Adversarial Attack on Microarchitectural Events based Malware
Detectors

Sai Manoj Pudukotai Dinakarrao, Sairaj Amberkar, Sahil Bhat, Abhijitt Dhavlle, Hossein Sayadi,

Avesta Sasan, Houman Homayoun and Setareh Rafatirad
George Mason University, Fairfax, VA, USA
{spudukot,samberka,sbhat6,adhavlle,hsayadi,asasan,hhomayou,srafatir}@gmu.edu

ABSTRACT

To overcome the performance overheads incurred by the traditional
software-based malware detection techniques, Hardware-assisted
Malware Detection (HMD) using machine learning (ML) classifiers
has emerged as a panacea to detect malicious applications and se-
cure the systems. To classify benign and malicious applications,
HMD primarily relies on the generated low-level microarchitectural
events captured through Hardware Performance Counters (HPCs).
This work creates an adversarial attack on the HMD systems to
tamper the security by introducing the perturbations in the HPC
traces with the aid of an adversarial sample generator application.
To craft the attack, we first deploy an adversarial sample predictor
to predict the adversarial HPC pattern for a given application to be
misclassified by the deployed ML classifier in the HMD. Further, as
the attacker has no direct access to manipulate the HPCs generated
during runtime, based on the output of the adversarial sample pre-
dictor, we devise an adversarial sample generator wrapped around
a normal application to produce HPC patterns similar to the ad-
versarial predictor HPC trace. As the crafted adversarial sample
generator application does not have any malicious operations, it is
not detectable with traditional signature-based malware detection
solutions. With the proposed attack, malware detection accuracy
has been reduced to 18.04% from 82.76%.
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1 INTRODUCTION

The ever-increasing complexity of modern computing systems re-
sult in the growth of security vulnerabilities, making such systems
an appealing target for sophisticated attacks. The attackers take the
advantage of existing vulnerabilities to compromise the systems
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and deploy malware. Malware, also known as malicious software,
is a program or application designed by the attackers to infect the
computing systems without the user agreement for serving harmful
purposes such as stealing sensitive information, unauthorized data
access, destroying files, running intrusive programs on devices to
perform Denial-of-Service (DoS) attack, and disrupting essential
services to carry out financial fraud.

To overcome the shortcomings such as latency and computa-
tional complexity of traditional malware detection techniques in-
cluding signature and semantics-based software-driven techniques
[11, 19], hardware-assisted malware detection (HMD) approaches
are proposed [5]. HMD refers to utilizing the low-level microar-
chitectural hardware events and logs for detecting and classifying
the malware from benign applications. The HMD enjoys the bene-
fit of reduced malware detection latency by orders of magnitude
with smaller hardware cost [5]. Recent works [4-6, 20-22, 24, 25]
have shown that by deploying Machine Learning (ML) techniques
[12, 16] fed with the low-level microarchitectural events (features)
captured by Hardware Performance Counters (HPCs) can aid in dif-
ferentiating benign and malware applications. The HPCs are a set of
special-purpose registers built into modern microprocessors to cap-
ture the trace of hardware-related events such as LLC load misses,
branch instructions, branch misses, and executed instructions while
executing an application (benign or malware).

The work in [5] was one of the preliminary works that has
proposed to utilize the HPC data for malware detection and demon-
strated the effectiveness of offline ML algorithms in malware classi-
fication. They showed high detection accuracy results for Android
malware by applying multiple ML algorithms, namely Artificial
Neural Network (ANN) and K-Nearest Neighbor (KNN). The re-
searchers in [7] and [24] discussed the feasibility of employing un-
supervised learning method on low-level features to detect Return-
oriented programming (ROP) and buffer overflow attacks by finding
an anomaly in the hardware performance counters’ information.
Although unsupervised algorithms are more effective in detecting
new malware and attacker evolution, they are complex in nature
demanding more sophisticated analysis and computational over-
heads. The work in [15] uses logistic regression to classify malware
into multiple classes and train a specialized classifier for detecting
malware class. They further used specialized ensemble learning to
improve the accuracy of logistic regression. To enhance the perfor-
mance, the work in [15, 21] proposes use of ensemble ML based
solutions for effective malware detection using low-level microar-
chitectural features. These ML based malware detectors (HMD) can
be implemented in microprocessor hardware with significantly low
overhead as compared to the software-based methods, as detection
inside the hardware is very fast (few clock cycles) [19, 25]. As a



whole, it can be seen that recently a large body of works have been
dedicated to employ low-level microarchitectural events fed to ML
classifiers to make the systems secure.

