AG in Vienna.
His current research interests are Systems on Chips, Networks on Chips,
Embedded and Cyber-physical Systems. He has published 5 books as editor
and 1 as author, over 250 peer reviewed contributions in Journals, Books,
and conference proceeding, and he has given over 100 invited presentations
at conferences, universities and companies.

Jörg Henkel is currently with Karlsruhe Institute
of Technology (KIT), Germany, where he is direct-
ing the Chair for Embedded Systems CES. Before,
he was a Senior Research Staff Member at NEC
Laboratories in Princeton, NJ. He received his PhD
from Braunschweig University with “Summa cum
Laude”. Prof. Henkel has/is organizing various em-
bedded systems and low power ACM/IEEE confer-
ences/symposia as General Chair and Program Chair
and was a Guest Editor on these topics in various
Journals like the IEEE Computer Magazine. He was

Program Chair of CODES’01, RSP’02, ISLPED’06, SIPS’08, CASES’09, Es-
timedia’11, VLSI Design’12, ICCAD’12, PATMOS’13, NOCS’14 and served
as General Chair for CODES’02, ISLPED’09, Estimedia’12, ICCAD’13
and ESWeek’16. He is/has been a steering committee member of major
conferences in the embedded systems field like at ICCAD, ESWeek, ISLPED,
CODES+ISSS, CASES and is/has been an editorial board member of various
journals like the IEEE TVLSI, IEEE TCAD, IEEE TMSCS, ACM TCPS,
JOLPE etc. Prof. Henkel received the 2008 DATE Best Paper Award, the 2009
IEEE/ACM William J. Mc Calla ICCAD Best Paper Award, the CODES+ISSS
2015, 2014, and 2011 Best Paper Awards, and the MaXentric Technologies
AHS 2011 Best Paper Award as well as the DATE 2013 Best IP Award and
the DAC 2014 Designer Track Best Poster Award. He is the Chairman of the
IEEE Computer Society, Germany Section, and was the Editor-in-Chief of
the ACM Transactions on Embedded Computing Systems (ACM TECS) for
two consecutive terms. He is an initiator and the coordinator of the German
Research Foundation’s (DFG) program on “Dependable Embedded Systems”
(SPP 1500). He is the site coordinator (Karlsruhe site) of the Three- University
Collaborative Research Center on “Invasive Computing” (DFG TR89). He is
the Editor-in-Chief of the IEEE Design & Test Magazine since January 2016.
He holds ten US patents and is a Fellow of the IEEE.


