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ABSTRACT 

REVEALED PATH CHOICE BEHAVIOR AND NETWORK PRUNING FOR 
EFFICIENT PATH FINDING 
 
Xi Zhou, Ph.D. 
 
George Mason University, 2014 
 
Dissertation Director: Dr. Mohan Venigalla 
 
 
 
This dissertation addresses two separate problems related to transportation networks. In 

the first part, route choice behavior revealed from real world trips is studied. In part two, 

efficient pruning of large transportation networks for expediting one-to-one path search is 

studied. 

Part I: 

Route-choice behavior is influenced by a variety of factors ranging from physical 

attributes, such as the characteristics of the street network, to abstract variables, such as 

personal preferences of the driver. Street network composition and network variables, 

such as roadway type, the mere presence and density of signalized intersections, and path 

characteristics, such as frequency of turn movements, are expected to have a significant 

influence on a driver’s route-choice. This study explores the impacts of roadway type, 

signal control, and turning movements on route-choice by comparing observed paths in 

the real world and computed shortest paths for a set of origin and destination (O-D) pairs. 
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Robust methodologies are devised and Python scripts are developed to conduct data 

processing and statistical analysis.  

The comparison of real paths and computed paths indicated that drivers do not 

necessarily choose the theoretical shortest time paths and shortest distance paths in the 

real world. Drivers are willing to spend more time or travel longer distance on the paths 

that require fewer turns. Paired sample t-tests indicated that real paths have more 

signalized turns than computed shortest paths. Moreover, drivers seem more prone to 

making a turn (left or right) at a signal controlled intersection, while at the same time 

trying to minimize the number of turns occurring at non-signalized intersections. 

Statistical evidence also indicated that drivers tend to minimize left turns along their 

selected path. The number of right turns (normalized per mile), on the other hand, does 

not have a significant influence on route-choice. The mere presence of signalized 

intersections along alternative routes does not influence path choice. Statistical results 

showed that in terms of the number of signals per mile, theoretical paths are not different 

from real paths. A methodology is developed to quantify the impact of turning 

movements in the form of turn penalties, and to integrate them into path finding 

algorithms. However, the optimal path yielded by incorporating turn penalties into these 

algorithms has not significantly increased the chance of matching theoretical paths to 

actual paths. 

Part II: 

Computational efficiency of path finding algorithms is very dependent on the size of the 

street network. Most of the shortest-path algorithms extend the search into the areas of 
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the network that are not part of the solution to the path finding problem. For this reason, 

the full network must be “pruned” or narrowed to a more relevant sub-network. 

Commercially available route guidance systems / solutions have successfully used 

network pruning methods for faster and real-time solution to shortest path algorithms, but 

those solutions are proprietary in nature. Hence, the literature available on this subject is 

very limited. This research is expected to fill the gap in available literature on the 

methodologies for efficient network pruning.  

This study also examines computational accuracy and efficiency of pruning large 

networks into sub-networks in the search for the shortest path between a given pair of 

origin and destination nodes in the network (one-to-one path search). A bounding-box 

approach is introduced to prune the network. Computational experiments are conducted 

with different buffer sizes for the bounding box. Real-world paths are analyzed for their 

geographic relationship to the driver’s origin and destination and the concept of 

“proportional buffer” is introduced to define the boundaries of the sub-network. An 

approach to extracting a sub-network, within which the search work will be limited, is 

developed. Compared to the most commonly used uniform buffer method, the 

proportional buffer method can accelerate the computation while maintaining the same 

level of accuracy. 
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CHAPTER 1 INTRODUCTION 

1.1 Research Need 

On a typical street network, travelers are faced with a choice among multiple paths for 

travel between their origin and destination (O-D pair). This choice is of interest to 

transportation planners. The step of traffic assignment in the Four-Step transportation 

planning process requires an understanding of path or route-choice behavior. Wardrop’s 

first and second principles of equilibrium (Wardrop and Whitehead, 1952), popularly 

known as Wardrop Criteria, provide a theoretical basis for formulating and solving the 

traffic assignment problem. 

 Wardrop Criteria make generalized assumptions about route-choice behavior. The 

criteria assume that a traveler will minimize his or her individual impedance (User 

Equilibrium –or UE) or total system-wide impedance (System Optimal or SO). Both UE 

and SO problems involve only the minimization of individual or system-wide travel time, 

travel cost or a combination thereof. However, to a large extent how a driver chooses his 

or her route is subjective. Personal knowledge of the road network, road and traffic 

conditions, experience, and even personal preferences make different drivers perceive 

different “best” routes for the same O-D pair. As a result, the route-choice in the real 

world is stochastic rather than deterministic in nature. There is no empirical evidence that 

validates real world route-choice behavior conforming to Wardrop Criteria. 



2 
 

Despite this lack of empirical evidence, Wardrop equilibrium models have been 

used and are still used today, to predict drivers’ choice of route in real-life street networks 

(Correa and Stier-Moses, 2011). It is necessary therebe, to further explore factors other 

than travel time or travel distance that have an impact on drivers’ decisions. Research has 

shown that factors influencing route-choice behavior include demographic variables 

(such as age, gender, profession, or household structure). Furthermore, road and traffic 

conditions (such as time of day, travel cost, road classification, or congestion), trip 

characteristics (such as time of day, purpose or mode), and environment conditions (such 

as weather or accident), also impact drivers’ decisions. 

In most urban areas, road transportation network is comprised of various roadway 

types (such as freeways, major and minor arterials, collectors, and local roads).Compared 

to suburban or rural areas, urban areas tend to have a much higher density of intersections. 

Therefore, traffic signals, turning movements, and road types enroute to the destination 

may significantly affect route-choice. Most of the research to date regarding these factors 

has been based on stated preference surveys. A few studies have used real-world route-

choice observations, but the sample sizes have not been large enough to provide 

substantial conclusions. My research, on the other hand, uses a large dataset of real-world 

trip data to study the influence of the aforementioned network infrastructure variables on 

route-choice.  

At the core of implementing route-choice behavior in network models is the 

process of finding the path, often the shortest path, in a given network. Depending on the 

purpose of the implementation, the search for the shortest path has three variations: 1) 
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one-to-one search, 2) one-to-many search, and 3) many-to-many search. The objective of 

the one-to-many search is to find shortest path between two specific locations. The latter 

two modes, one-to-many search and many-to-many search, are usually confronted in 

travel demand modeling.  

Of late, typical applications of one-to-one shortest path problem include the use of 

the in-vehicle navigation systems or web search for finding path between two addresses. 

This application is also relevant for traveler information systems. With the maturation of 

Global Positioning System (GPS) and Geographic Information System (GIS) technology, 

the personal navigation system has been used more and more widely. Typically, the 

navigation system has limited computing capability, while the recommended path must 

be presented within a short period.  

Extensive research has been conducted to improve the efficiencies of various 

path-finding algorithms. Most traditional methods have concentrated on improving the 

algorithm itself, such as the structure to store the data, or sort and search strategies. These 

efforts can reduce the response time, but they still require cumbersome computations. 

