
Evolution of Defenses against Transient-Execution Attacks
Claudio Canella

Graz University of Technology, Austria
claudio.canella@iaik.tugraz.at

Sai Manoj Pudukotai Dinakarrao
George Mason University, USA

spudukot@gmu.edu

Daniel Gruss
Graz University of Technology, Austria

daniel.gruss@iaik.tugraz.at

Khaled N. Khasawneh
George Mason University, USA

kkhasawn@gmu.edu

ABSTRACT
Transient-execution attacks, such as Meltdown and Spectre, exploit
performance optimizations in modern CPUs to enable unauthorized
access to data across protection boundaries. Against these attacks,
we have noticed a rapid growth of deployed and proposed counter-
measures. In this paper, we show the evolution of countermeasures
against transient-execution attacks by both industry and academia
since the initial discoveries of the attacks. We show that despite
the advances in the understanding and systematic view of the field,
the proposed and deployed defenses are limited.

KEYWORDS
Transient-execution attacks, Meltdown, Spectre, LVI

ACM Reference Format:
Claudio Canella, Sai Manoj Pudukotai Dinakarrao, Daniel Gruss, and Khaled
N. Khasawneh. 2020. Evolution of Defenses against Transient-Execution
Attacks. In Great Lakes Symposium on VLSI 2020 (GLSVLSI ’20), September
7–9, 2020, Virtual Event, China. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/XXXXXX.XXXXXX

1 INTRODUCTION
Transient execution enables unauthorized access to data across
security protection boundaries. Transient execution refers to the
execution of instructions that will eventually get squashed, i.e.,
their execution results will not be committed to the architectural
state. Nonetheless, transient execution can leave a trace in the
microarchitectural state, e.g., the cache state. Therefore, transient-
execution attacks utilize the execution of transient instructions to
access secret data, e.g., a password, and leave a secret-dependent
trace in the microarchitectural state that can be recovered later
using non-transient execution. These attacks can be classified into
three main classes, namely Meltdown, Spectre, and Load Value
Injection (LVI), based on the nature of the transient execution and
the attack direction. Spectre is based on misprediction in the victim
domain, Meltdown is based on faults and assists in the attacker
domain, and LVI is based on faults and assists in the victim domain.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GLSVLSI ’20, September 7–9, 2020, Virtual Event, China
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7944-1/20/09. . . $15.00
https://doi.org/10.1145/XXXXXX.XXXXXX

The initial discovery of transient-execution attacks, i.e., Melt-
down and Spectre, became one of the most complex and largest
industry-wide embargos as processors from various manufacturers
turned out to be affected. As a result, many attacks variants were
discovered, but more noticeable is the proliferation of countermea-
sures from both industry and academia. Given the large number and
the rapid growth of both adopted and proposed countermeasures,
a systematic view is required to understand the scope of current
defenses and facilitate the evaluation of future defenses.

In this paper, we show how the landscape of countermeasures
against transient-execution attacks evolved since the initial discov-
eries of the attacks. We build our systematization based on a con-
current 6-phase generalization of transient-execution attacks [16].
We systematically describe hardware- and software-based coun-
termeasure advances from both industry and academia. Beyond
previous work [18, 99], our systematic view does not only cover
Spectre and Meltdown defenses but also LVI defenses. We show
that despite the advances in the understanding and systematic view
of the field, the proposed and deployed defenses are limited.

Outline. First, we briefly discuss background in Section 2. The
paper then gives a systematic overview of countermeasures for
Spectre (Section 3), Meltdown (Section 4), and LVI (Section 5). We
conclude in Section 6.

2 BACKGROUND
Out-of-order and speculative execution. To increase perfor-
mance, modern CPUs rely on features like speculative and out-
of-order execution. With speculative execution, CPUs try to predict
the outcome of a potential control-flow change to start the ex-
ecution of the likely path instead of stalling. For that, the CPU
provides various predictors that together comprise the Branch Pre-
diction Unit (BPU) [18]. Out-of-order execution allows executing
later instructions that are ready to be executed due to the operands
being available in advance, but still requires to retire them in order.
Recently, these optimizations have resulted in various transient-
execution attacks [18, 55, 60].
Transient-execution attacks.Transient-execution attacks exploit
modern CPUs performance optimizations to enable unauthorized
access to data across protection boundaries. According to a con-
current generalization of transient-execution attacks, these attacks
consist of 6 distinct phases [16]: Phase 1 (preparation): preparing the
micro-architecture to enter transient execution, Phase 2 (misspecu-
lation): triggering transient execution using a trigger instruction,
Phase 3 (access): accessing data of interest, Phase 4 (encoding): encod-
ing data of interest in the microarchitecture state, Phase 5 (leakage):
end of transient window, i.e., the architectural changes are reverted

https://doi.org/10.1145/XXXXXX.XXXXXX
https://doi.org/10.1145/XXXXXX.XXXXXX
https://doi.org/10.1145/XXXXXX.XXXXXX

and the pipeline is flushed, and Phase 6 (decoding): decoding the
microarchitectural state to the architectural state.

3 SPECTRE COUNTERMEASURES
A countermeasure can try to break any phase of a Spectre at-
tack [16]: preparation, misspeculation, access, encoding, leakage,
decoding. However, targeting different phases has different effects
on security. As the following discussion also shows, mitigating all
Spectre attacks in practice likely will remain an open problem in
the foreseeable future [62].