On the other hand, despite the ML classifiers being deployed
in numerous applications and shown robustness against random
noises, the exposed vulnerabilities have shown that the outcome
of ML classifiers can be modified or controlled by adding specially
crafted perturbations to the input data [8, 17, 18, 23], often referred
as Adversarial samples. A plethora of works on adversarial attacks
exist, focusing specifically on computer vision applications [8, 17,
18, 23], where the number of features are often large. Recently, a
few works on crafting adversarial malware are as well proposed
in [10]. However, the works such as [10] consider the application
features in a binary format (feature exist or not) for showcasing
the attack and defense. Though the application features (in binary
format) are manipulated, traditional techniques such as semantic
and signature analysis based methods can detect these adversaries
[14]. Similarly, in [26], authors evaluate the efficiency of detecting
malware through HPCs. Though the presented experimental results
in [26] are in-favor of efficient malware detection through HPCs,
they claim that if HPC traces of malware and benign applications are
similar, it is hard to detect malware. However, no details on crafting
nor feasibility to create such malware is provided, which limits the
efficacy. In contrast to the existing works, this work proposes an
adversarial attack on HMDs in which the adversarial samples are
generated through a benign code that is wrapped around a benign
or malware application to produce a desired output class from the
embedded ML-based malware detector. One of the main challenges
to address is that the attacker or user has no direct access to modify
the HPC and furthermore, manipulation of HPCs is highly complex
to perform despite employing techniques like code obfuscation for
executing malware [5, 13].

Firstly, we assume the victim’s defense system to be a blackbox
and perform reverse engineering to mimic the behavior of the em-
bedded HMD or other security system and build a ML classifier. In
order to determine the required number of HPCs to be generated
through the application to be misclassified, we employ an ‘adver-
sarial sample predictor’ which predicts the number of HPCs to be
generated to misclassify an application by the HMD. As aforemen-
tioned, the HPCs cannot be modified directly by the attacker, as such
we craft an ‘adversarial HPC generator’ application (code) that gener-
ates the required number of HPCs. The crafting of adversarial HPC
generator is performed by employing a linear model that relates the
HPC events and the parameters of the adversarial generator code.
This adversarial HPC generator application is wrapped around the
application that needs to be misclassified. To the best of our knowl-
edge, this is the first work that is capable of generating adversarial
HPCs through a benign application and proposes a methodology how
to craft such an application and obtain adversarial behavior. The
main focus of this work is create false alarms (malware classified
as benign and benign classified as malware) in order to weaken the
trust on the embedded defenses, which increases the scope for at-
tacks. The proposed work benefits from the following: a) no need to
tamper or modify the source code of the application around which
the proposed adversarial sample generator code will be wrapped
(i.e., executed in parallel); b) the crafted application has no malicious
features embedded, thus not detectable by ML malware detectors;
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Figure 2: (a) Process of reverse engineering HMD; (b) Testing
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and c) scalable and flexible i.e., the crafted application can generate

events as required to generate powerful adversary. We outsource
the code on github (https://github.com/saimanojpd/AMC).

The rest of this paper is organized as follows. Section 2 provides
an introduction to HMDs. Section 3 describes the approach adopted
in this work to perform reverse engineering of HMDs. Section 4
presents the adversarial HPC sample prediction, followed by the
details of how application needs to be crafted in order to gener-
ate the adversarial HPC samples as predicted in Section 5. The
experimental evaluation and setup is presented in Section 6 with
conclusions drawn in Section 7.