The methods may not fit the requirements of personal navigation systems in terms of 

either storage space or computing capacity.  

Path finding algorithms are available in commercial hardware such as in-vehicle 

navigation systems, or Apps in present day “smart-phones” have evolved and do an 

excellent job in serving the customers. However, by their very nature, the methods used 

in these tools / applications are proprietary in nature. The network pruning methods used 

in commercially available navigation tools are not known in the public domain. Available 
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literature on network pruning has been limited. Therefore, the need for new research on 

network pruning methods is great in the public domain. 

Heuristic methods for efficient network pruning can therefore expedite the search. 

The essential idea of heuristic methods is to utilize the prior information contained in 

network structure, like locations of origin and destination nodes, to reduce the searching 

areas before, or during the course of, running the search algorithms. 

The computing time required for path finding algorithms is very dependent on the 

size of the street network. The complexity of the search for paths increases with network 

size. More often than not, the one-to-one search includes only a portion of the network. 

An acceptable alternative route in practice should not be very far away from the 

proximity determined by given origin and destination locations. In other words, for a 

large network, only a small portion of it would be relevant to potential routes.  

 Therefore, if the portion of network (sub-network) can be pre-extracted and the 

search area can be limited within it, the computing time should be shorter. In this 

research the term “network pruning” is used to describe this process. Naturally, the 

smaller the sub-network, the faster the computation. However, if the sub-network that is 

used does not arrive at the same shortest path solution as found in the search of the full 

network, network pruning can fail. Also, network pruning would completely fail if the 

sub-network were to be too small to find even a single path connecting the O-D pair.  

The challenge is to analytically and efficiently determine an effective sub-network 

for an O-D pair. A variety of experiments has been conducted to test the size and 

orientation of sub-networks (Karami, 2008). It is not realistic to try different sub-
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networks every time the navigation system plans a trip. For a given O-D pair the total 

time required to find the shortest path in a sub-network should not be more than the time 

required to find the path in the entire network.  

 

1.2 Study Objectives 

Based on the need for research stated above, the following three objectives have been 

identified:  

1. Develop methodologies to extract trip information from the GPS dataset; 

2. Examine the influence of signals and turning movements on drivers’ path choices 

in an urban street network, as well as the distribution of road classes along paths; 

3. Develop a heuristic method for pruning large networks and extract a sub-network 

where the one-to-one shortest path search algorithms are applied. 

To meet these objectives, the research in this study relies heavily on real-world trips 

tracked by GPS equipment in the Twin Cities of Minneapolis-St. Paul, Minnesota.  

The first objective has been accomplished by Geographic Information Systems 

(GIS) technologies. Algorithms were developed to identify the start and end positions of 

trips, to build paths represented by node and/or link sequences, to aggregate road usage 

by functional classifications, and to count the number of turns and signals along paths. 

The second objective has been accomplished by statistical analyses of the real-

world travel and network data for identifying intersection variables that influenced 

drivers’ choices and judgments about optimal paths. Methods to incorporate the revealed 
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route-choice behavior into the traditional path finding algorithm(s) have also been 

explored. 

The third objective has been accomplished by developing a method to determine 

the optimal size and orientation of the potential sub-network for a given O-D pair. The 

relationship between real-world paths and their origin/destination locations were 

investigated to explore the underlying pattern(s) to help build rules for extracting sub-

network. Experiments were conducted to test network connectivity, efficiency and 

accuracy of sub-network.  

The research employed data from real trips made in a major urban area. Therefore, 

these routes are expected to cover the full scope of drivers’ reasoning and behaviors in 

their path finding in the real world.  

1.3 Dissertation Outline  

Following this introductory chapter is a review in Chapter 2 of the relevant literature on 

route-choice behavior and path finding methods. Chapter 3 introduces the study approach 

and research methodologies used in this dissertation. Chapter 4 describes efforts to 

preprocess on real-world trips. In other word, this chapter explains the preparation of 

street network data and the process of matching real-world trip trajectories to the digital 

network. Chapter 5 describes methodologies used to identify possible factors that may 

influence path choices. Chapter 6 conducts statistical analyses and explores the impacts 

of identified factors. Chapter 7 describes the methodology developed to determine turn 

penalties. Chapter 8 presents experiments, comparing and evaluating their accuracy and 
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efficiency of sub-network concept. Finally, Chapter 9 provides a summary of the research 

findings and gives recommendations for future research.  
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CHAPTER 2 LITERATURE REVIEW 

This chapter reviews past research on route-choice behavior and efficient path finding 

methods. It provides the necessary backdrop to understanding the data, approach and 

methodologies, and models adopted by previous researchers who have studies factors 

influencing route behavior. The chapter also reviews the state of the art in the 

computational complexities of path finding algorithms. 

2.1 Effect of Network Variables on Route-Choice Behavior 

Route-choice in the real world is not necessarily based on the path with the shortest 

impedance. Rather, most drivers choose a route that they perceive to be the best 

according to their personal knowledge and experience (Liu, 1996).  

The problem of route-choice for a traveler might be stated as follows: Given the 

other characteristics of the trip to be made (purpose, time, origin, destination, and travel 

mode, for instance), attributes of the alternative routes, and traveler’s personal 

characteristics, choose the “best” route through the transportation network following 

some criterion (Antonisse, Daly, and Ben-Akiva, 1989).  

In practice, route-choice application is more stochastic than deterministic in 

nature. In a deterministic case drivers are assumed to choose the theoretically best route. 
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A number of probabilistic route-choice models have been developed and studied on the 

basis of Wardrop’s principles (Wardrop and Whitehead, 1952). 

The route-choice models are derived from utility theory: each person tries to 

maximize utility when faced with a choice among competing routes. The utility is usually 

defined as a function of variables, each of which represents attributes of the alternative. 

Coefficients are given to each attribute, in terms of their influence on utilities. A route-

choice utility function can be described as: 

𝑈!! = 𝜃!"𝑐!"#
!

  ∀𝑘 ∈ 𝐾!" 

Where: 

𝑈!!: Utility of route k that is made by person n 

n: Individual person 

𝑐!"#: Cost generated by attribute i of route k  

𝜃!": Positive coefficient 

𝐾!"  : The set of all routes between a specific origin and destination pair  

It is not necessary for the characteristics of each known alternative route to have the same 

importance in a driver’s final decision. As a result, for any of the attributes the coefficient 

may or may not be the same for different drivers.  

On the basis of the relative importance of factors of influence, the route-choice 

model first identifies the set of sufficiently attractive alternatives for specific travelers. 

From this set, travelers make their choices, with the chosen route being the one that best 

satisfies their needs and is consistent with their personal constraints and preferences. In 
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the set, alternative routes may be numerous, and every route is probably not perceived by 

all users (Cascetta et al., 2002).  