3.1 Preparation Prevention (Phase 1)
Phase 1 prepares the microarchitecture, e.g., the cache or branch
predictors, for the attack. Defenses targeting this phase usually
do not prevent this step entirely but only eliminate the attacker’s
influence on the victim domain. However, some variants do not re-
quire any preparation or run in-place, making it hard to distinguish
malicious training from benign execution.

3.1.1 Industry. To prevent mistraining, the industry, e.g., Intel
and AMD, extended ISAs with a mechanism for controlling in-
direct branches [4, 44]. Indirect Branch Restricted Speculation
(IBRS) prevents unprivileged code from influencing the predic-
tion of privileged code. Single Thread Indirect Branch Prediction
(STIBP) restricts sharing of branch prediction mechanisms across
hyperthreads. The Indirect Branch Predictor Barrier (IBPB) pre-
vents code that executes before it from affecting the prediction of
code following it. Some ARM CPUs implement specific controls
that invalidate the branch predictor, which should be used during
context switches [8]. Linux enabled those by default [52].

For Spectre-STL, ARM introduced new barrier instructions and
control registers to prevent the re-ordering of loads and stores [8].
Likewise, Intel [44] and AMD [3] provide Speculative Store Bypass
Disable (SSBD) microcode updates.

3.1.2 Academia. In contrast to industry, academia proposed more
fundamental architecture and microarchitecture changes. Vougi-
oukas et al. [93] use per-context buffers for branch predictor state
to improve performance after branch predictor flushes. Instead of
flushing, Zhao et al. [102] randomize the prediction based on the
running context. Both proposals maintain performance within a
process across context switches. However, in-place same-domain at-
tacks are unaffected by these designs and the approach by Zhao et al.
[102] may allow cross-domain and out-of-place attacks by reverse-
engineering the randomization.

3.2 Misspeculation Prevention (Phase 2)
Entirely disabling speculation seems easy, but the performance loss
is prohibitive [55, 87]. Hence, more realistic solutions in this phase
only selectively disable or stop speculative execution.

3.2.1 Industry. CPU vendors designed solutions using serializ-
ing instructions (lfence), stopping speculation at security-critical
branches. Unfortunately, these branches have to be identified and
essentially annotated on all layers.
Software-based defenses. Google proposed retpoline [89], a code
sequence replacing indirect branches with return instructions, to
prevent branch poisoning. Intel proposed randpoline [14] as a more

efficient alternative. Due to its probabilistic nature, randpoline does
not fully mitigate Spectre-BTB but only reduces success and leak-
age rates of attacks. Linux and Windows use retpoline on affected
machines by default [24, 43].
Hardware-based defenses. Both Intel andAMDdescribed fencing-
based solutions [4, 47]. However, they also both introduced new
architectural features to constrain speculative execution on the
microarchitectural level including instructions for synchronization
barriers for data (DSB) and instructions (ISB), broader speculation
barriers (CSDB) [8], new registers to restrict speculative execution
and instructions to restrain control-flow (cfp) and data value (dvp)
prediction, and cache prefetches (cpp) [7]. Even more broadly, both
Intel (with serialize) and ARMv8.5-A [7] (with sb) introduced
generic speculative execution barriers.

On future CPUs with Control-flow Enforcement Technology
(CET) capabilities, retpoline might trigger false positives in the CET
defenses [43]. Therefore, these CPUs implement enhanced IBRS, a
hardware defense for Spectre-BTB [43]. Intel [43] also provided a
microcode update against Spectre-RSB to stop speculation. How-
ever, on Skylake and newer architectures, the RSB may fall back to
the BTB, re-enabling Spectre-BTB attacks via return instructions.
To prevent this, the RSB is stuffed with the address of a benign
gadget when entering the kernel [43].

3.2.2 Academia. Academia helped identifying limitations of the
deployed serializing countermeasures [82]. Furthermore, they pro-
posed techniques to reduce the overhead of such defenses.
Software-based defenses. Schwarz et al. [82] showed that lfence
instructions only stop execution units from running subsequent
operations. Thus, fetch and decode still work, potentially leaking
data through the power-up of AVX functional units, the TLB, or
the instruction cache. Furthermore, performance-wise, serializing
every branch can be worse than using a processor without branch
prediction in the first place [42]. Shen et al. [83] split code into small
blocks and insert fences between the entry point and a potentially
leaking memory access to mitigate Spectre-BTB and Spectre-RSB.
However, an attacker could still jump unaligned into a code block,
i.e., directly to the memory access.

Instead of using lfence, Oleksenko et al. [68] propose to intro-
duce data dependencies between branch condition operands and
operations following the branch, stalling the execution of depen-
dent instructions. Unfortunately, due to compiler re-ordering, this
proposal is limited in its effectiveness.

As an alternative to retpoline and randpoline, Amit et al. [5]
designed JumpSwitches, which add a shortcut path for indirect
branches with a direct branch for the most likely target.
Hardware-based defenses. Vassena et al. [92] proposed to anno-
tate variables and insert lfences in code paths where such vari-
ables may be leaked. To reduce the high cost of adding fences,
Taram et al. [88] propose a hardware-based technique to dynami-
cally insert fences before potentially leaking loads. Koruyeh et al.
[57] argue that Spectre-BTB and Spectre-RSB usually leave the de-
fined control-flow graph. Hence, they propose SpecCFI to repurpose
control-flow integrity (CFI) to prevent speculative diversion from
the control-flow graph. Capability systems may also contribute to
Spectre mitigations [96].