2 HARDWARE-ASSISTED MALWARE
DETECTORS: BACKGROUND

Here, we present the background of HMDs and its functionality. In
HMD, when an application is executed, the low-level microarchi-
tectural events are captured with the aid of HPCs. These low-level
microarchitectural events are utilized to train ML classifiers to clas-
sify the malware from benign applications. For detecting malware
during runtime, the HPCs are collected and provided to the ML clas-
sifier to determine whether the executing application is malware or
benign [5]. Similarly, [19] proposed a single-stage ML-based HMD
and analyzed impact of different ML classifiers on area and power
overheads. The work in [3] employed HPC values to construct
support vector machine (SVM) detectors to identify malicious pro-
grams. Similar works are reported in [15, 21]. Figure 1 illustrates the
process of using low-level microarchitectural events for malware
detection and classification from benign applications.

3 REVERSE ENGINEERING OF HMD

Considering the worst case scenario, where the victim malware
detector (defense) is unknown, we perform a reverse engineering
to mimic the functionality of the victim HMD. Thus, as a first step
to craft adversarial malware, we perform reverse engineering of
the victim’s HMD similar to that proposed in [14]. The performed
reverse engineering is described in Figure 2.

In order to reverse engineer the victim’s HMD, we first create a
training dataset that comprises of benign and malware applications.
Nearly 12,000 benign and 12,000 malware applications are used in
the reverse engineering process. The victim’s HMD (Original HMD)
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Figure 3: Performance comparison chart of various models

is fed with all the applications and the responses are recorded. These
responses are utilized to train different ML classifiers in order to
mimic the functionality of the victim’s HMD, as shown in Figure
2(a). Further, it is tested by comparing the outputs from victim’s
HMD response and the reverse engineered ML classifier’s response,
as shown in Figure 2(b). Reverse engineering is non-trivial as the
adversaries generated on a closely functional model will be highly
effective compared to a weakly generated adversary. To ensure
the reverse engineering is performed in an efficient way, we train
multiple ML classifiers and choose the classifier that yields high
performance i.e., mimics the victim’s HMD with high accuracy.

Performance of Reverse Engineered HMD

We choose Logistic Regression, Decision Tree, Naive Bayes and Neu-
ral Network classifiers to mimic the victim’s HMD. The rationale
for choosing these classifiers is that they represent a wide-range
of classification techniques and are popularly employed for robust
classification. Figure 3 shows the performance parameters of the
experimented four different classifiers used to functionally mimic
the victim’s malware detector (referred to as Original Detector in
Figure 2). One can observe that neural networks perform better
compared to other three above mentioned classifiers with an ac-
curacy of 82.7%, precision of 0.8, recall 0.83 and F1-score of 0.80.
Higher accuracy and other performance metrics indicate that the
employed ML classifier (neural network in this case) mimics the
victim’s HMD with high precision and is robust. Hence, we consider
the neural network as the representation of the victim’s HMD in
the rest of this work.

4 ADVERSARIAL HPC SAMPLE PREDICTION

Once the reverse engineered HMD is built i.e., neural network’s
hyper parameters are determined, to launch and craft an adversarial
malware, it is non-trivial to determine the level of perturbations
that need to be injected into HPC patterns in order to get the
applications misclassified. To determine the number of such HPC
events to be generated, we deploy (offline) an adversarial sample
predictor. As the ML classifiers are robust to random noises, one
needs to perturb the HPC patterns in more sophisticated manner.
To perturb the HPC patterns, we employ a low-complex gradient
loss based approach, similar to Fast-Gradient Sign Method (FGSM)
which is widely employed in image processing. The advantage of
such an approach is its low complexity and low computational
overheads. Additionally, it has been observed from our experiments
that the HPC samples follow a continuous distribution, and as such a

gradient loss based approach is feasible and beneficial to determine
the required perturbation in HPC features to be misclassified.