 A variety of logit / probit route-choice models was developed that vary by the 

basic structure of the model. The multinominal probit (MNP) model (Daganzo and Sheffi, 

1977) and multinominal logit (MNL) model may be considered the earliest models. With 

modifications to MNL, models such as the C-logit model (Cascetta et al., 1996), the 

implicit availability/perception (IAP) logit model (Cascetta and Papola, 1998), and the 

path-size logit model (Ben-Akiva and Bierlaire, 1999) can overcome the overlapping 

problem while still retaining the MNL structure. Other commonly used logit-based 

models include the PCL model of Chu (1989), the CNL model of Vovsha (1997), and the 

Logit Kernel (Mixed Logit) Model (McFadden and Train, 2000; Ben-Akiva and Bolduc, 

1996). 

The best-known factors that influence route-choice are travel distance and travel 

time. However, other network factors and drivers’ experiences, habits, and other 

behavioral considerations may produce variations in route-choices. Empirical research 

has shown that numerous criteria could be used to formulate a route. Therefore, assuming 

travel time (or distance) as the sole criterion of route-choice may be an overly simplistic 

abstraction of individual driver behavior and may result in an inaccurate representation of 

traffic in transportation planning models. 

In most urban areas, the transportation network is a mixture of various classes of 

roads. Freeways and principal arterials crisscrossing the network cater to long trips with 

mobility as the major function. Minor arterials, collectors, and local streets complete 
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network connectivity necessary for access and mobility. As a result, the availability of a 

certain class of roads is an important factor affecting drivers’ decisions on route. 

Compared to suburban or rural areas, urban areas have a much higher density of 

intersections. The number of traffic lights and turning movements along the path may 

significantly affect drivers’ choice of route. Studies have been conducted to identify 

which factors influence drivers’ route-choice behavior and how they influence that 

behavior. However, there is still a lack of literature on the impact of these three specific 

factors (road classes, signals, and turning movements) based on a large dataset of real-

world observations.  

Jackson and Jucker (1981) found that travel time reliability, defined as the 

difference between the 90th percentile and the median travel times, could be an important 

influence factor on commute route-choices. Travel time reliability may be positively 

correlated with criteria like number of traffic signals along a route or the safety of the 

route. However, the study did not explore this relevance further. 

The decision-making process is a learning process, which is central to the driver’s 

cognition (Polydoropoulou, Ben-Akiva, and kaysi, 1994). Therefore, information 

acquired through the experience of earlier travel choices is considered when a driver is 

making the next decision. Polydoropoulou, Ben-Akiva, and kaysi (1994), Srinivasan and 

Mahmassani (2000) have discussed the influence of travel information on route-choice 

theoretically. Abdel-Aty et al. (1994) conducted a stated preference survey in Los 

Angeles that indicated that about 60 percent of drivers listen to a travel information report. 

The study did not indicate how the drivers responded to this information. Two other 
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surveys in Sweden and Israel found that on average two-third of commuters will change 

their travel behaviors based on real-time information (Stern, Holm and Maarseveen, 

1993).  

Chen and Jovanis (2003) investigated drivers’ responses to incident and 

congestion information. They studied whether drivers would follow the guidance to 

change routes if they were advised to turn or switch to a freeway. Although the study 

found that the influence of advice on turns is significant, it did not reveal whether drivers 

tried to minimize the number of turns along the whole route, as the guidance suggests 

only which link drivers should take immediately next without showing guidance for the 

rest of the route. 

An investigation of route-choice behavior on morning commutes (Li, 2004) 

compared routes that commuters most frequently chose over alternatives. Statistical 

analysis showed that the primary routes employed a higher freeway percentage and fewer 

signals than alternative routes. However, primary routes have not been compared to the 

computed shortest paths. 

Jan, Horowitz and peng (2000) have used GPS data to investigate variations in 

path choice. They found that travelers often took paths that greatly deviated from the 

shortest paths, but they did not explain why travelers choose these routes. 

Zhuang et al. (2012) examined 50 trips between four O-D pairs, and found that 

the experienced routes (GPS tracking routes used by taxis) have lower frequencies of 

signalized intersections and turning movements than theoretical shortest path routes. 
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A number of studies based on stated preference surveys have been carried out to 

identify factors influencing route-choice other than travel time and distance. Some studies 

pointed out that drivers tend to minimize signals and turns along the path. However, very 

few studies presented any empirical evidence supported by field data. Among those 

studies that considered empirical data, either the sample sizes were too small, or these 

studies did not investigate influential factors in depth. In terms of the number of traffic 

signals and turning movements, or the distribution of the trip among different road 

classes along a path, past studies did not reveal how these factors impacted path choice or 

qualitatively identify these impacts.  

2.2 The Path Finding Problem 

The shortest path problem has been widely studied for over 50 years in various fields like 

transportation, telecommunications, computer science, and operation research. A typical 

shortest path problem is defined in mathematical notations as follow: 

• A directed network (digraph) that consists of a finite set of nodes N and a 

finite set of arcs (or links) 𝐴 ⊆ 𝑁×𝑁 is defined as 𝐺(𝑁,𝐴; 𝑐).  

• A link 𝑎 = (𝑖, 𝑗) ∈ 𝐴  is directed from node 𝑖  to node 𝑗  and has an 

associated function 𝑐!" which represents the cost that occurs on this link.  

• A path P from origin o to destination d is a sequential list of links: (o, i)… 

(j, d), and the total cost of it 𝑐! ,𝑎 ∈ 𝑃 is the sum of costs on each 

individual link in this list.  
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• Among all the possible paths from o to d, the shortest path should be the 

one with the minimum total cost.  

Assumptions: 

• The network G should be strictly connected (i.e., for each pair of nodes 𝑢 

and 𝑣, there exists a directed path from 𝑢 to 𝑣).  

• The arc cost can be either positive or negative, but there is no directed 

cycle with negative cost (Gallo and Pallottino, 1988). In this study, only 

positive cost will be discussed.  

• For the node pair 𝑖 and 𝑗, if the travel is bidirectional, there exists two 

distinct directed links (𝑖, 𝑗) and (𝑗, 𝑖). They may or may not have the same 

link cost. 

In a transportation network, link cost represents the impedance of an individual vehicle 

traversing the link, which is usually defined by link length or link travel time. 

Considering differences in travel speeds between various links on the same road, the link 

travel time is probably a more accurate description than link length in the cases of routing 

motorized vehicles.  

An important concept regarding the shortest path problem is the shortest path tree 

(SPT). A shortest path tree SPT(r) can be defined as a spanning directed tree contained in 

the network G and rooted at a given node r. For each 𝑣 ∈ 𝑁, this tree contains a shortest 

path from r to v (Lawler, 1976). For all three modes of shortest path problem (one-to-one, 

one-to-many, and many-to-many), how to find the SPT of the given origin node is the 

most critical step to solve the shortest path problem. Only for the one-to-one search, it 
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may not need to find all nodes on the completed shortest path tree. Once the destination 

node is reached and the shortest path to the destination is determined, the search could 

stop. 

2.2.1 Traditional Path Finding Algorithms 

Most traditional algorithms are based on the labeling method that divides all nodes in the 

network into three sets: unreached, labeled, and scanned. The scanned nodes have been 

determined to be included in the shortest path tree, and the labeled nodes are those that 

are waiting to be selected as the next node to scan. Thus, the labeled nodes form the set of 

candidates.  