Several designs introduce buffer flushes or hardware partitioning
to isolate different domains (e.g., security enclaves) [13, 31, 69].
However, a limitation to the flushing of caches and buffers upon
domain switches is that it is difficult to ensure nomicroarchitectural
state persists. A similar argument was made for the Raspberry PI
3 [90]. However, speculative fetches may leave microarchitectural
traces sufficient for an attack [9].

3.3 Data Access Prevention (Phase 3)
Preventing access to certain data during speculative execution is
a promising approach to fully mitigate Spectre attacks. Solutions
in this phase focus on secrets in memory. None of the solutions
presented for this phase protect against Spectre attacks on data in
registers.

3.3.1 Industry. Mainly, software-based defenses against data ac-
cess were adopted by the industry. With process isolation, Google
presented the first defense for this phase [22, 73]. Leaking secrets
from other contexts is mitigated unless the attacker can utilize
Meltdown to bypass process isolation permission checks.

Sanitizing values used in speculation can affect phase 3 and phase
4 as memory locations may be inaccessible. The idea of Speculative
Load Hardening (SLH) [19] is to check loads using branchless code
to ensure that it is executing along a valid control-flow path. One
prerequisite for this approach is that the hardware enables branch-
less and unpredicted conditional updates of register values. Both
LLVM and GCC support SLH today and provide a builtin function
to either emit a speculation barrier or return a safe value if the
instruction is transient [29].

WebKit employs two techniques to limit access to secret data [72].
First, bound checks are replaced with index masking, thus, only
introducing a maximum range for the out-of-bounds violation. Sec-
ond, a pseudo-random poison value protects pointers from misuse.
Using this approach, an attacker would first have to learn the poison
value to use it. Furthermore, mispredictions on type checks result
in the wrong type being used for the pointer.

3.3.2 Academia. Academia proposed software and hardware de-
fenses, including utilizing existing hardware technologies, e.g.,
Memory Protection Extensions (MPX) andMemory Protection Keys
(MPK).
Software-based defenses. Narayan et al. [66] implemented a sand-
boxing framework for Firefox that supports process-based isolation.
Furthermore, Ojogbo et al. [67] used bitmasks to arithmetically
guarantee that any speculatively computed index is in bounds.
Dong et al. [27] used Intel MPX for this purpose.

As a probabilistic countermeasure, Sianipar et al. [84] constantly
move secret data around in virtual and physical memory. However,
this only reduces the leakage rate. In contrast, many determinis-
tic proposals also target this attack phase. Palit et al. [70] use a
compiler extension that keeps annotated secret data encrypted in
memory most of the time. The secret key is stored in a register.
Hence, the attack surface is significantly reduced. Kiriansky and
Waldspurger [54] propose to restrict access to sensitive data by
using protection keys like Intel MPK technology [45]. However,
as an attacker could use Spectre to disable MPK using the wrpkru
instruction, they propose a microcode update for this instruction to

include an lfence. Nonetheless, an attacker can still access the data
if the system is susceptible to Meltdown-PK [18]. Jenkins et al. [48]
propose to use ELFbac [10] or Intel MPK against Spectre attacks.
Hardware-based defenses. Schwarz et al. [79] propose multiple
defenses against Spectre that all rely on annotation of secrets. The
compiler groups secret variables onto pages and marks these pages
as secure. For commodity systems, they then suggest a technique
called ConTExT-light [79], which uses uncacheable memory for
secrets, making them inaccessible during speculative execution.
Kiriansky et al. [53] propose to securely partition the cache across
its ways, with protection domains that isolate on a cache hit, cache
miss, and metadata level. However, this requires the correct man-
agement of these domains in software.

3.4 Data Encoding Prevention (Phase 4)
Kocher et al. [55] proposed to track data loaded during transient
execution and prevent its use in subsequent operations. Several
academic works propose new processor designs similar to this idea.
There is still no industry solution that targets this phase.

3.4.1 Academia. NDA [97] identifies potentially leaking instruc-
tions and defers their execution if they depend on a previous, not
yet retired, operation. Yu et al. [101] taint data that has not yet been
committed and uses light-weight taint tracking to delay instruc-
tions that use such tainted inputs. Cabodi et al. [15] use a similar
approach and verify it using model checking. Barber et al. [11] defer
the wake up of dependent load instructions from when the load
instruction it depends on is retired instead of when it is dispatched.
Other works [32, 79] propose to annotate secrets and, thus, only
track and protect secrets in registers and the cache.

3.5 Leakage Prevention (Phase 5)
Several solutions propose to speculate as usual but to either store re-
sults in new buffers or to completely remove the microarchitectural
traces. Many of the proposals only focus on memory accesses and
the cache.While effective against simple attacks, more sophisticated
attacks may remain unaffected [12].

3.5.1 Academia. Several proposed defenses introduce shadowhard-
ware structures for transient execution [1, 34, 51, 63, 77, 100] to
squash microarchitectural state changes upon a wrong prediction.
Lowe-Power et al. [61] and Saileshwar et al. [76] propose to undo
modifications to the microarchitectural state after misspeculation.
Li et al. [59] design a solution that targets specifically the Flush+
Reload covert channel, which spreads different values to different
pages and block speculative instructions that may lead to accesses
to different pages. Rockicki [74] also explored a similar direction
for in-order processors that use dynamic binary translation opti-
mizations for performance. Sakalis et al. [78] propose to delay L1
misses until they are certain to be committed. Nonetheless, these
proposals are vulnerable against side channels other than caches
e.g., DRAM buffers [71], or execution-unit congestion [2, 12].

3.6 Data Decoding Prevention (Phase 6)
Preventing covert channels is most likely infeasible as long as any
shared resource remains. Still, several works propose to mitigate or
detect Spectre by breaking or detecting the covert channel.

