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Abstract—Field-Programmable Gate Arrays (FPGA) are pow-
erful reconfigurable platforms that can support the efficient
processing of a diverse range of applications. Further, the emer-
gence of High-Level Synthesis (HLS) tools shifted the paradigm
of hardware design by making the process of mapping high-
level programming languages to hardware design such as C to
VHDL/Verilog feasible. HLS tools offer a plethora of techniques
to optimize designs for both area and performance, but resource
usage and timing reports of HLS tools mostly deviate from the
post-implementation results. In addition, to evaluate a hardware
design performance, it is critical to determine the maximum
achievable clock frequency. Obtaining such information using
static timing analysis provided by CAD tools is difficult, due to
the multitude of tool options. Moreover, a binary search to find
the maximum frequency is tedious, time-consuming, and often
does not obtain the optimal result. To address these challenges,
we propose a framework, called Pyramid, that uses machine
learning to accurately estimate the optimal performance and
resource utilization of an HLS design. For this purpose, we first
create a database of C-to-FPGA results from a diverse set of
benchmarks. To find the achievable maximum clock frequency,
we use Minerva, which is an automated hardware optimization
tool. Minerva determines the close-to-optimal settings of tools,
using static timing analysis and a heuristic algorithm, and targets
either optimal throughput or throughput-to-area. Pyramid uses
the database to train an ensemble machine learning model to
map the HLS-reported features to the results of Minerva. To
this end, Pyramid re-calibrates the results of HLS to bridge the
accuracy gap, and enable developers to estimate the throughput
or throughput-to-area of hardware design with more than 95%
accuracy and alleviates the need to perform actual implementa-
tion for estimation.

Index Terms—HLS, ensemble learning, timing estimation

I. INTRODUCTION

The end of Dennard Scaling [1] era and the thrive to achieve
high performance led to the evolution of numerous computer
architecture designs. The diversity, design complexity and
involved costs ceased the existence of ASICs to be the best
hardware execution platforms.

Platforms such as FPGAs emerged as the potential solution,
despite the fact that FPGAs are nearly one order magnitude
slower than the specialized ASICs [2]–[4]. FPGAs enjoy other
benefits such as on-the-fly programmability, reconfigurability,
and energy-efficiency [5], [6]. Most importantly, the feasibility

and the development of hardware/software co-design tools
facilitated computer architects or programmers to design a
hardware without requiring deeper insights into hardware [7],
[8].

High-level synthesis (HLS) tools such as Xilinx’s Vivado
HLS [9] and Intel’s HLS [10] are widely used to simplify
the design efforts and expedite the time-to-market. HLS tools
translate a design written in high-level languages such as
C/C++/SystemC into a low-level hardware description lan-
guage (HDL). HLS shortened the learning curve of hardware
accelerator design by obscuring the details of the hardware
execution model. Moreover, HLS enables quick modification
of a design by adding directives such as pipeline and unrolling
factors that allows programmers to explore the design space.
However, HLS-generated register-transfer-level (RTL) models
are in general not human-readable.

In addition, HLS tools report an estimate of the expected
timing, latency, and resource utilization of the design. These
reports are important as most of the time, they are the only
evidence that a designer can use it to modify or optimize the
design to meet the design or performance constraints.

Throughput, and throughput-to-area ratio are some of the
most important metrics used for hardware evaluation. The
maximum throughput of a design depends on the maximum
clock frequency supported by the design and the way the high-
level description has been synthesized. The maximum achiev-
able clock frequency of a given HLS design can be estimated
or measured at different phases of the design process. An
estimation of the maximum clock frequency can be obtained
from HLS timing reports [11]. Despite the importance of these
reports, many of them are highly inaccurate, as final resource
usage and timing reports of HLS depend on the implemen-
tation phases such as logic synthesis, and place&route, that
are beyond the HLS tool capability. Therefore, it is difficult
for even state-of-the-art HLS tools to accurately estimate the
performance and resource utilization of a design.