Gallo and Pallottino (1988) developed a prototype algorithm to implement the 

labeling method to find a shortest path tree starting from a root node (Figure 2-1). The 

𝐹𝑆 𝑢  in this prototype denotes the forward star of node u. It is a set of links which start 

from the node u to its neighbors. 𝐹𝑆 𝑢 = 𝑢, 𝑗 ∈ 𝐴 . 

 
 
 



16 
 

 
Figure 2-1: Prototype Algorithm of the Labeling Method 

 

In this prototype, the most crucial procedure is QOUT, which selects the next eligible 

node u to scan from the candidate set Q. There exist various data structures to manage the 

candidate set Q, and various ways to examine and operate the set. Generally, most of 

shortest path algorithms follow this prototype, whereas the variations in the 

implementation of data structures resulted in a variety of algorithms in practice. 

The Bellman-Ford-Moore algorithm (Moore, 1957; Ford, 1956; Bellman, 1958) is 

one of the first shortest path algorithms based on the labeling method. It maintains the 

candidate set in a First-In-First-Out (FIFO) queue. The next node to be scanned is the one 

at the head of the queue, no matter whether it has the minimum label. The Bellman-Ford-

Moore algorithm cannot provide the shortest path between two specific nodes until the 

complete shortest path tree is identified, so it is more suitable for the problems that need a 
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one-to-many search or many-to-many search. As a result, the Bellman-Ford-Moore 

algorithm is often used in transportation planning and travel demand modeling where 

multiple routes need to be identified. 

The Dijkstra’s algorithm (Dijkstra, 1959) is another early proposed and widely 

known shortest path algorithm. It uses a different strategy to label the nodes. The Dijkstra 

algorithm maintains a linked-list for candidate set Q. After the full list is examined, the 

node with the minimum label in current Q is selected as the next node to be scanned. 

With this strategy, the Dijkstra algorithm can be terminated once the destination node 

becomes the next node eligible for scanning; there is no need to complete the whole 

shortest path tree. Thus, it is quite appropriate for a one-to-one search, often used for 

personal navigation systems. 

The different features in the practical application, like the one addressed above, 

can distinguish these two algorithms as either a label-correcting algorithm (LC), the 

Bellman-Ford-Moore algorithm, or a label-setting algorithm (LS), the Dijkstra algorithm. 

Most algorithms developed later can be classified into these two categories (Fu, Sun and 

Rilett, 2006). 

Pape (1974, 1980, and 1983) proposed a LC algorithm with a double-ended queue 

to manage the labeled nodes. Here, a node is added to the queue from either the head or 

the tail and removed from the head only. Another similar algorithm (Pallottino, 1979 and 

1984) uses two queues, one’s tail connected by the other’s head. The nodes can be added 

to both queues at their tails, but removed from the head of the first queue only. 
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Both the algorithm with a double-ended queue and the algorithm with two-queue 

separate the candidate nodes into two subsets, and different operations are applied to 

nodes according to which subset the nodes belong. The two subsets are updated 

dynamically during the scanning course. Glover et al. (1984 and 1985) adapted this idea 

and improved it by using a threshold label value to determine the two subsets (queues). 

One subset, where nodes are removed at the head, only contains the nodes with labels 

less than, or equal to, the threshold value. 

In implementing the shortest-best-search idea, the Dijkstra’s algorithm does not 

perform well when the number of links is large; therefore, a great many of the nodes need 

to be labeled. However, several research efforts have focused on improving the 

implementation of the Dijkstra’s algorithm. Replacing the unordered list with an ordered 

two-way linked-list, for instance, can improve efficiency.  

The major difference among the improved implementations of the Dijkstra 

algorithm is the data structure used to maintain the set of labeled nodes. Dial (1969) 

proposed an implementation taht maintains an array of buckets to operate the candidate 

set Q. The ith bucket contains all nodes with label value i. When the label of a node is 

updated, the node is moved from one bucket to another one. The next node to be scanned 

is always taken from the first non-empty bucket. 

The heap structure is another way to implement the Dijkstra algorithm. The most 

used heap structures include the binary heap (Williams, 1964; EL Johnson, 1972; DB 

Johnson, 1977), the R-heap (Ahuja et al., 1988), the Fibonacci heap (Fredman & Tarjan, 

1987), and the k-array heap (Cormen et al., 1988). 
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As mentioned before, the shortest path problem has been studied for decades. 

Many researchers have derived algorithms as well as experiments regarding efficiency 

and accuracy (Gallo and Pallottino, 1988; Cherkassky, Goldberg, and Radzik, 1993).  

The efficiency of an algorithm is designated by its complexity, which is a 

theoretical reference regarding the performance of the algorithms. To further explore how 

the algorithms perform from an empirical perspective, a variety of experiments have been 

designed in many different studies. The Dijkstra’s algorithm with double buckets was 

found to be the best for non-negative arc length (Cherkassky, Goldberg, and Radzik, 

1993). 

In Gallo and Pallottino’s experiment (1988), the threshold algorithm was found to 

be faster than those with a double-ended queue or with two queues, and these two 

algorithms behaved very much alike. In terms of variations of the Dijkstra’s algorithm, 

the binary heap performed better than the bucket structure. The arc-length range affected 

the performance of the Dial’s algorithm. When the maximum arc length increased, the 

algorithm slowed down dramatically. Table 2-1 summarizes the time and space 

complexities of the shortest path algorithms that are most commonly used. 

 
 
 

Table 2-1: Complexities of Traditional Shortest Path Algorithms 

Algorithm Time Complexity Space Complexity 

Dijkstra   

Basic implementation O (n2) 4n+2m 

Using bucket structure 𝑂 𝑚 + 𝑛𝑙!"#   5n+2m+lmax 

Using binary heap 𝑂 𝑛𝑙𝑜𝑔𝑛  with sparse graph 5n+2m 
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Bellman-Ford-Moore   

Basic implementation 
O (nm) 

O (N3) with complete graph 
4n+2m 

With parent-checking O (nm) 4n+2m 

Double-ended queue 
𝑂 2!   

𝑂 𝑛×2!  with complete graph 
4n+2m 

Two queues 𝑂 𝑛!𝑚   4n+2m 

Threshold 𝑂 𝑛!𝑚   5n+2m 
 
 
 
Fifteen shortest path algorithms were tested using real road networks (Zhan and Noon, 

1998). The algorithms with a double-ended queue and two queues are the best performing 

implementations for one-to-many searches in either large or small networks. The 

Dijkstra’s algorithm with bucket structure is recommended for one-to-one searches, 

although performance directly depends on the maximum link length. When the maximum 

link length is less than 1,500 units, the Dijkstra’s approximate buckets implementation is 

the fastest one, and the Dijkstra’s double buckets implementation is also an appropriate 

alternative otherwise.  