3.6.1 Industry. Accurate timers are a common, but not crucial,
building block of covert channels to distinguish microarchitec-
tural states. Hence, to mitigate browser-based attacks, many web
browsers reduced the accuracy of timers in JavaScript [21, 65,
72, 94]. However, custom timers can always be constructed [81]
and, thus, further mitigations are required [80]. After initially dis-
abling SharedArrayBuffers in response to Meltdown and Spec-
tre [21], they have been re-enabled with the introduction of site
isolation [85]. This is in line with an older research direction of
randomizing or reducing the resolution of timing measurements
for security [39].

3.6.2 Academia. Several works propose to detect the cache covert
channel used in Spectre attacks and stopping the corresponding
process. Most solutions proposed so far use hardware performance
counters for this purpose [26], while Sabbagh et al. [75] use memory
access traces, and Austin et al. [38] use the cyclic interference prop-
erty of contention-based cache leakage. However, several works
show that it is trivial to evade detection [25, 49, 50, 58]. It is im-
portant to note that these proposals only consider cache covert
channels.

Ge et al. [33] temporarily reduce the timer resolution whenever
the cache flush interface is used.Wang et al. [95] explore varying the
processor frequency to hinder native cache attacks. To alleviate the
performance and energy impact, they introduce value prediction.
However, value prediction is not inherently secure against Spectre
attacks and transiently diverting the control-flow of a victim by
inducing a false value via value prediction effectively provides the
attacker with the same capabilities. Chen et al. [20] propose to
mitigate transient-execution attacks on SGX by preventing inter-
ruption of enclaves. However, an attacker does not necessarily have
to interrupt an enclave to mount an attack.

4 MELTDOWN COUNTERMEASURES
Meltdown attacks exploit deliberate incorrect behavior of the hard-
ware during transient execution.While this may have been assumed
secure in the past, it must be considered a hardware bug today. We
first discuss applying Spectre-focused defenses to Meltdown attacks
followed by Meltdown-focused defenses.

The fundamental difference between Spectre and Meltdown type
attacks is based on the transient execution trigger; prediction or
fault based, respectively. Spectre-focused defenses that target Phases
1, 2, and 3 cannot mitigate Meltdown attacks, as the attack runs
entirely in the attacker domain. Phase 4 defenses could be used
with an additional performance cost [11, 15, 32, 79, 97, 101]. For
these defenses, it is important to not just focus on cache accesses
to guarantee mitigation of Meltdown attacks but more broadly
prevent operations from using non-architectural and potentially
secret data. Phase 5 defenses could be used to prevent or unroll
transient execution microarchitectural effects [1, 12, 34, 38, 51, 59,
61, 74, 76–78, 100]. However, mitigating the cache covert channel
is not sufficient to mitigate Meltdown attacks. Phase 6 defenses
could be used to break or slow down [21, 33, 65, 72, 81, 94, 95], or
detect [28, 38, 58, 75] the covert channel. However, currently none
of these defenses can guarantee the absence of Meltdown-usable
covert channels.

4.1 Meltdown-Focused Defenses
4.1.1 Industry. As Meltdown attacks are considered to be a hard-
ware bug, newer CPUs contain patches. For instance, newer Intel
CPUs contain fixes for Meltdown-US, which have been reverse-
engineered by Canella et al. [17]. They show that instead of return-
ing data, an access to privileged memory now returns 0.

For SGX, Intel proposes to either store secrets in uncacheable
memory or to flush the L1 data cache when switching protection
domains. Hypervisors similarly flush the L1 upon context switches
between untrusted virtual machine threads. To prevent attacks from
a VM running on a hyperthread, hypervisors implement variants of
gang scheduling [41, 64]. SGX takes the hyperthreading status into
account for attestation for the same reason. System Management
Mode (SMM) rendezvous logical cores and flushes the L1 upon
context switches.

Meltdown-GP, i.e., transient reads of system registers, has been
fixed via a microcode update [42]. Newer ARM CPUs are also not
vulnerable to Meltdown-GP, whereas older ones can be protected
via software workarounds [8]. Meltdown-NM (Lazy-FP) [86], which
exploited the lazy switching of floating-point unit (FPU) registers,
is mitigated by disabling lazy switching.

4.1.2 Academia. The first software-based defense against Melt-
down type attacks was KAISER [36, 37], which removes the kernel
mapping while running in user space. Unfortunately, on x86, some
privileged memory locations must always be mapped in user space,
and thus, can still be attacked [17]. KAISER was merged into Linux
as kernel page-table isolation (KPTI) [23]. Other operating systems
have received similar patches [35]. LAZARUS [6] pursues a similar
idea but uses unmapping and re-mapping of pages upon context
switching, which is problematic in multi-threaded applications.

Hua et al. [40] propose EPTI (Extended Page Table Isolation),
a variant of KPTI relying on extended page tables. As there is
hardware support for EPT switching and TLB entries from different
EPTs are tagged, e.g., with VMprocess IDs (VPIDs), the performance
loss is not as severe as with KPTI. However, as this approach uses
extended page tables, it leaves the system vulnerable to Meltdown-
P. MemoryRanger [56] isolates drivers, kernel and user space into
separate address spaces using EPTs.

To mitigate Meltdown-P (Foreshadow) on commodity systems,
operating systems now sanitize physical page-number fields of
unmapped page-table entries [41, 98] by setting the physical page-
number field to values that would refer to non-existent physical
memory.