On the other hand, it is also possible to calculate the max-
imum clock frequency in the implementation process. Timing
results can be obtained after synthesis, placing&routing, or
on the real hardware design. The post-synthesis and post



Bitstream

Logic Synthesis, Technology 
Mapping, and Place&Route Minerva

Pyramid

Highly accurate 
timing and resource 

estimation

Fig. 1. HLS design flow + our approach

place&route results are determined by the FPGA tools using
static timing analysis. There are challenges associated with
the static timing analysis of digital systems designs: The
latest version of CAD tools provided by Xilinx (Vivado),
does not have the capability to report the maximum frequency
achievable for a given code. The user must request a target
frequency, and the tool reports either a “pass” or “fail” for its
attempt to achieve this goal. While there are 25 optimization
strategies predefined in the tool, applying them sequentially,
is extremely tedious and time consuming.

To address these challenges, we propose a framework called
Pyramid which uses an ensemble machine learning model to
estimate the optimal throughput or throughput-to-area of a
given HLS design only by using information extracted from
the reports of HLS tool. To this goal, we first use Minerva tool
[12] – an automated hardware optimization tool that employs a
unique heuristic algorithm which is customized for frequency
search using CAD toolsets. By using Minerva, we obtain
results in terms of throughput, and throughput-to-area ratio
for the RTL code generated by HLS tool. Then, we build a
comprehensive dataset using HLS reports and corresponding
Minerva results. By using this dataset, Pyramid framework
trains an ensemble learning model to achieve high accuracy
(more than 95%) for the estimation tasks. In this framework,
we leverage hundreds of features that can be readily extracted
from the HLS reports to accurately estimate the results of
Minerva without actually running the implementation flow.

II. CHALLENGES AND SOLUTION

A. Inaccuracy of the HLS report

Figure 1 (the left part) shows HLS-based design flow
which starts with a high-level software program such as C,
C++, or SystemC. HLS tool translates the high-level language
programs into HDL models such as Verilog and VHDL. Addi-
tionally, HLS tools report the expected timing, and estimated
resource usage.

At the HLS stage, it is hard to accurately estimate the post-
HLS (implementation) results as the implementation process
includes many non-trivial steps. Additionally, the reported
resource utilization metrics such as the number of LUTs,
flip-flops (FFs), DSPs, block RAMs (BRAMs), and timing
reports is dependent on the target FPGA specification. HLS

TABLE I
AVERAGE HLS ESTIMATION ERROR OVER 90 BENCHMARKS

Devices Artix7 Kintex7 Virtex7
Tragets Resource Timing Resource Timing Resource Timing
HLS Estimate 91.7% 23.6% 112.5% 28.1% 88.4% 17.2%

tools try to estimate resource and timing of the design by
characterizing functional units and instantiated functional for
each design. However, such estimation fails to capture the
impact of optimization during the implementation.

We use Root Mean Squared Error (RMSE) presented in
equation 1 to evaluate the accuracy of the estimation of HLS’s
report with respect to the results of post-implementation. We
use this metric for reporting of the estimation error in this
work.

Relative RMSE =

√√√√ 1

N

N∑
n=1

(
pi − ai
ai

)2 × 100 (1)

where N is the number of samples, and pi and ai are the
predicted and actual values of the sample, respectively. We
want the % relative RMSE to be as low as possible. RMSE is
a standard metric in regression which is sensitive to scalability.
Table I shows the Relative RMSE for timing and resource
utilization for more than 90 studied benchmarks (details will
be discussed later in this paper).

The results confirm a significant deviation between the HLS
report and the corresponding real implementation. This is in
fact due to the implementation process, where the HDL models
go through logic synthesis, technology mapping, and place-
ment and routing which are not considered by the HLS tools.
Therefore, post-implementation reports including the actual
resource usage and timing on the target FPGA significantly
differs from the HLS report.

B. Challenge of Hardware Evaluation

In addition to the accurate estimate of performance met-
rics, evaluating them is another challenge to be addressed.
Throughput and throughput-to-area (Freq./#LUTs) are two
most common evaluation metrics for a hardware design. The
calculation of these metrics is complex, as there are several
challenges in using of static timing analysis for finding the
maximum clock frequency of a design.