2.2.2 Heuristic Methods 

In most cases of real-world vehicle navigation, the “best” route is not necessary (Uchida, 

Iida and nakahara, 1994). Instead, the “optimal” route that can be obtained in an 

acceptable time range is much more valuable. The overall accuracy and time performance 

are of particular interest in the real-time path finding applications. The traditional path 

finding algorithms are not suitable for large networks with the real-time processing 
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constraint (Karimi, 1996; Zhan and Noon, 1998).  For this reason, heuristic methods get 

more attention in research related to the real-time shortest path problems. 

Heuristic methods utilize known information to reduce the search space, thereby 

reducing the total computing time. This reduction could happen before or during the 

running of the algorithms. 

The A* algorithm is probably the best-known heuristic method (Hart, Nilsson and 

Raphael, 1968; Nilsson, 1971; Pohl, 1971; Pearl, 1984) for path finding problems. It is 

similar to the basic implementation of the Dijkstra’s algorithm except that the A* uses an 

evaluation function 𝐹 𝑖  as the label of a node 𝑖. This label consists of not only the 

current path length 𝐿 𝑜, 𝑖  from the origin node to node 𝑖, but also an estimation of 

distance 𝑒 𝑖,𝑑  that is from node 𝑖 to destination node. With this estimation 𝑒 𝑖,𝑑 , 

which is usually the Euclidean distance between node 𝑖 and destination node, the 

evaluation function could reflect how likely the shortest path could go through a node 𝑖. 

The smaller the function of a node, the more likely the node would be on the shortest path.  

The A* algorithm can make the node expansion always move forward toward the 

destination node. Therefore, the algorithm can avoid examining all intermediate nodes, 

most of which would turn out to be irrelevant to the shortest path. Sedgewick and Vitter 

(1986) found that the A* algorithm could find the shortest path with an average 𝑂(𝑛) 

time complexity. 

The bi-directional method (Dantzig, 1960) starts the search from origin and 

destination nodes and proceeds simultaneously; two shortest path trees rooted from origin 
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and destination are built respectively. When the two trees meet at the “middle” between 

origin and destination, the search procedures stop according to the predefined criterion. 

In the bi-directional method, the defined “stopping” criterion is the most critical 

factor. Nicholson (1966) proposed one such criterion to guarantees to find the shortest 

path, but the algorithm is too strict to perform better than traditional algorithms. Many 

other researchers have made great achievements based on this criterion, solving the 

problem that the two search procedures may pass each other (Pohl, 1971; Fu, 1996).  

As most traffic networks remain relatively constant over time, the preprocessing 

can be done as a trade-off between storage space and computation time. All of the 

possible shortest paths in the graph could be computed first, and retrieved when needed. 

Based on this idea, Wagner and Willhalm (2003) tested a network preprocessing 

technique that builds a subset for each individual edge. These subsets store the nodes that 

can be reached by a shortest path starting with this edge. When the algorithms are applied, 

only the nodes stored in the subsets could be visited, which reduces the search area. With 

its intensive computation and large storage spaces, this method does not impact the 

correctness of shortest path algorithms. In a number of cases, the method is able to reduce 

the search space to 5% to 20% and only take 1/10 processing time compared to the base 

case. Essentially, this technique trades storage space for response time, which may not be 

suitable for personal/vehicle navigation systems because this kind of device usually does 

not have enough storage space. 
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2.2.3 Network Pruning 

The objective of network pruning is excluding the partial network where the node search 

hardly reaches. As a result, the computation can be reduced. Hierarchical network is an 

often used network pruning method. This method is based on the idea that people, with 

their knowledge and experience, tend to choose the roads with higher levels and/or roads 

familiar to them (Liu, 1996). 

Car and Frank (1993) proposed a conceptual model of human reasoning process 

to find the path in a hierarchically structured street network. In this network, roads were 

grouped into three hierarchical levels according to mobility and accessibility: U.S. 

interstate highways, U.S. federal highways, and state (local) highways. They examined 

the examples in real cases of path finding. These facts form the primary hypothesis that 

the fastest path can be found by just considering the highest appropriate level of the 

network. The hypothesis contributed to formalize the main consideration of the path 

finding in the multilevel road network. Although this study did not produce concrete 

results but the conceptual model only, many other studies have designed and conducted 

experiments to examine the superiority of the hierarchical concept to the traditional 

algorithms. 

Most experiments used two levels of road network (Huang and Jin, 1996; Chou et 

al., 1998; Jung and Pramanik, 2002). Within the proximities of origin and destination 

nodes, the search algorithms are applied to the lower level, which has more details, to 

make sure the OD nodes can be connected to the network. Between the two proximities, 
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the search algorithms are applied to the higher level that only contains the major roads, so 

the search space could be reduced efficiently. 

The hierarchical concept has proved effective in reducing the complexity of the 

shortest path problem, although the actual computational savings are influenced by 

network topology, search rules and trip lengths. A computational study by Car and Frank 

(1993) found that the hierarchical method could be two times faster than the non-

hierarchical method on small networks with fewer than 400 nodes and 600 links. Another 

test using a larger real network (12,697 nodes and 30,867 links) suggested that the 

hierarchical method could be 8 to 10 times faster with two levels of road layers (Liu, 

1997).  

Cho and Lan (2009) conducted a hybrid method on a real network in Taiwan. 

This method integrates the hierarchical concept into the traditional Dijkstra’s algorithm 

and/or heuristic A* algorithm. A two-level hierarchical network is used. The original 

problem was broken into three components: two on the lower level within the proximities 

of origin and destination nodes, and the third on the higher level. Three combinations of 

algorithms were tested; D-D-D and A-A-A applied Dijkstra’s algorithm and A* 

algorithm for all three components, respectively, and A-D-A ran the A* algorithm for the 

component on the higher level and the Dijkstra’s algorithm on the higher level. 

There was a “noticeable computation speed-up and memory saving related to the 

reduction of search space” in the hierarchical scenario, compared to the non-hierarchical 

scenario (Cho and Lan, 2009). The hybrid algorithms are found to be 20,000 to 80,000 

times faster than the traditional Dijkstra’s algorithm, with travel time only 5% longer. As 
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a comparison, A* algorithm without network preprocessing is only 1.8 times faster than 

Dijkstra’s algorithm, with comparable extra travel time on found paths. This indicates 

that the hierarchical network is a critical factor regarding the significant reduction in 

response time. 

Jagadeesh, Srikanthan and Quek, (2002) proposed a similar approach to utilize the 

hierarchical network. They considered the three components of the problem as a whole, 

using the heuristic shortest paths on the lower level network as trial bases when looking 

for the nodes where the search actions switch between the two levels. The combined 

method was 50 times faster than the pure A* algorithm, and the found paths were only 

3.31% longer on average. 

The sub-network concept has been proposed as another network pruning method. 

The objective of the sub-network concept is limiting the node search to a smaller area 

extracted from the original network before the search algorithms are applied. Obviously, 

the extracted sub-network can reduce the computations by limiting the search space. 

However, there exists a risk that a path cannot be found in the sub-network. For this 

reason, it is critical to build extraction rules to make the sub-network reduce search space 

efficiently as well as maintain the effectiveness and accuracy of the paths found. 

