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ABSTRACT
Transient-execution attacks, such as Meltdown and Spectre, exploit
performance optimizations in modern CPUs to enable unauthorized
access to data across protection boundaries. Against these attacks,
we have noticed a rapid growth of deployed and proposed counter-
measures. In this paper, we show the evolution of countermeasures
against transient-execution attacks by both industry and academia
since the initial discoveries of the attacks. We show that despite
the advances in the understanding and systematic view of the field,
the proposed and deployed defenses are limited.

KEYWORDS
Transient-execution attacks, Meltdown, Spectre, LVI

ACM Reference Format:
Claudio Canella, Sai Manoj Pudukotai Dinakarrao, Daniel Gruss, and Khaled
N. Khasawneh. 2020. Evolution of Defenses against Transient-Execution
Attacks. In Great Lakes Symposium on VLSI 2020 (GLSVLSI ’20), September
7–9, 2020, Virtual Event, China. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/XXXXXX.XXXXXX

1 INTRODUCTION
Transient execution enables unauthorized access to data across
security protection boundaries. Transient execution refers to the
execution of instructions that will eventually get squashed, i.e.,
their execution results will not be committed to the architectural
state. Nonetheless, transient execution can leave a trace in the
microarchitectural state, e.g., the cache state. Therefore, transient-
execution attacks utilize the execution of transient instructions to
access secret data, e.g., a password, and leave a secret-dependent
trace in the microarchitectural state that can be recovered later
using non-transient execution. These attacks can be classified into
three main classes, namely Meltdown, Spectre, and Load Value
Injection (LVI), based on the nature of the transient execution and
the attack direction. Spectre is based on misprediction in the victim
domain, Meltdown is based on faults and assists in the attacker
domain, and LVI is based on faults and assists in the victim domain.
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The initial discovery of transient-execution attacks, i.e., Melt-
down and Spectre, became one of the most complex and largest
industry-wide embargos as processors from various manufacturers
turned out to be affected. As a result, many attacks variants were
discovered, but more noticeable is the proliferation of countermea-
sures from both industry and academia. Given the large number and
the rapid growth of both adopted and proposed countermeasures,
a systematic view is required to understand the scope of current
defenses and facilitate the evaluation of future defenses.

In this paper, we show how the landscape of countermeasures
against transient-execution attacks evolved since the initial discov-
eries of the attacks. We build our systematization based on a con-
current 6-phase generalization of transient-execution attacks [16].
We systematically describe hardware- and software-based coun-
termeasure advances from both industry and academia. Beyond
previous work [18, 99], our systematic view does not only cover
Spectre and Meltdown defenses but also LVI defenses. We show
that despite the advances in the understanding and systematic view
of the field, the proposed and deployed defenses are limited.

Outline. First, we briefly discuss background in Section 2. The
paper then gives a systematic overview of countermeasures for
Spectre (Section 3), Meltdown (Section 4), and LVI (Section 5). We
conclude in Section 6.

2 BACKGROUND
Out-of-order and speculative execution. To increase perfor-
mance, modern CPUs rely on features like speculative and out-
of-order execution. With speculative execution, CPUs try to predict
the outcome of a potential control-flow change to start the ex-
ecution of the likely path instead of stalling. For that, the CPU
provides various predictors that together comprise the Branch Pre-
diction Unit (BPU) [18]. Out-of-order execution allows executing
later instructions that are ready to be executed due to the operands
being available in advance, but still requires to retire them in order.
Recently, these optimizations have resulted in various transient-
execution attacks [18, 55, 60].
Transient-execution attacks.Transient-execution attacks exploit
modern CPUs performance optimizations to enable unauthorized
access to data across protection boundaries. According to a con-
current generalization of transient-execution attacks, these attacks
consist of 6 distinct phases [16]: Phase 1 (preparation): preparing the
micro-architecture to enter transient execution, Phase 2 (misspecu-
lation): triggering transient execution using a trigger instruction,
Phase 3 (access): accessing data of interest, Phase 4 (encoding): encod-
ing data of interest in the microarchitecture state, Phase 5 (leakage):
end of transient window, i.e., the architectural changes are reverted
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and the pipeline is flushed, and Phase 6 (decoding): decoding the
microarchitectural state to the architectural state.