To show the challenge in finding maximum clock frequency,
we performed synthesis and implementation for the VHDL
code of a CAESAR Round 2 candidate (ICEPOLE). We
generate Worst Negative Slack (WNS) results for 128 dif-
ferent target clock frequencies in order to observe the trend.
The target clock frequency was set to 333 MHz, and the
theoretically achievable frequency (further referred to as the
reference frequency) was calculated based on WNS, utilizing
the following equation:

Minimum Clock = Target Clock −WNS (2)

In the next step, WNS results were generated for the
requested clock frequency varying from -64 to +64 MHz of
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Fig. 2. Dependence of WNS on the Requested Clock Frequency and graphical
representation of the binary search scheme

the reference frequency, with a precision of 1 MHz. Figure
2 shows the trend. As observed in this Figure, there are
fluctuations around the calculated reference clock frequency.
As we can observe, the result of binary search is 346 MHz
(number 8 in the figure), which is not the correct maximum
frequency. Based on the ICEPOLE graph, the maximum fre-
quency is 389 MHz. Therefore, based on the aforementioned
graph, designer cannot only rely on the above equation to
calculate the actual maximum clock frequency. It is important
to note that these results were obtained using only default
options of Vivado. Given the vast optimization strategies exist
in Vivado, calculating the maximum clock frequency becomes
more challenging. Another challenge is that Vivado Design
Suite offers 25 predefined optimization strategies, which can
be tuned to achieve a higher maximum frequency and a more
optimized design. Hence, incorporating all of these strategies
leads to a large exploratory space. Therefore, a designer cannot
easily navigate all 25 optimization strategies due to the time
consuming process.

C. Solution

We demonstrated that a commercial HLS tool targeting
FPGAs incurs a large error of 97.5% in estimating the resource
usage. Similarly, the error for timing estimation is found to
be 22.9%. Such inaccurate estimates prevent developers from
applying the appropriate set of optimization, leading to a
poor trade-off. Moreover, the static timing analysis of digital
systems design provided in state-of-the-art CAD tools is not
able to report the maximum frequency achievable. Instead, the
user must deal directly with tens of optimization strategies
available in the tools which is time consuming and tedious.
To circumvent such brute-force approach to find the maximum
frequency, a recent work [12] proposed an automated hardware
optimization tool called Minerva. Minerva determines the
close-to-optimal settings of tools, using static timing analysis
and a heuristic algorithm developed by the authors, and targets
either optimal throughput (TP) or throughput-to-area (TPA)
ratio. Minerva is designed to be used to automate the task of
finding optimized results. However, based on the size of the
design, using Minerva may take few minutes or even several
hours. Therefore, as a solution to these challenges, we propose
a machine learning based framework (called Pyramid) to re-
calibrate the HLS reported results and map them to the results
of Minerva using ensemble machine learning method. Figure
1 (the right part) shows the overview of Pyramid. In this

way, without going through the time consuming process of
full end-to-end implementation, using Pyramid, developers can
have an accurate post-implementation estimation of resource
utilization and maximum supported frequency of the design
just after getting the report of their HLS design.

III. EXPERIMENTAL SETUP

In order to build a ML model, we first create a dataset
for training. For this purpose, we need to obtain the results
of HLS tool, and its corresponding optimal implementation
results. Here, we present the evaluated benchmarks, FPGA
devices, and the methodology of our experiments to create
the training data.

A. Benchmarks and FPGA devices

To create an efficient prediction model, diversity of bench-
marks plays an important role. Therefore, we chose a wide
range of diverse benchmarks from Machsuit [13], S2CBench
[14], CHStone [15], and Rosetta [16]. To further increase
the diversity and the size of dataset, we included CAESAR
Round 3 Candidates’ HLS designs [17], and a collection of
10 different image processing kernels from Xilinx xfOpenCV
[18]. We covered a total of 90 benchmarks which include
a wide range of domains from simple kernels to ML and
real-time video processing that reflects the latest application
trends. We categorize the benchmarks into four categories:
ML, image/video processing, cryptography, and mathematical
applications to validate our hypothesis that the results of the
ML techniques are application dependent. We used the default
version of HLS designs without applying any further directive
to the designs. However, the dataset can be expanded by
synthesizing designs with additional HLS optimization direc-
tives. For selecting FPGA devices, we targeted three different
classes of FPGAs: low-end, medium-end, and high-end. We
selected the following devices from Xilinx for evaluation:
Artix7 (xc7a100tfgg484-3), Kintex7 (xc7k420tffv901-3), and
Virtex7 (xc7vx980tffg1930-2). The FPGA devices are chosen
based on a wide array of available resources and technologies
across the spectrum of each family. The software used for our
experiments are the Xilinx Vivado and Vivado HLS version
2017.2.