Finally, academic research shows how formal verification could
more generically prevent Meltdown bugs [15, 30].

5 LVI COUNTERMEASURES
LVI attacks exploit deliberate incorrect behavior of the hardware
during transient execution, similar to Meltdown. In contrast to
Meltdown, LVI attacks run in the victim domain and turn the
Meltdown-type leakage around into data injection. That is, the
victim erroneously runs into transient execution with the injected
data values, similar to Spectre. In contrast to Spectre, LVI attacks
trigger the transient execution using illegal data flows instead of
misprediction. In principle, any data flow can be attacked using

LVI, which, based on the attacker’s capabilities, can be every load
operation in the victim.

Although LVI has similarities to both Meltdown and Spectre
attacks, unfortunately, the industry deployed countermeasures
against Meltdown and Spectre (silicon-level and microcode), are
orthogonal to LVI attacks. Specifically, Spectre defenses stop spec-
ulation around (branch) mispredictions, while LVI defenses should
stop speculation around all possible illegal data flows (e.g., all loads
in a program). Meltdown software and microcode defenses which
flush the microarchitectural structures after victim execution [41]
cannot mitigate LVI because LVI runs entirely within the victim do-
main. Even silicon hardening against Meltdown attacks by zeroing
illegal data flows [44] do not fully eliminate the LVI threat [91].

Furthermore, applying defenses that target the covert channel
that leaks the secret outside the transient execution, Phases 4, 5, and
6, could hinder LVI attacks. However, these defenses are limited, as
we discussed in Section 4.

5.1 LVI-Focused Defenses
5.1.1 Industry. Intel argues that LVI is not pratical in non-SGX
environments because the attacker has limited ability to cause
faults or assists in the victim process in such environments [46].
Therefore, Intel updated the SGX SDK (compiler and assembler-
based mitigations) to enable LVI-resilient enclaves. In contrast,
hardware-based mitigations could ultimately address LVI’s root
cause by ensuring that there are no illegal data flows from faulting
or assisted loads to dependent instructions. In principle, mitigating
specific Meltdown attacks would provide implicit mitigation of the
corresponding LVI attacks.

5.1.2 Academia. To fully mitigate LVI attacks without hardware
changes, serialization using lfence instructions after possibly ev-
ery illegal data flow, e.g., memory load, is required [91]. However,
the performance overheads of such mitigations is prohibitive and
future work has to find better security-performance trade-offs.

6 CONCLUSION
This paper shows a systematic evolution of defenses against transient-
execution attacks in both industry and academia since the initial
discoveries of the attacks. We show that despite the advances in
the understanding and systematic view of the field, the proposed
and deployed defenses are limited.

ACKNOWLEDGMENTS
This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research
and innovation program (grant agreement No 681402). This work
has been supported by the Austrian Research Promotion Agency
(FFG) via the project ESPRESSO, which is funded by the province of
Styria and the Business Promotion Agencies of Styria and Carinthia.
Additional funding was provided by generous gifts from ARM. Any
opinions, findings, and conclusions or recommendations expressed
in this paper are those of the authors and do not necessarily reflect
the views of the funding parties.

REFERENCES
[1] Sam Ainsworth and Timothy M Jones. 2019. MuonTrap: Preventing Cross-

Domain Spectre-Like Attacks by Capturing Speculative State. arXiv:1911.08384.

[2] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan, Cesar Pereida
García, and Nicola Tuveri. 2019. Port contention for fun and profit. In S&P.

[3] AMD. 2018. AMD64 Technology: Speculative Store Bypass Disable.
[4] AMD. 2018. Software Techniques for Managing Speculation on AMD Processor.
[5] Nadav Amit, Fred Jacobs, and Michael Wei. 2019. Jumpswitches: restoring the

performance of indirect branches in the era of spectre. In USENIX ATC.
[6] OrlandoArias, David Gens, Yier Jin, Christopher Liebchen, Ahmad-Reza Sadeghi,

and Dean Sullivan. 2017. LAZARUS: Practical Side-channel Resilient Kernel-
Space Randomization. In RAID.

[7] ARM. 2013. ARM Architecture Reference Manual ARMv8.
[8] ARM. 2018. Cache Speculation Side-channels.
[9] Musard Balliu, Mads Dam, and Roberto Guanciale. 2019. InSpectre: Breaking and

Fixing Microarchitectural Vulnerabilities by Formal Analysis. arXiv:1911.00868.
[10] Julian Bangert, Sergey Bratus, Rebecca Shapiro, Michael E Locasto, Jason Reeves,

Sean W Smith, and Anna Shubina. 2013. ELFbac: using the loader format for
intent-level semantics and fine-grained protection. . Dartmouth Technical Report.

[11] Kristin Barber, Anys Bacha, Li Zhou, Yinqian Zhang, and Radu Teodorescu.
2019. Specshield: Shielding speculative data from microarchitectural covert
channels. In PACT.

[12] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandtner,
Alessandro Sorniotti, Babak Falsafi, Mathias Payer, and Anil Kurmus. 2019.
Smotherspectre: exploiting speculative execution through port contention. In
CCS.

[13] Thomas Bourgeat, Ilia Lebedev, Andrew Wright, Sizhuo Zhang, and Srinivas
Devadas. 2019. MI6: Secure enclaves in a speculative out-of-order processor. In
MICRO.

[14] R Branco, K Hu, K Sun, and H Kawakami. 2019. Efficient mitigation of side-
channel based attacks against speculative execution processing architectures.