Karimi, Sutovsky, and Durcik (2008) designed and conducted an experiment on 

two types of rectangular sub-networks. The experiment contained a variety of tests on 

different sizes of sub-networks, as well as on the entire network with the same algorithm 

applied. The results showed that both approaches are about 6 to 10 times faster than the 

baseline with acceptable errors. 



26 
 

Empirical achievements obtained from this study also showed that the 

performance and accuracy of sub-networks depend on the characteristics of 

origin/destination locations and the road network itself. However, the study did not reveal 

the relationships between these characteristics and the size and orientation of windows. It 

also did not reveal the underlying patterns of drivers’ actual route-choices regarding the 

features of the network. The investigations on real paths will be useful and critical for 

identifying these relationships and patterns that help find certain rules to determine the 

optimal size and orientation of the sub-network once a specific origin-destination pair is 

given. 

2.3 Summary of State-of-the-Art-Review 

Most research on path choices lacks sufficient field data to identify factors that may be 

influential. Moreover, few studies have developed methods to quantify certain impacts. 

 Heuristic methods, including network pruning, are a better option than traditional 

algorithms for one-to-one, real-time path finding applications. One of the network 

pruning methods, the sub-network concept, has not received as much attention as the 

hierarchic network. Few studies have conducted experiments to test the performance of 

the sub-network. However, not a single study has explored what kind of method can 

determine an optimal sub-network for a specific path finding problem.  
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CHAPTER 3  
STUDY APPROACH AND RESEARCH METHODOLOGY 

The preceding review of state-of-the-art literature review has provided insights into data, 

tools and techniques necessary to achieving study goals and objectives. Using these 

insights, the study approach and methodologies have been developed. These methods 

include development of tools to extract path information, identify the influence of signals, 

turns, and road classes on route-choice behavior, and prune the large street network. 

Appropriate statistical tools are applied to develop the experimental setup and analyze 

data. Figure 3-1 illustrates the study approach. 
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Figure 3-1: Approach of This Study 
 
 
 
Information extraction from the large sample of field data is required for examining how 

signals, turns, and road classes influence path choices, as well as for developing a method 

for street network pruning to improve path finding algorithms for one-to-one search. 

GPS-tracked path trajectories collected for a study in the metropolitan area of 

Minneapolis-St. Paul (the Twin Cities), Minnesota, during the period from September to 

December 2008, are acquired. The dataset contains information on trips made by 44 

randomly selected volunteers in the 21 to 65 year age group. They commuted alone and 

made travel choices without any instructions. A GPS device was installed in the vehicle 

of each study participant. The device recorded the travel trajectories of each vehicle at a 

frequency of one GPS location point per second. The geographic location and time 
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stamps of each point were documented and projected onto the ArcGIS shape files for 

post-processing. The GPS data will be matched to a digit street network obtained from 

the National Geospatial Program of the U.S. Geological Survey’s (USGS). 

 

3.1 Research Methods and Tools 

Research tools and methodologies used or developed to fulfill the study objectives 

include the following: 

1. Map-matching procedure,  

2. Python scripting to perform geometric computations; and identify through, 

left-turn, and right-turn movements;  

3. Python scripting to implement path-finding algorithm; 

4. Experimental design to facilitate testing of research hypothesis;  

5. Statistical analyses; and  

6. Python scripting for network pruning and computational measurements  

All trips made by each participant are stored in a single ArcGIS file. A Python script was 

developed to distinguish individual trips by identifying the start and end points of each 

trip. The map-matching algorithm is based on a built-in ArcGIS function that is also 

implemented by a Python script. This script is used to snap the GPS trip points to the 

digitized street network and thereby facilitate extraction of the real paths traversed on the 

network. 

The shortest time and distance paths are computed using the Dijkstra’s algorithm, 

which is also implemented as a Python script. Another script performs geometric 
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computations on network nodes and links to identify left or right turns along each real 

path or shortest path. The number of turns and signals of the path are counted while 

performing the geometric computations are performed. 

Descriptive statistical analyses are performed to examine how signals, turning 

movements, and the distribution of road classes influence path choice. Specifically, the 

experimental setup calls for paired sample t-tests between real paths and theoretical 

shortest time / distance paths. 

An experiment designed to evaluate the computational efficiencies of network 

pruning methods in the path finding problem was devised. The tool for conducting this 

experiment also applies the Dijkstra’s algorithm on a series of sub-networks. Test results 

are compared to paths obtained using the entire network so as to verify the accuracy and 

efficiency of sub-networks. 

3.2 Research Assumptions 

In shortest path computation, the posted speed limits are used as travel speeds of specific 

road segments. In the shortest path problem, the travel time of each individual road link, 

as the impedance, is computed from the length and the travel speed of this link. The 

estimation of the travel speed should be based on statistics, but not the real-time speed of 

individual vehicles. 
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CHAPTER 4  
STREET NETWORK AND MAP-MATCHING 

4.1 Preparation of Street Network  

The road network used for this research was obtained from the National Geospatial 

Program of the U.S. Geological Survey’s (USGS). The data cover seven counties in the 

metropolitan area of Twin Cities, Minnesota. The network contains full paths of all trips 

in the dataset. The USGS files use a census feature class code (CFCC) to classify streets 

and indicate some attributes of streets. For example, the USGS files may depict streets 

with opposing traffic lanes as two distinct lines; in this case, the road is called 

“separated”. 

The CFCC is a three-character code that describes road class (such as primary 

road or local road) and minor category, which indicates whether the street is separated by 

median, in a tunnel, or on a bridge, etc. For example, the code ‘A15,’ which represents 

interstate highways, depicts two distinct lines (opposing traffic direction), and a line 

coded as “A41” means it is a two-way local street. 

The street network contains 23 road classes. Table 4-1 shows the number of links 

and the total length of links in each class. 
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Table 4-1: Street Network Links by Census Feature Class Code 

Major Category Minor Category Code Number of Links Total Length of Links 
(miles) 

Primary road with 
limited access or 

interstate highway 

Unseparated A11 561 75.575 
Unseparated, in tunnel A12 5 0.301 

Unseparated, underpassing A13 162 6.303 
Separated A15 1488 283.607 

Separated, in tunnel A17 218 22.645 
Separated, underpassing A19 26 1.391 

Primary road 
without limited 

access, US 
highways 

Unseparated A21 815 105.070 
Unseparated, underpassing A23 24 1.192 

Separated A25 1247 205.684 
Separated, in tunnel A27 71 7.299 

Separated, underpassing A29 16 0.671 

Secondary and 
connecting road, 
state highways 

Unseparated A31 3500 386.896 
Unseparated, underpassing A33 16 0.894 

Separated A35 1812 260.362 
Separated, in tunnel A37 26 2.087 

Separated, underpassing A39 34 1.363 
Local, 

neighborhood, and 
rural road, city 

street 

Unseparated A41 175551 16,561.8333 
Unseparated, in tunnel A42 1 0.351 

Separated A45 2668 233.835 
Separated, underpassing A49 170 4.963 

Vehicular trail Unseparated A51 38 4.704 
Access ramp  A63 2339 295.586 

Alley  A73 36 2.920 
 
 
 
The street network data does not contain information about the existing speed limits on 

the network links. Since travel speeds are essential for determining travel times along 

paths, the following Minnesota Department of Transportation speed limits are used for 

different road categories:  

• 10 mph in alleys 

• 30 mph on streets in urban districts 

• 55 mph on other roads 

• 65 mph on expressways 



33 
 

• 65 mph on urban interstate highways 

• 70 mph on rural interstate highways. 