3 SPECTRE COUNTERMEASURES
A countermeasure can try to break any phase of a Spectre at-
tack [16]: preparation, misspeculation, access, encoding, leakage,
decoding. However, targeting different phases has different effects
on security. As the following discussion also shows, mitigating all
Spectre attacks in practice likely will remain an open problem in
the foreseeable future [62].

3.1 Preparation Prevention (Phase 1)
Phase 1 prepares the microarchitecture, e.g., the cache or branch
predictors, for the attack. Defenses targeting this phase usually
do not prevent this step entirely but only eliminate the attacker’s
influence on the victim domain. However, some variants do not re-
quire any preparation or run in-place, making it hard to distinguish
malicious training from benign execution.

3.1.1 Industry. To prevent mistraining, the industry, e.g., Intel
and AMD, extended ISAs with a mechanism for controlling in-
direct branches [4, 44]. Indirect Branch Restricted Speculation
(IBRS) prevents unprivileged code from influencing the predic-
tion of privileged code. Single Thread Indirect Branch Prediction
(STIBP) restricts sharing of branch prediction mechanisms across
hyperthreads. The Indirect Branch Predictor Barrier (IBPB) pre-
vents code that executes before it from affecting the prediction of
code following it. Some ARM CPUs implement specific controls
that invalidate the branch predictor, which should be used during
context switches [8]. Linux enabled those by default [52].

For Spectre-STL, ARM introduced new barrier instructions and
control registers to prevent the re-ordering of loads and stores [8].
Likewise, Intel [44] and AMD [3] provide Speculative Store Bypass
Disable (SSBD) microcode updates.

3.1.2 Academia. In contrast to industry, academia proposed more
fundamental architecture and microarchitecture changes. Vougi-
oukas et al. [93] use per-context buffers for branch predictor state
to improve performance after branch predictor flushes. Instead of
flushing, Zhao et al. [102] randomize the prediction based on the
running context. Both proposals maintain performance within a
process across context switches. However, in-place same-domain at-
tacks are unaffected by these designs and the approach by Zhao et al.
[102] may allow cross-domain and out-of-place attacks by reverse-
engineering the randomization.

3.2 Misspeculation Prevention (Phase 2)
Entirely disabling speculation seems easy, but the performance loss
is prohibitive [55, 87]. Hence, more realistic solutions in this phase
only selectively disable or stop speculative execution.

3.2.1 Industry. CPU vendors designed solutions using serializ-
ing instructions (lfence), stopping speculation at security-critical
branches. Unfortunately, these branches have to be identified and
essentially annotated on all layers.
Software-based defenses. Google proposed retpoline [89], a code
sequence replacing indirect branches with return instructions, to
prevent branch poisoning. Intel proposed randpoline [14] as a more

efficient alternative. Due to its probabilistic nature, randpoline does
not fully mitigate Spectre-BTB but only reduces success and leak-
age rates of attacks. Linux and Windows use retpoline on affected
machines by default [24, 43].
Hardware-based defenses. Both Intel andAMDdescribed fencing-
based solutions [4, 47]. However, they also both introduced new
architectural features to constrain speculative execution on the
microarchitectural level including instructions for synchronization
barriers for data (DSB) and instructions (ISB), broader speculation
barriers (CSDB) [8], new registers to restrict speculative execution
and instructions to restrain control-flow (cfp) and data value (dvp)
prediction, and cache prefetches (cpp) [7]. Even more broadly, both
Intel (with serialize) and ARMv8.5-A [7] (with sb) introduced
generic speculative execution barriers.