[15] Gianpiero Cabodi, Paolo Camurati, Fabrizio Finocchiaro, and Danilo Ven-
draminetto. 2019. Model-Checking Speculation-Dependent Security Properties:
Abstracting and Reducing Processor Models for Sound and Complete Verifica-
tion. Electronics (2019).

[16] Claudio Canella, Khaled N. Khasawneh, and Daniel Gruss. 2020. The Evolution
of Transient-Execution Attacks. In GLSVLSI.

[17] Claudio Canella, Michael Schwarz, Martin Haubenwallner, Martin Schwarzl,
and Daniel Gruss. 2020. KASLR: Break It, Fix It, Repeat. In AsiaCCS.

[18] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin von
Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss.
2019. A Systematic Evaluation of Transient Execution Attacks and Defenses. In
USENIX Security. Extended classification tree and PoCs at https://transient.fail/.

[19] Chandler Carruth. 2018. RFC: Speculative Load Hardening (a Spectre variant1
mitigation).

[20] Guoxing Chen, Mengyuan Li, Fengwei Zhang, and Yinqian Zhang. 2019. De-
feating Speculative-Execution Attacks on SGX with HyperRace. In DSC.

[21] Chromium Projects. 2018. Actions required tomitigate Speculative Side-Channel
Attack techniques.

[22] Chromium Projects. 2018. Site Isolation.
[23] Jonathan Corbet. 2017. The current state of kernel page-table isolation.
[24] Microsoft Corp. 2019. https://support.microsoft.com/en-us/help/4482887/

windows-10-update-kb4482887
[25] Sai Manoj P D, Sairaj Amberkar, Sahil Bhat, Abhijitt Dhavlle, Hossein Sayadi,

Avesta Sasan, Houman Homayoun, and Setareh Rafatirad. 2019. Adversarial
attack on microarchitectural events based malware detectors. In DAC.

[26] Jonas Depoix and Philipp Altmeyer. 2018. Detecting Spectre Attacks by identi-
fying Cache Side-Channel Attacks using Machine Learning. WAMOS (2018).

[27] Xiaowan Dong, Zhuojia Shen, John Criswell, Alan Cox, and Sandhya Dwarkadas.
2018. Spectres, virtual ghosts, and hardware support. In HASP.

[28] Swastika Dutta and Sayan Sinha. 2019. Performance statistics and learning
based detection of exploitative speculative attacks. In CF.

[29] R Earnshaw. 2018. Mitigation against unsafe data speculation (CVE-2017-5753).
[30] Mohammad Rahmani Fadiheh, Dominik Stoffel, Clark Barrett, Subhasish Mitra,

and Wolfgang Kunz. 2019. Processor hardware security vulnerabilities and their
detection by unique program execution checking. In DATE.

[31] Andrew Ferraiuolo, Mark Zhao, Andrew C Myers, and G Edward Suh. 2018.
HyperFlow: A processor architecture for nonmalleable, timing-safe information
flow security. In CCS.

[32] Jacob Fustos, Farzad Farshchi, and Heechul Yun. 2019. SpectreGuard: An Effi-
cient Data-centric Defense Mechanism against Spectre Attacks. In DAC.

[33] Jingquan Ge, Neng Gao, Chenyang Tu, Ji Xiang, and Zeyi Liu. 2019. AdapTimer:
Hardware/Software Collaborative Timer Resistant to Flush-Based Cache Attacks
on ARM-FPGA Embedded SoC. In ICCD.

[34] Abraham Gonzalez, Ben Korpan, Jerry Zhao, Ed Younis, and Krste Asanović.
2019. Replicating and Mitigating Spectre Attacks on an Open Source RISC-V
Microarchitecture. In CARRV.

[35] Daniel Gruss, Dave Hansen, and Brendan Gregg. 2018. Kernel isolation: From
an academic idea to an efficient patch for every computer. ; login: the USENIX
Magazine (2018).

https://support.microsoft.com/en-us/help/4482887/windows-10-update-kb4482887
https://support.microsoft.com/en-us/help/4482887/windows-10-update-kb4482887

[36] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, Clémentine Mau-
rice, and Stefan Mangard. 2017. Kaslr is dead: long live kaslr. In ESSoS.

[37] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and Stefan Man-
gard. 2016. Prefetch side-channel attacks: Bypassing SMAP and kernel ASLR.
In CCS.

[38] Austin Harris, Shijia Wei, Prateek Sahu, Pranav Kumar, Todd Austin, and Mohit
Tiwari. 2019. Cyclone: Detecting Contention-Based Cache Information Leaks
Through Cyclic Interference. In MICRO.

[39] Wei-Ming Hu. 1992. Reducing timing channels with fuzzy time. Journal of
computer security (1992).

[40] Zhichao Hua, Dong Du, Yubin Xia, Haibo Chen, and Binyu Zang. 2018. EPTI:
Efficient Defence against Meltdown Attack for Unpatched VMs. In USENIX
ATC.

[41] Intel. 2018. Deep Dive: Intel Analysis of L1 Terminal Fault.
[42] Intel. 2018. Intel Analysis of Speculative Execution Side Channels.
[43] Intel. 2018. Retpoline: A Branch Target Injection Mitigation. Revision.
[44] Intel. 2018. Speculative Execution Side Channel Mitigations.
[45] Intel. 2019. Intel 64 and IA-32 architectures software developer’s manual.
[46] Intel. 2020. Deep Dive: Load Value Injection.
[47] Intel. 2020. Side Channel Mitigation by Product CPU Model.
[48] Ira Ray Jenkins, Prashant Anantharaman, Rebecca Shapiro, J Peter Brady, Sergey

Bratus, and SeanW Smith. 2020. Ghostbusting: Mitigating spectre with intrapro-
cess memory isolation. In HoTSoS.