B. Data collection

To build a dataset, we have to extract all possible features
that we can collect from HLS reports. Inputs of ML models
consist of HLS features such as reource usage and timing
report. To obtain the maximum achievable clock frequency
of the design, we use Minerva. Minerva is used to execute
Vivado in batch mode, utilizing the Vivado batch mode Tcl
scripts provided by Xilinx. An XML-based Python program is
used to manage runs. This program launches Vivado with Tcl
scripts that are dynamically created during run-time and later
modified to perform each step of the optimization algorithm.
Minerva’s output includes the maximum achievable clock
frequency for the design, the optimization strategy that leaded



to such result, and the resource utilization for that implemen-
tation. We also parse the output of Minerva. Minerva’s outputs
will be used as the target values in our dataset. Therefore, the
machine learning model will be trained to estimate resource
usages for LUT, FF, DSP, and BRAM, as well as maximum
clock frequency (totally 5 targets) reported by Minerva.

As it is not possible to determine the importance of individ-
ual features in advance, we extract as many relevant features
as possible from HLS reports (total 183 features).

The flow of obtaining the results for each design is as
follows: 1) we set a timing constraint (clock period) [1, 2, 4, 5,
10ns] and the FPGA device for HLS tool. 2) We run the HLS
and get the VHDL files of design. We also extract all feature
from HLS report. 4) We use Minerva to find the maximum
clock frequency and the corresponding resource utilization
for two different targets (throughput, and throughput-to-area).
Minerva uses out-of-context (OOC) implementation to run
Vivado. 5) We repeat the whole process for the next clock
period and also for the remaining FPGA devices.

In this manner, we create a comprehensive dataset (90 ×
5× 3× 2 = 2700 samples) that we use for the training of ML
models. We partition our dataset into two: training/validation
part, and testing part. We randomly select 20% of our dataset
for final testing as unseen data and consider the remaining 80%
as training/validation part. We perform 4-fold cross-validation
on our training/validation set to train the ML models. This
means that in each iteration of training, randomly 75% of
data are used for training and 25% is used for validation.
It took three months to create this dataset, using 10 servers,
each of which are equipped with 16-core processor and 128GB
memory. While this is the most time consuming part of our
solution, the entire training process is only done once. We
implement the ML models described in Section IV in Python
leveraging the scikit-learn [19] and TensorFlow [20].

C. Feature reduction

As discussed, the obtained data includes numerous fea-
tures. This high dimensionality may lead to computationally
complex models that require longer training time, over-fitting,
and are harder to interpret. Therefore, instead of accounting
for all extracted features, irrelevant and redundant features
are identified and removed and only a subset of features
is selected. To remove redundant features, we compute the
Pearson’s correlation coefficient for each pair of extracted
features and select one feature from each group of correlated
features. To eliminate irrelevant features, we use a linear model
with L2 regularization (in section IV-A1) to fit our data. The
outcome of L2-regularized linear model is a sparse estimator
that eliminates (zeros) the coefficients of unimportant features.
Thus, by eliminating unimportant features, we reduce the
number of features from 183 to 72. Table II shows the reduced
set of non-trivial features that we eventually select from HLS
reports.