In order to craft the adversarial perturbations, we consider the
reverse engineered ML classifier i.e., neural network with 6 as the
hyper parameters, x being the input to the model (HPC trace), and y
is the output for a given input x, and L(0, x, y) be the cost function
used to train the neural network. Then the perturbation required
to misclassify the HPC trace is determined based on the cost func-
tion gradient of the neural network (in this case). The adversarial
perturbation generated based on the gradient loss, similar to the
FGSM [8] is given by

x99Y = x + esign(VL(0, x, ) (1)
where € is a scaling constant ranging between 0.0 to 1.0 is set to
be very small such that the variation in x (6x) is undetectable. In
case of FGSM the input x is perturbed along each dimension in the
direction of gradient by a perturbation magnitude of e.Considering a
small € leads to well-disguised adversarial samples that successfully
fool the machine learning model. In contrast to the images where
the number of features are large, the number of features i.e., HPCs
are limited, thus the perturbations need to be crafted carefully
and also be made sure it can be generated during runtime by the
applications. For instance, a HPC of value ‘~1’ cannot be generated
by an application. Hence, we provided lower bound on the adversary
values that can be predicted.

In contrast to works that assume the application features to be
binary such as [10], this work aims to predict and determine the
adversaries for the low-level microarchitectural event patterns i.e.,
HPC patterns to generate during runtime with the aid of a benign
code, which is one of the primary distinctions from existing works.
It needs to be noted that determining the required perturbation
for a given application is done offline. The process of crafting the
adversarial application to generate the perturbations in the HPC
trace during runtime is presented in the following section.

5 ADVERSARIAL HPC GENERATOR

In order to generate the required number of HPCs, we craft an
application (benign) that spawns as a separate thread and generates
the additional number of HPC events that makes the overall HPC
count similar to the predicted HPC count by the adversarial HPC
predictor discussed previously.

5.1 Adversarial HPC Generation

A pseudocode depicting the process of creating adversarial HPC
is shown in Algorithm 1.

In Algorithm 1, we show the pseudo code to create adversar-
ial LLC load misses and branch misses. The LLC load misses and
branch misses are some of the pivotal microarchitectural events
that malicious applications [19] or even side-channel attacks af-
fect.Hence, we showcase a simple example of perturbing those in
Algorithm 1, however, other events can also be perturbed.

In order to generate LLC load misses, an array of size n is initially
loaded from the memory and flushed to generate LLC load misses.
This is outlined in Line 2-12 of Algorithm 1. The experiments are
repeated multiple times with different array sizes (n) and different
number of elements flushed (k) to determine the number of LLC
load misses generated. Further, a linear model is built to find the
dependency of n and k on number of LLC load misses. As such,
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Algorithm 1 Pseudocode for generating adversarial HPCs

Input: Application ‘App()’
Output: Adversarial microarchitectural events
1: cache_miss_function() {Sample pseudo code that generates
required number of adversarial LLC misses}
2 #define array[n] % Size of array and loop define amount of
variation in HPCs

3 loadi#0

4 Loop 1: cmp i #n {Compare i with n}

5 array[i]=i

6: jump Loop1

7. end

8 loadi#0

9:  Loop 2: cmp i #k {k <= n}
10: ld rax &array[i] # load array address in register rax
1 cflush (rax) {Clflush as a function of array and loop size}
12: Jjump Loop2
13:  end

14: branch_misses_function() {Code that generates required
number of adversarial branch instructions and branch misses}

15 #defineinta, b, c,d

16:  a<b<c<d<n

17: Loop 3:cmpi#a{--- function---}
18:  Loop4:cmpi#b{--- function---}
19:  Loop 5:cmpi#c{--- function -}
20:  Loop 6: cmpi#d{--- function---}
21:  Loop 7:cmpi#n{--- function---}

22: jump Loop 3; end ;

23: {Similar functions to generate other HPCs as predicted by ad-
versarial sample predictor}

24: APP() {User/Attacker’s application to be executed}

once the adversarial sample predictor predicts the number of LLC
load misses to be generated to craft an adversarial sample, the n

and k are accordingly determined. The rationale to employ a linear
model is its low complexity, yet yielding high accuracy (<3% error)
to determine the dependency between n and k for our experiments.
It needs to be noted that as the LLC misses are dependent on the
system, and random in nature, hence, we execute the application
multiple times (100) with same n, and k and average the obtained
LLC load misses to alleviate any errors caused.