On future CPUs with Control-flow Enforcement Technology
(CET) capabilities, retpoline might trigger false positives in the CET
defenses [43]. Therefore, these CPUs implement enhanced IBRS, a
hardware defense for Spectre-BTB [43]. Intel [43] also provided a
microcode update against Spectre-RSB to stop speculation. How-
ever, on Skylake and newer architectures, the RSB may fall back to
the BTB, re-enabling Spectre-BTB attacks via return instructions.
To prevent this, the RSB is stuffed with the address of a benign
gadget when entering the kernel [43].

3.2.2 Academia. Academia helped identifying limitations of the
deployed serializing countermeasures [82]. Furthermore, they pro-
posed techniques to reduce the overhead of such defenses.
Software-based defenses. Schwarz et al. [82] showed that lfence
instructions only stop execution units from running subsequent
operations. Thus, fetch and decode still work, potentially leaking
data through the power-up of AVX functional units, the TLB, or
the instruction cache. Furthermore, performance-wise, serializing
every branch can be worse than using a processor without branch
prediction in the first place [42]. Shen et al. [83] split code into small
blocks and insert fences between the entry point and a potentially
leaking memory access to mitigate Spectre-BTB and Spectre-RSB.
However, an attacker could still jump unaligned into a code block,
i.e., directly to the memory access.

Instead of using lfence, Oleksenko et al. [68] propose to intro-
duce data dependencies between branch condition operands and
operations following the branch, stalling the execution of depen-
dent instructions. Unfortunately, due to compiler re-ordering, this
proposal is limited in its effectiveness.

As an alternative to retpoline and randpoline, Amit et al. [5]
designed JumpSwitches, which add a shortcut path for indirect
branches with a direct branch for the most likely target.
Hardware-based defenses. Vassena et al. [92] proposed to anno-
tate variables and insert lfences in code paths where such vari-
ables may be leaked. To reduce the high cost of adding fences,
Taram et al. [88] propose a hardware-based technique to dynami-
cally insert fences before potentially leaking loads. Koruyeh et al.
[57] argue that Spectre-BTB and Spectre-RSB usually leave the de-
fined control-flow graph. Hence, they propose SpecCFI to repurpose
control-flow integrity (CFI) to prevent speculative diversion from
the control-flow graph. Capability systems may also contribute to
Spectre mitigations [96].



Several designs introduce buffer flushes or hardware partitioning
to isolate different domains (e.g., security enclaves) [13, 31, 69].
However, a limitation to the flushing of caches and buffers upon
domain switches is that it is difficult to ensure nomicroarchitectural
state persists. A similar argument was made for the Raspberry PI
3 [90]. However, speculative fetches may leave microarchitectural
traces sufficient for an attack [9].

3.3 Data Access Prevention (Phase 3)
Preventing access to certain data during speculative execution is
a promising approach to fully mitigate Spectre attacks. Solutions
in this phase focus on secrets in memory. None of the solutions
presented for this phase protect against Spectre attacks on data in
registers.

3.3.1 Industry. Mainly, software-based defenses against data ac-
cess were adopted by the industry. With process isolation, Google
presented the first defense for this phase [22, 73]. Leaking secrets
from other contexts is mitigated unless the attacker can utilize
Meltdown to bypass process isolation permission checks.

Sanitizing values used in speculation can affect phase 3 and phase
4 as memory locations may be inaccessible. The idea of Speculative
Load Hardening (SLH) [19] is to check loads using branchless code
to ensure that it is executing along a valid control-flow path. One
prerequisite for this approach is that the hardware enables branch-
less and unpredicted conditional updates of register values. Both
LLVM and GCC support SLH today and provide a builtin function
to either emit a speculation barrier or return a safe value if the
instruction is transient [29].

WebKit employs two techniques to limit access to secret data [72].
First, bound checks are replaced with index masking, thus, only
introducing a maximum range for the out-of-bounds violation. Sec-
ond, a pseudo-random poison value protects pointers from misuse.
Using this approach, an attacker would first have to learn the poison
value to use it. Furthermore, mispredictions on type checks result
in the wrong type being used for the pointer.