IV. PROPOSED PYRAMID FRAMEWORK

In this section, we present the proposed Pyramid framework
that employs ML models to enable fast and accurate resource

TABLE II
DESCRIPTION OF FEATURES

Feature Category Brief Description # features

Performance Requested clock period, estimated
clock period by HLS, Uncertainty 3

Resources Utilization and availability of
LUT, FF, DSP, and BRAM 36

Logic and
arithmetic operation Bitwidth/resource statistics of operations 29

Memory Number of memory words/banks/bits; 2
Multiplexer Multiplexer input size/bitwidth 2

and timing estimation for HLS designs.
Use of ML has become popular in design automation, as it

provides the means to accurately capture the factors impacting
the accuracy of timing and resource estimation [21]. Moreover,
analytical modeling [22], and statistic reasoning have been
used to construct the estimation models as a function of
multiple parameters for the evaluation of hardware design [11],
[23]. In this work, we investigate whether the models built
by ML techniques are sufficiently accurate for timing and
resource utilization of a design on a specific FPGA when HLS
tool is used by taking into account 25 different optimization
strategies available for the implementation of a design.

A. Estimation models

For the purpose of constructing timing and resource estima-
tion models for a diverse set of benchmarks targeting different
FPGA devices, we employ regression model, artificial neural
network (ANN), support vector machine (SVM), and random
forest (RF), where each of the predictors belongs to a different
branches of ML. We explore with different models to evaluate
its complexity and performance and chose the best model that
can be utilized as a practical solution.

1) Linear Regression: We first experimented the utiliza-
tion of linear models for estimating the timing and resource
information. In this work, we use Ridge regression model.
By adding a degree of bias to the regression estimates, Ridge
regression reduces the standard errors. Ridge regression solves
the multicollinearity problem through shrinkage parameter λ.
Also, it uses L2 regularization method. We use this model to
observe how much linearity exist between the features.

2) Artificial Neural Network: In addition to linear model-
ing, we also utilize artificial neural network (ANN) to capture
the non-linearity in the data and create a non-linear model
between the target and input features. In this work, we utilize
four fully connected hidden-layer neural network with 100
neurons in each layer. However, to capture further complicated
non-linear functions, one can increase the depth of neural
networks.

3) Support Vector Machine (SVM): In addition to NN to
model the non-linearity, we also explore the SVM to model
the data, due to the benefits of relatively lower complexity
and similar performance. SVM analysis is a popular ML tool
for nonlinear functions. SVM is considered a non-parametric
technique because it relies on kernel functions. Some problems
cannot adequately be described using a linear model. In such



TABLE III
ML ESTIMATION ERRORS

Device Artix7 Kintex7 Virtex7
Resource LUT FF DSP BRAM Timing LUT FF DSP BRAM Timing LUT FF DSP BRAM Timing

TP

LR 27% 19% 22% 29% 18% 23% 25% 17% 21% 20% 29% 20% 21% 19% 24%
ANN 12% 17% 13% 14% 16% 10% 11% 19% 16% 15% 11% 14% 18% 14% 13%
SVM 22% 16% 19% 18% 19% 20% 22% 18% 15% 17% 24% 21% 16% 17% 18%
RF 9% 17% 19% 14% 16% 15% 18% 12% 11% 17% 16% 20% 19% 15% 14%

a case, the Lagrange dual formulation in SVM allows the
technique to be extended to nonlinear functions.

4) Random Forest: Random Forest is another unsupervised
flexible and low-complex ML technique that can achieve better
performance, even with minimal or no hyper-parameter tuning.
Hence, we also analyze the performance of random forest in
this work. One of the advantage of random forest model is that
it enables to measure the relative importance of each feature
on the prediction.

To determine the best set of hyperparameters (λ for regres-
sion and number of layers and neurons in ANN), we employed
Grid search [24]. We came up with a ANN with four hidden
layers that the number of neurons in each layer is as follows:
105, 60, 44, and 30. Table III shows the error of machine
learning models for resource and timing estimation. Our results
show that the average errors of models built by LR, ANN,
SVM, and RF are 23%, 14%, 19%, and 15%, respectively. For
our estimation problem, the number of features is relatively
high, and the amount of training data is limited. Machine
learning techniques such as NN, RF, and SVM can highly
accurately represent complicated non-linear functions when a
large amount of training data is provided for the model to
converge. Given the available dataset, and reasonable amount
of time for data collection, our experiments demonstrate that
merely using general machine learning techniques fail to build
accurate models. Therefore, this motivates us to seek ensemble
learning approach to improve the accuracy of estimation.