Example: For instance, the crafted application similar to that
depicted in Line 2-12 of Algorithm 1 with n and k set to 100K leads
to an LLC load miss of 73K, whereas when n and k is set to 500K,
around 287K LLC load misses are generated. The experiment is
performed on Intel Core i7-8700K running Ubuntu 18.4, having
GCC 7.3 version. The Perf tool available on Linux is utilized to
obtain the HPC events. The flushing of the data has been verified
by executing the attack code with and without flushing the cache
lines - the execution time is around 1.5X when the data is flushed
compared to the case when data is not flushed.

In similar manner, branch misses and branch instructions are
generated as shown in Line 15-22 of Algorithm 1. To increase the
branch misses, a set of conditional statements i.e., comparison state-
ments are embedded into the application to create branch misses,
as the number of branch instructions depend on the number of con-
ditions to be checked. In the presented pseudo code, we have five
conditional statements for generating branch-misses (Line 15-22).

For the attack code on branch miss events, with a loop size of
20K and integer values assigned to a, b, ¢ and d based on the number
of loops, as in Line 15-22 of Algorithm 1, the number of branch
misses is around 255K. An increase in number of branch misses is
observed with the addition of dummy loops that are designed to
not satisfy the condition.

All these adversarial sample generators are spawned as separate
threads along with the user or attacker’s application that needs
to be misclassified. In this manner, the adversarial HPC generator
does not interfere with the original application’s source code, yet
is able to mislead the embedded defense mechanism. Figure 4(a)
shows the HPC trace of a normal application, and the HPC trace



predicted by the adversarial sample predictor to misclassify the
ML classifier is depicted in Figure 4(b). The process of adversarial
HPC generation during runtime is depicted in Figure 4(c). If the
predicted HPC values are smaller than that generated by original
applications, we insert the delay elements to smoothen the HPC
trace and reduce the HPC values. It needs to be noted using this
process, we generate adversaries to classify benign as malware as
well as malware as benign applications.

5.2 Summary

The proposed adversarial attack on microarchitectural events com-
prises of three phases. Firstly, we perform reverse engineering to
build a ML classifier that mimics the functionality of the victim’s
HMD or malware detectors. Further, with the aid of adversarial
sample predictor, the required number of HPC events to misclassify
the applications is determined. To determine the parameters of
adversarial generator application, a linear model relating different
features of the application and the HPC events is built. Thus, based
on the derived linear model and the required number of adversarial
HPCs, the parameters of the adversarial HPC generator applica-
tion (for instance variables i,k,n in Line 4 and Line 2 of Algorithm
1) are determined. Lastly, this crafted HPC generator application
is spawned as separate thread together with normal (malware or
benign) application, leading to overall HPCs generated by the mod-
ified application close to those predicted by the adversarial sample
predictor, eventually leading to misclassification.

6 EXPERIMENTAL RESULTS
6.1 Experimental Setup and Data Collection

This section provides the details of the experimental setup and data
collection process. The applications (both malware and benign) are
executed on an Intel Xeon X5550 machine running Ubuntu 14.04
with Linux 4.4 Kernel. In order to extract the HPC information,
we used Perf tool available under Linux. Perf provides rich gener-
alized abstractions over hardware specific capabilities. It exploits
perf-event-open function call in the background which can mea-
sure multiple events simultaneously. We executed more than 3000
benign and malware applications for HPC data collection. Benign
applications include MiBench benchmark suite [9], Linux system
programs, browsers, text editors, and word processor. For malware
applications, Linux malware is collected from virustotal.com [2]
and virusshare.com [1]. Malware applications include five classes
of malware comprising 607 Backdoor, 532 Rootkit, 2739 Virus, 1264
Worm and 7221 Trojan samples. The adversarial sample predictor
is implemented in Python using the Cleverhans library. The linear
model is derived using the traditional statistical curve fitting tech-
nique. The adversarial sample generator is implemented using C
and executed on a Linux terminal as a shell script that facilitates
to execute the user/attacker’s application in parallel. The hyper
parameters of the neural network mimicing the victim’s HMD or
security defense and the parameters used for adversarial sample
predictor are outlined in Table 1.