3.3.2 Academia. Academia proposed software and hardware de-
fenses, including utilizing existing hardware technologies, e.g.,
Memory Protection Extensions (MPX) andMemory Protection Keys
(MPK).
Software-based defenses. Narayan et al. [66] implemented a sand-
boxing framework for Firefox that supports process-based isolation.
Furthermore, Ojogbo et al. [67] used bitmasks to arithmetically
guarantee that any speculatively computed index is in bounds.
Dong et al. [27] used Intel MPX for this purpose.

As a probabilistic countermeasure, Sianipar et al. [84] constantly
move secret data around in virtual and physical memory. However,
this only reduces the leakage rate. In contrast, many determinis-
tic proposals also target this attack phase. Palit et al. [70] use a
compiler extension that keeps annotated secret data encrypted in
memory most of the time. The secret key is stored in a register.
Hence, the attack surface is significantly reduced. Kiriansky and
Waldspurger [54] propose to restrict access to sensitive data by
using protection keys like Intel MPK technology [45]. However,
as an attacker could use Spectre to disable MPK using the wrpkru
instruction, they propose a microcode update for this instruction to

include an lfence. Nonetheless, an attacker can still access the data
if the system is susceptible to Meltdown-PK [18]. Jenkins et al. [48]
propose to use ELFbac [10] or Intel MPK against Spectre attacks.
Hardware-based defenses. Schwarz et al. [79] propose multiple
defenses against Spectre that all rely on annotation of secrets. The
compiler groups secret variables onto pages and marks these pages
as secure. For commodity systems, they then suggest a technique
called ConTExT-light [79], which uses uncacheable memory for
secrets, making them inaccessible during speculative execution.
Kiriansky et al. [53] propose to securely partition the cache across
its ways, with protection domains that isolate on a cache hit, cache
miss, and metadata level. However, this requires the correct man-
agement of these domains in software.

3.4 Data Encoding Prevention (Phase 4)
Kocher et al. [55] proposed to track data loaded during transient
execution and prevent its use in subsequent operations. Several
academic works propose new processor designs similar to this idea.
There is still no industry solution that targets this phase.

3.4.1 Academia. NDA [97] identifies potentially leaking instruc-
tions and defers their execution if they depend on a previous, not
yet retired, operation. Yu et al. [101] taint data that has not yet been
committed and uses light-weight taint tracking to delay instruc-
tions that use such tainted inputs. Cabodi et al. [15] use a similar
approach and verify it using model checking. Barber et al. [11] defer
the wake up of dependent load instructions from when the load
instruction it depends on is retired instead of when it is dispatched.
Other works [32, 79] propose to annotate secrets and, thus, only
track and protect secrets in registers and the cache.

3.5 Leakage Prevention (Phase 5)
Several solutions propose to speculate as usual but to either store re-
sults in new buffers or to completely remove the microarchitectural
traces. Many of the proposals only focus on memory accesses and
the cache.While effective against simple attacks, more sophisticated
attacks may remain unaffected [12].

3.5.1 Academia. Several proposed defenses introduce shadowhard-
ware structures for transient execution [1, 34, 51, 63, 77, 100] to
squash microarchitectural state changes upon a wrong prediction.
Lowe-Power et al. [61] and Saileshwar et al. [76] propose to undo
modifications to the microarchitectural state after misspeculation.
Li et al. [59] design a solution that targets specifically the Flush+
Reload covert channel, which spreads different values to different
pages and block speculative instructions that may lead to accesses
to different pages. Rockicki [74] also explored a similar direction
for in-order processors that use dynamic binary translation opti-
mizations for performance. Sakalis et al. [78] propose to delay L1
misses until they are certain to be committed. Nonetheless, these
proposals are vulnerable against side channels other than caches
e.g., DRAM buffers [71], or execution-unit congestion [2, 12].

3.6 Data Decoding Prevention (Phase 6)
Preventing covert channels is most likely infeasible as long as any
shared resource remains. Still, several works propose to mitigate or
detect Spectre by breaking or detecting the covert channel.