5) Ensemble model: Ensemble learning is a branch of
machine learning which is used to improve the accuracy and
performance of general ML models by generating a set of
base learners and combining their outputs for final decision
[25], [26]. It fully exploits complementary information of
different estimators to improve the decision accuracy and
performance. In this work, we use stacked regression [27]
method, where a number of first level estimators are combined
using a second-level estimator. The key idea, is to train a
second-level estimator based on the output of the first level
estimators via cross-validation. It is critical to ensure that the
base estimators are formed using a batch of training dataset
that is different from the one used to form the new dataset.
The second step is to treat the new dataset as a new problem,
and employ a learning algorithm to solve it.

To employ stacking approach, two parameters must be
determined: threshold for the accuracy and the maximum
number of iterations. After each stage, the accuracy must be
checked. If the model meets the target estimation accuracy,
then we stop the process of model creation. Otherwise, we
continue the iterations until reaching to the desired accuracy

TABLE IV
AVERAGE ERROR OF PYRAMID ESTIMATIONS

Devices Artix7 Kintex7 Virtex7
Tragets Resource Timing Resource Timing Resource Timing

Pyramid-TP 6.3% 3.8% 5.2% 4.1% 4.9% 4.4%
Pyramid-TPA 4.8% 3.5% 4.7% 4.6% 4.8% 4.9%

or to the maximum number of iterations. When the parameters
of the first-order model are determined, the accuracy of the
timing and resource estimation can be evaluated. If the target
accuracy is met, we cease to create sub-models. Otherwise,
a higher order model is required to be further created till we
reach to the threshold of iterations.

Table IV shows the estimation errors of timing and utiliza-
tion models created by Pyramid for two different optimization
goals such as throughput (TP) and throughput-to-area (TPA)
using stacking approach. Later in this section, we describe how
the model is constructed. Results show that the average error
of the model is only 4.7%. Table V presents the estimation of
ML techniques with regard to the benchmarks’ categories. The
interesting observation is that the accuracy of estimations for
mathematical benchmarks are high even with linear regression.
On the other hand, the resource and timing estimation of
ML and cryptography benchmarks are lower with general
ML techniques. However, ensemble learning shows a good
accuracy for all benchmarks.

Taking into account the size of our dataset and high di-
mensional features, solely using a general machine learning
technique incurs a large error. To overcome this, the proposed
Pyramid framework helps to create an accurate model for
estimating the optimal throughput and throughput-to-area of
a HLS design.

One of the issues in using stacking approach is determining
the correct weights to combine the models, as topology
and hyper-parameters of the model are the crucial for the
performance of ensemble learning. To address this challenge
and alleviate the the burden on the end-user, we suggest the
following guidelines to be followed by developers to facilitate
adopting our framework and makes it possible to reproduce
the results presented here.

B. Guidelines

Figure 3 shows the overview of stacking approach. In each
stage, sub-model can be created by any arbitrary machine
learning techniques such as LR or NN and they can be
considered as a black-box. As an example, we employed a
simple three-layer fully connected neural network with 20
hidden neurons employed to create the sub-models. We set the
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TABLE V
AVERAGE ERROR OF ML TECHNIQUES FOR DIFFERENT BENCHMARKS

Benchmark’s
category

Machine
Learning

Img/Vid
Processing Crypto. Mathe.

Targets Res Tim Res Tim Res Tim Res Tim
LR 29% 25% 17% 16% 38% 22% 11% 8%

ANN 17% 14% 13% 11% 19% 14% 8% 7%
SVM 22% 19% 18% 17% 23% 18% 10% 7%
RF 16% 16% 14% 12% 20% 15% 9% 7%

Ensemble 6% 5% 4% 3% 5% 4% 4% 3%

target accuracy and the threshold for the maximum number of
iteration to 99% and 50 respectively. In the first stage, a single
sub-model (P1) is created as a function of the features from
Bootstrap samples of main dataset. Each time, we randomly
select 20% of samples with replacement. Bootstrapping is
important here as the dataset is relatively small. For the second
stage, we employ another neural network (P2) to model the
variation in the estimation of designs that is not modeled by
P1. The boxes of different shades in Figure 3 signify the parts
of dataset which have been modeled.