6.2 Impact of Adversarial Attack on HPCs

We depict the impact of adversarial sample generator (application)
on the generated HPC events in Figure 5 and 6. Figure 5 shows the
LLC load misses of a benign application (notepad++). The Figure
5(a) shows the LLC load misses in normal case. For this HPC pattern,
the adversarial HPC pattern predicted by the adversarial sample

Table 1: Architectural details of HMD
Parameters of ML classifier in HMD

Input 16 features Optimization ~ADAM
# hidden layers 1 Batch size 128
Hidden layer 1 (ReLu) 250 neurons | Epochs 100
Dropout 0.2 Learning rate  0.001
Adversarial Sample Predictor Parameters
Attack type FGSM
Adversarial perturbation 0.3
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Figure 5: (a)LLC load miss HPC trace of an application; (b)
LLC load miss HPC trace of the application predicted by ad-
versarial sample predictor; and (c) LLC load miss HPC trace
of the application predicted by adversarial sample generator
predictor (implemented in Python) is shown in Figure 5(b). One
can observe that there exist some spikes in the pattern compared to
the normal HPC pattern, as marked by circle. Figure 5(c) shows the
HPC pattern generated when the application is integrated with the
adversarial HPC generator. On an average, there is an error of 2.23%
between the trace predicted by the adversarial sample predictor
and the trace generated by the adversarial sample generator.

In a similar manner, we depict the branch misses in Figure 6.
Figure 6(a) shows the HPC pattern of branch misses for a normal
application (notepad++). The adversarial pattern predicted and
generated by adversarial sample generator for branch misses is
shown in Figure 6(a), and 6(b) respectively. One can observe that
pattern predicted by the adversarial sample predictor and generator
are similar. An average error of 2.15% is observed for branch misses,
and 0.91% for branch instructions. A 2.23% error is observed for
branch miss instruction. This indicates that adversarial generator
can efficiently generate the required number of HPCs without being
detected by the malware detectors.

The neural network based HMD achieves an accuracy of 82.76%
with normal samples. However, when the applications are inte-
grated with the proposed adversarial sample generator application,
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Figure 6: (a) Branch miss HPC trace of an application; (b)
Branch miss HPC trace of the application predicted by ad-
versarial sample predictor; and (c) Branch miss HPC trace of
the application predicted by adversarial sample generator
the accuracy reduces to 18.04%. Similarly, a drastic reduction in
precision, F1-score and recall are observed with the proposed attack

on different applications. This is outlined in Table 2.
Table 2: Impact of adversarial attack on HMD

Accuracy Precision Fl-score Recall

Before 82.7% 80.0% 80.0%  83.0%

After  18.3% 45.0% 10.0%  18.0%

6.3 Transferability Analysis

Though the reverse engineering results in building ML classifier
that mimics the victim’s HMD, they might not be same. For in-
stance, victim’s HMD might be using a logistic regression (LR) and
the reverse engineered solution is a neural network. To showcase
the robustness of the proposed adversarial malware crafting, we
perform a transerability analysis. As stated in [14], LR and neural
network achieves good performance and robust. Hence, we perform
the transferability analysis of the generated adversarial malware
on the LR based HMD. Thus, the adversarial malware generated is
applied to a HMD using logistic regression, whose functionality is
mimicked through reverse engineering. The results show that the
malware detection accuracy falls to 5.10% with precision, F1-score,
and recall to 16.0%, 7.0% and 5.0% respectively with the adversarial
malware. This indicates that the ML classifier used to craft the
adversarial malware is transferable to other systems as long as we
can mimic the victim’s malware detector functionality.

7 CONCLUSION

In this work, we propose an adversarial attack on microarchitec-
tural event based malware detection systems i.e., HMD systems.

These HMD systems utilize the underlying hardware performance
counters to capture the microarchitectural events and provide them
to ML classifier for detecting and classifying malware. This work
employs an adversarial sample predictor to determine the HPC
count required to get misclassified. Post determining the required
number of HPC count, using the proposed adversarial sample gen-
erator the required number of additional HPC count is generated
without intervening with the original application and eventually
leading to misclassification. An error of < 3% in predicted and gen-
erated HPC events to create adversary is observed. Furthermore,
the malware detection accuracy is reduced from 82.7% to 18.04%.
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