The travel time on each link can easily be calculated by dividing the link length by the 

traveling speed.  

Also, the USGS files do not contain signal information. It was obtained from the 

local jurisdiction. The signal data is a point feature on GIS was conflated to the nearest 

intersection based on the coordinates and added to the network as one of the attributes of 

the nodes.  Tables 4-2 and 4-3 provide a summary of the geometry of the network used in 

this study. 

 
 
 

Table 4-2: Attributes of Link and Node 

Element Attribute Name and Description Attribute’s Data Type 

Link: polyline 

ID Long 

From Node: ID of starting node of this link Long  

To Node: ID of ending node of this link Long 

One-Way Boolean 

Length: length of link in miles Double 

Time: link travel time in minutes Double 

Class: functional classification of link Text 

Node: point 

ID Boolean 

x Double 

y Double 

Signal: if traffic light at this node Boolean 
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Table 4-3: Statistics on the Street Network 

Number of Nodes 149,916 

Number of Links 370,079 

Link/Node Ratio 2.47 

Number of Signalized Intersection 3,014 

Link Length (Miles) 

Maximum 2.574 

Mean 0.097 

Stand. Dev. 0.104 
 
 
 

4.2 Real Path Identification 

A three-step methodology is developed to identify real paths as shown in Figure 4-1. The 

first step generates individual trips from the dataset of GPS-tracking points. Then these 

trip points are snapped to the street network by a map-matching algorithm, yielding paths 

represented by both node sequence and link sequence. In the last step, further path 

screening eliminates invalid paths, producing the set of real paths for later analysis. 
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Figure 4-1: Process to Identify Real Paths from GPS-Tracking Data 
 
 
 

4.2.1 Identification of Trip Ends 

Real world trips used for this study were made by 44 volunteers in the metropolitan area 

of Twin Cities, MN, during the period from September to December 2008. The path for 

each trip consists of a sequence of points tracked by GPS devices at one-second intervals. 

The dataset contains 44 subsets and each of them stores path trajectories of all trips made 

Step 3: Path screening 

Step 1: Identification of trip ends 

GPS Points 

Street Network 

Real paths for analysis 

Paths represented by 
link/node sequences 

Step 2: Map-matching 

Individual trips 
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by the same driver. These trajectories need to be distinguished trip by trip for the next 

analysis. 

Ideally, if the interval between two successive points is more than one second, the 

two points may be treated as points belonging to two different trips. However, when a 

satellite signal is lost, while the driver is still on the trip, the data on trip trajectories may 

be broken. This could lead to erroneously splitting a single trip into more than two trips. 

Another exception also can occur. If the driver finished a trip when the GPS device was 

still on, the dwelling time would be included and the two trips would be treated as one. 

Processing of trip data to identify individual trips from the large set of GPS data 

involved the following effort: 

1) GPS points that are away from the road network are removed from the dataset. 

It is assumed that the vehicle may not stay on a digitized road at the end of the trip. 

This assumption is expected to help screen out the data pertaining to trips in 

which the GPS device is still on when the driver has completed a trip. As the 

trajectories are not aligned with a network link, a threshold is needed. With “trial 

and error” and a random manual check, it is determined that a threshold of 30 

meters could provide a good measure. 

2) Determining the minimum possible time gap requires an identification process for 

the next trip. Intuitively, there must be a threshold below which a new trip is not 

possible. However, if the gap is larger than the threshold, further analysis would 

be needed to determine whether it is because of a trip-end or just signal loss 
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period. Previous research showed that 30 seconds is a good threshold for the 

minimum time gap (Du and Aultman_Hall, 2007). 

3) Distinguishing signal loss from trip-end for the time gap longer than the minimum 

threshold of 30 second is the third important step in identifying individual trips. If 

the time gap were caused by signal loss, the average speed of the vehicle during 

this gap would not be much different from average speeds before and after the gap, 

if the driving pattern were assumed constant. The average speed during the gap 

can easily be estimated from the time and distance recorded by GPS devices. The 

highest free flow speed is 70 mph, and average speeds on most streets are no more 

than 50 mph. Therefore, it would be reasonable to identify a trip-end when the 

average speed during the time gap is 50% less than speeds before and after the 

gap. Du and Aultman-Hall (2007) suggested using 20 points before and after the 

gap to calculate the assumed driving speed. This proved enough to obtain 

successful identification. 

This methodology has proved to be very effective in identifying individual trips. Certain 

special situations posed challenges to this methodology. For example, if the vehicle met 

with traffic congestion or traveled from an expressway to a local road when the GPS 

device was experiencing a signal loss, a continuous trip would be split because the 

average speed reduction could be over the threshold. Such instances are assumed to be 

rare and could not be avoided. A few random checks have shown that this identification 

process could yield better results than the results obtained only using the original time 

stamps recorded by GPS devices.  
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4.2.2 Map-matching Algorithm 

A route can be obtained by connecting GPS points according to the time order in which 

they are recorded. However, the route may not match any links on the street network in 

many cases, due to either an error in the GPS location or an inaccurate digital road 

network. It is necessary to snap the GPS points of each trip to the digital street network. 

This technique is called map-matching. Real trip paths are identified in the format of 

node and/or link sequences between trips’ origins and destinations. 

Numerous studies have developed procedures to perform map-matching 

effectively and accurately. Map-matching algorithms can be classified into three 

categories (Bernstein and Kornhauser, 1996; Quddus, Ochieng, and Noland, 2007):  

a) geometry based algorithm  

b) geometry and topology based algorithm, and  

c) probability based algorithm  

A geometry based algorithm makes use of only geometric information provided by the 

digital network, and it does not consider the connectivity between candidate links. It may 

be the easiest way to do map-matching, but is not considered accurate enough. By 

introducing topology information, a geometry-and-topology-based algorithm can reduce 

the set of candidate curves dramatically and improve accuracy (Bernstein and Kornhauser, 

1996). A probability-based algorithm selects matched link from multiple candidates 

within a buffer of the GPS point. The evaluation criteria may include heading, 

connectivity, and closeness (Quddus and Noland, 2007). 
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According to the elements involved, map-matching algorithms may also be 

classified as:  

a) point-to-point,  

b) point-to-curve, and  

c) curve-to-curve.  

The curve-to-curve method has rarely been used in GPS data processing because this 

method is sensitive to outliers (Quddus et al., 2007), and the trip dataset is based on 

points. The point-to-curve method, which matches a GPS point to a curve with shortest 

perpendicular distance, is more advanced and accurate compared to point-to-point 

method (Bernstein & Kornhauser, 1996; Quddus, Noland, and Ochieng, 2006; White et 

al., 2000). The point-to-curve approach with consideration of link connectivity is 

employed in this study for performing map-matching. 