3.6.1 Industry. Accurate timers are a common, but not crucial,
building block of covert channels to distinguish microarchitec-
tural states. Hence, to mitigate browser-based attacks, many web
browsers reduced the accuracy of timers in JavaScript [21, 65,
72, 94]. However, custom timers can always be constructed [81]
and, thus, further mitigations are required [80]. After initially dis-
abling SharedArrayBuffers in response to Meltdown and Spec-
tre [21], they have been re-enabled with the introduction of site
isolation [85]. This is in line with an older research direction of
randomizing or reducing the resolution of timing measurements
for security [39].

3.6.2 Academia. Several works propose to detect the cache covert
channel used in Spectre attacks and stopping the corresponding
process. Most solutions proposed so far use hardware performance
counters for this purpose [26], while Sabbagh et al. [75] use memory
access traces, and Austin et al. [38] use the cyclic interference prop-
erty of contention-based cache leakage. However, several works
show that it is trivial to evade detection [25, 49, 50, 58]. It is im-
portant to note that these proposals only consider cache covert
channels.

Ge et al. [33] temporarily reduce the timer resolution whenever
the cache flush interface is used.Wang et al. [95] explore varying the
processor frequency to hinder native cache attacks. To alleviate the
performance and energy impact, they introduce value prediction.
However, value prediction is not inherently secure against Spectre
attacks and transiently diverting the control-flow of a victim by
inducing a false value via value prediction effectively provides the
attacker with the same capabilities. Chen et al. [20] propose to
mitigate transient-execution attacks on SGX by preventing inter-
ruption of enclaves. However, an attacker does not necessarily have
to interrupt an enclave to mount an attack.

4 MELTDOWN COUNTERMEASURES
Meltdown attacks exploit deliberate incorrect behavior of the hard-
ware during transient execution.While this may have been assumed
secure in the past, it must be considered a hardware bug today. We
first discuss applying Spectre-focused defenses to Meltdown attacks
followed by Meltdown-focused defenses.

The fundamental difference between Spectre and Meltdown type
attacks is based on the transient execution trigger; prediction or
fault based, respectively. Spectre-focused defenses that target Phases
1, 2, and 3 cannot mitigate Meltdown attacks, as the attack runs
entirely in the attacker domain. Phase 4 defenses could be used
with an additional performance cost [11, 15, 32, 79, 97, 101]. For
these defenses, it is important to not just focus on cache accesses
to guarantee mitigation of Meltdown attacks but more broadly
prevent operations from using non-architectural and potentially
secret data. Phase 5 defenses could be used to prevent or unroll
transient execution microarchitectural effects [1, 12, 34, 38, 51, 59,
61, 74, 76–78, 100]. However, mitigating the cache covert channel
is not sufficient to mitigate Meltdown attacks. Phase 6 defenses
could be used to break or slow down [21, 33, 65, 72, 81, 94, 95], or
detect [28, 38, 58, 75] the covert channel. However, currently none
of these defenses can guarantee the absence of Meltdown-usable
covert channels.

4.1 Meltdown-Focused Defenses
4.1.1 Industry. As Meltdown attacks are considered to be a hard-
ware bug, newer CPUs contain patches. For instance, newer Intel
CPUs contain fixes for Meltdown-US, which have been reverse-
engineered by Canella et al. [17]. They show that instead of return-
ing data, an access to privileged memory now returns 0.

For SGX, Intel proposes to either store secrets in uncacheable
memory or to flush the L1 data cache when switching protection
domains. Hypervisors similarly flush the L1 upon context switches
between untrusted virtual machine threads. To prevent attacks from
a VM running on a hyperthread, hypervisors implement variants of
gang scheduling [41, 64]. SGX takes the hyperthreading status into
account for attestation for the same reason. System Management
Mode (SMM) rendezvous logical cores and flushes the L1 upon
context switches.

Meltdown-GP, i.e., transient reads of system registers, has been
fixed via a microcode update [42]. Newer ARM CPUs are also not
vulnerable to Meltdown-GP, whereas older ones can be protected
via software workarounds [8]. Meltdown-NM (Lazy-FP) [86], which
exploited the lazy switching of floating-point unit (FPU) registers,
is mitigated by disabling lazy switching.