Now, we can build a primary mixed model, MP1, through
the combination of our first two sub-models P1 and P2 as
follow: MP1 = α1P1 + α2P2. P1 and P2 represent the
estimated timing by sub-models, and αs are the coefficients
corresponded to the learning rate. To simplify the procedure,
we set the α values to 0.1. We repeatedly create sub-models
and add them to the mixed model. If the model achieves the
desired accuracy before the total number of iteration, the final
model is obtained. This is called the first-order model (FM1).
If we don not reach to the target accuracy after the threshold
on the number of iterations, above procedure can be repeated
to create another mixed model (FM2) or the user can end
the process. In our case, we didn’t meet our target accuracy
after 50 iterations but we reached to more than 95% accuracy
which is acceptable for our case and we stopped the training
procedure.

It is noteworthy to consider the following rules: A lower
value for the learning rate increases the number of sub-models
required to create the first-order model at a specific accuracy.
On top of that, changing the parameter of each sub-model
affects the total number of sub-models to create the first-order
model. Moreover, increasing the complexity of sub-models
results in fewer sub-models required to achieve the maximum
accuracy, at a given learning rate.

V. RELATED WORK

Here, we present and compare the proposed Pyramid frame-
work with some of the recent works whose goals are simi-
lar. Use of machine learning has become popular in design
automation [28]–[33]. The difference of our work with Dai
et al. is as follow: they mapped the report of HLS tool
to the correspondent result of the implementation. However,
we explained that the latest version of Vivado tool, does
not have the capability to report the maximum frequency
achievable for the corresponding design and the calculated
maximum frequency based on WNS reported by the tool is
wrong. We addressed this issue by leveraging Minerva in our
work. Makrani et. al. used ML to estimate the speed up of
an hardware accelerator on arbitrary FPGA over an ARM
processor. In [2], the performance prediction for Zynq-SoC
is proposed which estimates the performance based on the
execution time of an application on the FPGA. In [34], the au-
thors present InTime, a machine learning approach, supported
by a cloud-based compilation infrastructure, to automate the
selection of FPGA CAD tool parameters and minimize the
TNS (total negative slack) of the design. InTime does not
have the capability to find the actual maximum frequency
with positive TNS near zero. Recently, several studies applied
machine learning for auto-tuning of frameworks to explore
design space of tool parameters for improving FPGA synthesis
and implementation [35]–[39]. Machine learning was used in
HLS to reduce the number of design candidates required to run
for implementation [40]. In [41], a three-layer ANN model was
trained to estimate the resource usage of post-implementation
from pre-characterized area models of a small set of template-
based designs. Different from prior works, our work uses
machine learning to re-calibrate the results of HLS reports to
provide an accurate post-implementation estimate of resource
utilization and maximum supported frequency of HLS design
for developers.

VI. CONCLUSIONS

In this work, we thoroughly studied the main challenges of
evaluating an HLS design: the inaccuracy of HLS reports in
timing and resource utilization. Moreover, HLS reports lack
insights for finding the optimal throughput or throughput-to-
area of the generated RTL design. To address these challenges,
we proposed Pyramid, a framework that uses ensemble learn-
ing technique to bridge the accuracy gap between HLS report
and the optimal achievable throughput or throughput-to-area
of the HLS design. To achieve this, we first used Minerva, an
automated hardware optimization tool, to find the maximum
clock frequency and resource utilization of the RTL code of
the design generated by HLS tool. We then, used stacking
approach to map the features extracted from HLS reports to
Minerva’s output. As the dimensionality of features is high
and the sample size of the dataset is not significantly large, the
obtained accuracy of several studied ML estimators is found to
be low. In response, the model created by Pyramid framework
using ensemble learning is shown to have more than 95%
accuracy.
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