[49] Khaled N Khasawneh, Nael Abu-Ghazaleh, Dmitry Ponomarev, and Lei Yu. 2017.
RHMD: Evasion-resilient hardware malware detectors. In MICRO.

[50] Khaled N Khasawneh, Nael B Abu-Ghazaleh, Dmitry Ponomarev, and Lei Yu.
2018. Adversarial Evasion-Resilient Hardware Malware Detectors. In ICCAD.

[51] Khaled N Khasawneh, Esmaeil Mohammadian Koruyeh, Chengyu Song, Dmitry
Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. 2019. Safespec: Ban-
ishing the spectre of a meltdown with leakage-free speculation. In DAC.

[52] Russel King. 2018. Spectre-v2: harden branch predictor on context switches.
[53] Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe, Srinivas Devadas, and

Joel Emer. 2018. DAWG: A defense against cache timing attacks in speculative
execution processors. In MICRO.

[54] Vladimir Kiriansky and Carl Waldspurger. 2018. Speculative buffer overflows:
Attacks and defenses. arXiv:1807.03757 (2018).

[55] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, et al.
2019. Spectre attacks: Exploiting speculative execution. In S&P.

[56] Igor Korkin. 2018. Divide et Impera: MemoryRanger Runs Drivers in Isolated
Kernel Spaces. arXiv:1812.09920 (2018).

[57] Esmaeil Mohammadian Koruyeh, Shirin Haji Amin Shirazi, Khaled N Kha-
sawneh, Chengyu Song, and Nael Abu-Ghazaleh. 2019. SPECCFI: Mitigating
Spectre Attacks using CFI Informed Speculation. arXiv:1906.01345 (2019).

[58] Congmiao Li and Jean-Luc Gaudiot. 2020. Challenges in Detecting an “Evasive
Spectre”. IEEE Computer Architecture Letters (2020).

[59] Peinan Li, Lutan Zhao, Rui Hou, Lixin Zhang, and Dan Meng. 2019. Conditional
Speculation: An effective approach to safeguard out-of-order execution against
spectre attacks. In HPCA.

[60] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from
User Space. In USENIX Security.

[61] Jason Lowe-Power, Venkatesh Akella, Matthew K Farrens, Samuel T King, and
Christopher J Nitta. 2018. Position Paper: A case for exposing extra-architectural
state in the ISA. In HASP.

[62] Ross Mcilroy, Jaroslav Sevcik, Tobias Tebbi, Ben L Titzer, and Toon Verwaest.
2019. Spectre is here to stay: An analysis of side-channels and speculative
execution. arXiv:1902.05178 (2019).

[63] Avi Mendelson. 2019. Secure Speculative Core. In IEEE SOCC.
[64] Microsoft. 2018. Microsoft Techcommunity. Hyper-V HyperClear Mitigation

for L1 Terminal Fault.
[65] Microsoft. 2018. Mitigating speculative execution side-channel attacks in Mi-

crosoft Edge and Internet Explorer.
[66] Shravan Narayan, Craig Disselkoen, Tal Garfinkel, Nathan Froyd, Eric Rahm,

Sorin Lerner, Hovav Shacham, and Deian Stefan. 2020. Retrofitting Fine Grain
Isolation in the Firefox Renderer. In USENIX Security.

[67] Ejebagom John Ojogbo, Mithuna Thottethodi, and TN Vijaykumar. 2020. Secure
automatic bounds checking: prevention is simpler than cure. In CGO.

[68] Oleksii Oleksenko, Bohdan Trach, Tobias Reiher, Mark Silberstein, and Christof
Fetzer. 2018. You shall not bypass: Employing data dependencies to prevent
bounds check bypass. arXiv:1805.08506 (2018).

[69] Hamza Omar and Omer Khan. 2019. IRONHIDE: A Secure Multicore Architec-
ture that Leverages Hardware Isolation Against Microarchitecture State Attacks.
arXiv:1904.12729 (2019).

[70] Tapti Palit, Fabian Monrose, and Michalis Polychronakis. 2019. Mitigating data
leakage by protecting memory-resident sensitive data. In ACSAC.

[71] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan
Mangard. 2016. DRAMA: Exploiting DRAM addressing for cross-cpu attacks.

In USENIX Security.
[72] Filip Pizlo. 2018. What Spectre and Meltdown mean for WebKit.
[73] Charles Reis, Alexander Moshchuk, and Nasko Oskov. 2019. Site isolation:

process separation for web sites within the browser. In USENIX Security.
[74] Simon Rokicki. 2020. GhostBusters: Mitigating Spectre Attacks on a DBT-Based

Processor. In DATE.
[75] Majid Sabbagh, Yunsi Fei, Thomas Wahl, and A Adam Ding. 2018. SCADET: a

side-channel attack detection tool for tracking Prime+ Probe. In ICCAD.
[76] Gururaj Saileshwar and Moinuddin K Qureshi. 2019. CleanupSpec: An “Undo”

Approach to Safe Speculation. In MICRO.
[77] Christos Sakalis, Mehdi Alipour, Alberto Ros, Alexandra Jimborean, Stefanos

Kaxiras, and Magnus Själander. 2019. Ghost loads: what is the cost of invisible
speculation?. In CF.

[78] Christos Sakalis, Stefanos Kaxiras, Alberto Ros, Alexandra Jimborean, and Mag-
nus Själander. 2019. Efficient invisible speculative execution through selective
delay and value prediction. In ISCA.