4.1.2 Academia. The first software-based defense against Melt-
down type attacks was KAISER [36, 37], which removes the kernel
mapping while running in user space. Unfortunately, on x86, some
privileged memory locations must always be mapped in user space,
and thus, can still be attacked [17]. KAISER was merged into Linux
as kernel page-table isolation (KPTI) [23]. Other operating systems
have received similar patches [35]. LAZARUS [6] pursues a similar
idea but uses unmapping and re-mapping of pages upon context
switching, which is problematic in multi-threaded applications.

Hua et al. [40] propose EPTI (Extended Page Table Isolation),
a variant of KPTI relying on extended page tables. As there is
hardware support for EPT switching and TLB entries from different
EPTs are tagged, e.g., with VMprocess IDs (VPIDs), the performance
loss is not as severe as with KPTI. However, as this approach uses
extended page tables, it leaves the system vulnerable to Meltdown-
P. MemoryRanger [56] isolates drivers, kernel and user space into
separate address spaces using EPTs.

To mitigate Meltdown-P (Foreshadow) on commodity systems,
operating systems now sanitize physical page-number fields of
unmapped page-table entries [41, 98] by setting the physical page-
number field to values that would refer to non-existent physical
memory.

Finally, academic research shows how formal verification could
more generically prevent Meltdown bugs [15, 30].

5 LVI COUNTERMEASURES
LVI attacks exploit deliberate incorrect behavior of the hardware
during transient execution, similar to Meltdown. In contrast to
Meltdown, LVI attacks run in the victim domain and turn the
Meltdown-type leakage around into data injection. That is, the
victim erroneously runs into transient execution with the injected
data values, similar to Spectre. In contrast to Spectre, LVI attacks
trigger the transient execution using illegal data flows instead of
misprediction. In principle, any data flow can be attacked using



LVI, which, based on the attacker’s capabilities, can be every load
operation in the victim.

Although LVI has similarities to both Meltdown and Spectre
attacks, unfortunately, the industry deployed countermeasures
against Meltdown and Spectre (silicon-level and microcode), are
orthogonal to LVI attacks. Specifically, Spectre defenses stop spec-
ulation around (branch) mispredictions, while LVI defenses should
stop speculation around all possible illegal data flows (e.g., all loads
in a program). Meltdown software and microcode defenses which
flush the microarchitectural structures after victim execution [41]
cannot mitigate LVI because LVI runs entirely within the victim do-
main. Even silicon hardening against Meltdown attacks by zeroing
illegal data flows [44] do not fully eliminate the LVI threat [91].

Furthermore, applying defenses that target the covert channel
that leaks the secret outside the transient execution, Phases 4, 5, and
6, could hinder LVI attacks. However, these defenses are limited, as
we discussed in Section 4.

5.1 LVI-Focused Defenses
5.1.1 Industry. Intel argues that LVI is not pratical in non-SGX
environments because the attacker has limited ability to cause
faults or assists in the victim process in such environments [46].
Therefore, Intel updated the SGX SDK (compiler and assembler-
based mitigations) to enable LVI-resilient enclaves. In contrast,
hardware-based mitigations could ultimately address LVI’s root
cause by ensuring that there are no illegal data flows from faulting
or assisted loads to dependent instructions. In principle, mitigating
specific Meltdown attacks would provide implicit mitigation of the
corresponding LVI attacks.

5.1.2 Academia. To fully mitigate LVI attacks without hardware
changes, serialization using lfence instructions after possibly ev-
ery illegal data flow, e.g., memory load, is required [91]. However,
the performance overheads of such mitigations is prohibitive and
future work has to find better security-performance trade-offs.

6 CONCLUSION
This paper shows a systematic evolution of defenses against transient-
execution attacks in both industry and academia since the initial
discoveries of the attacks. We show that despite the advances in
the understanding and systematic view of the field, the proposed
and deployed defenses are limited.
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