[79] Michael Schwarz, Moritz Lipp, Claudio Canella, Robert Schilling, Florian Kargl,
and Daniel Gruss. 2020. ConTExT: A Generic Approach for Mitigating Spectre.
In NDSS.

[80] Michael Schwarz, Moritz Lipp, and Daniel Gruss. 2018. JavaScript Zero: Real
JavaScript and Zero Side-Channel Attacks.. In NDSS.

[81] Michael Schwarz, Clémentine Maurice, Daniel Gruss, and Stefan Mangard. 2017.
Fantastic timers and where to find them: high-resolution microarchitectural
attacks in JavaScript. In FC.

[82] Michael Schwarz, Martin Schwarzl, Moritz Lipp, Jon Masters, and Daniel Gruss.
2019. Netspectre: Read arbitrary memory over network. In ESORICS.

[83] Zhuojia Shen, Jie Zhou, Divya Ojha, and John Criswell. 2018. Restricting control
flow during speculative execution. In CCS.

[84] Johannes Sianipar, Muhammad Sukmana, and Christoph Meinel. 2018. Moving
Sensitive Data Against Live Memory Dumping, Spectre and Meltdown Attacks.
In 2018 26th International Conference on Systems Engineering (ICSEng). IEEE.

[85] Ben Smith. 2018. Enable SharedArrayBuffer by default on non-android.
[86] Julian Stecklina and Thomas Prescher. 2018. Lazyfp: Leaking fpu register state

using microarchitectural side-channels. arXiv:1806.07480 (2018).
[87] SUSE. 2018. Security update for kernel-firmware. https://www.suse.com/

support/update/announcement/2018/suse-su-20180008-1
[88] Mohammadkazem Taram, Ashish Venkat, and Dean Tullsen. 2019. Context-

sensitive fencing: Securing speculative execution via microcode customization.
In ASPLOS.

[89] Paul Turner. 2018. Retpoline: a software construct for preventing branch-target-
injection.

[90] Eben Upton. 2018. Why Raspberry Pi isn’t vulnerable to Spectre or Meltdown.
[91] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp, Marina Minkin,

Daniel Genkin, Yarom Yuval, Berk Sunar, Daniel Gruss, and Frank Piessens.
2020. LVI: Hijacking Transient Execution through Microarchitectural Load
Value Injection. In S&P.

[92] Marco Vassena, Klaus V Gleissenthall, Rami Gökhan Kici, Deian Stefan, and
Ranjit Jhala. 2020. Automatically eliminating speculative leaks with blade.
arXiv:2005.00294 (2020).

[93] Ilias Vougioukas, Nikos Nikoleris, Andreas Sandberg, Stephan Diestelhorst,
Bashir M Al-Hashimi, and Geoff V Merrett. 2019. BRB: Mitigating Branch
Predictor Side-Channels. In HPCA.

[94] Luke Wagner. 2018. Mitigations landing for new class of timing attack.
[95] Han Wang, Hossein Sayadi, Tinoosh Mohsenin, Liang Zhao, Avesta Sasan,

Setareh Rafatirad, and Houman Homayoun. 2020. Mitigating Cache-Based
Side-Channel Attacks through Randomization: A Comprehensive System and
Architecture Level Analysis. DATE.

[96] Robert NM Watson, Jonathan Woodruff, Michael Roe, Simon W Moore, and
Peter GNeumann. 2018. Capability hardware enhanced RISC instructions (CHERI):
Notes on the Meltdown and Spectre attacks. Technical Report.

[97] Ofir Weisse, Ian Neal, Kevin Loughlin, Thomas F Wenisch, and Baris Kasikci.
2019. Nda: Preventing speculative execution attacks at their source. In MICRO.

[98] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Raoul Strackx, Thomas F Wenisch, and Yuval Yarom.
2018. Foreshadow-NG: Breaking the virtual memory abstraction with transient
out-of-order execution.

[99] Wenjie Xiong and Jakub Szefer. 2020. Survey of Transient Execution Attacks.
arXiv:2005.13435 (2020).

[100] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam Morrison, Christopher
Fletcher, and Josep Torrellas. 2018. Invisispec: Making speculative execution
invisible in the cache hierarchy. In MICRO.

[101] Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Morrison, Josep Torrellas, and
Christopher W Fletcher. 2019. Speculative Taint Tracking (STT) A Comprehen-
sive Protection for Speculatively Accessed Data. In MICRO.

[102] Lutan Zhao, Peinan Li, Rui Hou, Jiazhen Li, Michael C Huang, Lixin Zhang,
Xuehai Qian, and Dan Meng. 2020. A Lightweight Isolation Mechanism for
Secure Branch Predictors. arXiv:2005.08183 (2020).

https://www.suse.com/support/update/announcement/2018/suse-su-20180008-1
https://www.suse.com/support/update/announcement/2018/suse-su-20180008-1

	Abstract
	1 Introduction
	2 Background
	3 Spectre Countermeasures
	3.1 Preparation Prevention (Phase 1)
	3.2 Misspeculation Prevention (Phase 2)
	3.3 Data Access Prevention (Phase 3)
	3.4 Data Encoding Prevention (Phase 4)
	3.5 Leakage Prevention (Phase 5)
	3.6 Data Decoding Prevention (Phase 6)

	4 Meltdown Countermeasures
	4.1 Meltdown-Focused Defenses

	5 LVI Countermeasures
	5.1 LVI-Focused Defenses

	6 Conclusion
	References