ArcGIS software and the embedded tools in ArcGIS are used extensively for map 

matching. Where necessary, custom tools within or outside the ArcGIS environment were 

developed. ArcGIS function GENERATE_NEAR_TABLE can find the nearest link for 

each GPS point. Since GPS collects points second by second, multiple points may have a 

common nearest link, thus, the link will not be kept in the sequence repeatedly if it is the 

same as its previous link. 

The set of candidate links identified by ArcGIS may contain links that are not on 

real paths used by trips in the dataset. On the other hand, a few links forming the real path 

may be missing, because neither the GPS device nor the digital street map is 100% 

accurate and/or compatible. To screen out the incorrect links and find back the missing 
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links, further processing of the digital network is needed. This processing requires 

examination of connection between successive links to make sure the link sequence is 

consistent with the real travel route and direction. 

Figure 4-2 illustrates three potential cases of incorrect matching.  In Case A, one 

or more links is missed between two successive candidate links because the links are too 

short or the GPS device has malfunctioned. Case B usually happens on the primary road 

where two traffic directions are represented by two distinct lines in the digital map. In 

this case, the GPS point is snapped to the opposing line. The algorithm should replace the 

wrong link with its counterpart on the correct direction. Case C occurs at intersections 

where the crossing street line should be eliminated from the sequence. 

 
 
 

 
Figure 4-2: Cases of Incorrect Map-Matching 

 
 
 
The map-matching algorithm developed in Python for this study eliminates wrong links, 

while at the same time retrieving missing links. The algorithm also generates a new node 

sequence that is consistent with the actual trip. The first and last nodes in the node 
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sequence of each trip are identified as the origin and destination of the trip.  The 

following pseudo code (Figure 4-3) describes the map-matching algorithm.  

 
 

 
Figure 4-3: Pseudo Code of the Map-Matching Algorithm 

 
 
 
About 8% of total trips (1,668 out of 20,174 trips) failed in map matching due to errors 

attributable to the digital street network (for example, topological errors, missing links, or 

function build_new_sequence(oldSequence): 
 newSequence := [] 
 curr := oldSequence[0] 

i = 1 
 while i < len(oldSequence): 
  next := oldSequence[i] 
  if curr.id = next.id: 
   i = i + 1 
  else: 
   if connection(curr , next) = True 
    newSequence.append(curr) 
    curr := next 
    i = i + 1 
   else: 

if curr.street = next.street and shortest_path(curr, next) < threshold: 
     newSequence.append(shortest_path(curr, next)) 
     curr := next 
     i = i + 1 
    else: 

if len(newSequence) > 0 and curr.street = newSequence[-
1].street: 

 i = i + 1 
else: 
 if len(newSequence) > 0: 
  curr = newSequence[-1] 
  newSequence.remove(curr) 
 else: return Node 

 return newSequence 
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incorrect link configuration). Figure 4-3 illustrates an example of successful a map 

matching.  

 

       
Figure 4-4: Example of Matched Path 

 
 
 

4.2.3 Path Screening 

The map-matching process reduced the data to 18,560 trips from 20,174 trips.  For 

identifying traversable paths in the network, the data are further screened by adherence to 

the following criteria and by eliminating the trips that do not fit the criteria:   

 

 Path	by	GPS	trajectories 
Path	by	links 

 



43 
 

a) A path requires at least two links. If a path contains fewer than three nodes, the 

trip is eliminated from the analysis dataset. 

b) Trips with path lengths shorter than one minute in travel time indicate a 

potentially faulty GPS device and therefore are dropped from the analysis dataset. 

c) If multiple paths made by the same driver are identical to each other, they are 

assumed to be commuting trips.  Since such duplicate trips do not provide 

additional insights into the route-choice behavior of the driver, making those trips, 

only one of these multiple trips is included in the analysis dataset.   

After this screening process is complete, the remaining 5,694 trips were identified with a 

valid path represented by both a link sequence and a node sequence. The first and last 

nodes in the path are flagged as origin and destination, respectively. The O-D node set is 

then used for computing theoretical shortest paths. 

 Figure 4-5 depicts the distribution of street links that are used by one or more 

paths. Links used over 100 times by the trips in the analysis dataset (thick red lines) are 

mostly within downtown areas. In the suburban areas, the most used links are primary or 

secondary roads, and none of them was used more than 10 times. This map indicates that 

identified valid paths primarily occurred in the urban areas. 
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Figure 4-5: Frequency of Link Usage for Routes in the Dataset 

 
 
 

4.3 Chapter Summary 

This chapter describes the data preparation on real GPS tracked data and the digit street 

network in the study area. ArcGIS is used to extract necessary attributes of the street 

network, including link characteristics, signal existence, and network connectivity. 

Python scripts are developed to distinguish individual trips, and implement the map-

matching algorithm. GPS point trajectories are snapped to the street network, generating 

a set of real paths for following experiment and analysis. 
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CHAPTER 5  
IDENTIFICATION OF NETWORK ATTRIBUTES ALONG 

THE PATH 

This chapter introduces methodologies used to identify possible factors that may 

influence path choice. These factors include the number of turning movements and 

signals along a path, the distributions of road classes, as well as travel time and distance. 

 Figure 5-1 depicts how these factors are identified for statistical analysis. 

Compared to real paths obtained from data preparation, shortest time paths and shortest 

distance paths are computed using path finding algorithms. The same factors are 

identified for all paths. Paired sample t-tests between real paths and shortest paths will be 

conducted on these factors to analyze their influence on path choice. 
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Figure 5-1: Analysis of Factors Influencing Path Choice 
 
 
 

5.1 Computation of Shortest Paths 

This study analyzes people’s path choices by comparing real paths to shortest 

time/distance paths. Customs Python scripts are developed for accomplishing the study 

objectives including the implementation of shortest path algorithms. The code uses 

Identification of Attributes along Path 

Statistical Analysis 

Data Preparation 

GPS Points Street Network 

Real Paths 

O-D Pairs 

Path Finding 
Algorithm 

• Travel Time 
• Travel Distance 
• Distribution of Road 
Classes 

• Number of Left/Right 
Turns 

Computed Paths 
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Forward Star notation to represent the street network data. The notation represents the 

network as an adjacency list: 

 

where G is the graph, n is the node that belongs to a set of nodes N, with an identification 

tag id, coordinates x and y, signal existence, and a link set named forward star. A forward 

star of a node is a set of all links starting from this node. The forward star notation is a 

representation of network connectivity. 

Dijkstra’s algorithm (Dijkstra, 1959), also known as the label-correcting 

algorithm, is used in the script for finding shortest paths. The algorithm maintains an 

unordered linked-list for candidate set Q (also known as the priority queue). After the full 

list is examined, the node with the minimum label in current Q is selected as the next 

node to be scanned. The algorithm is terminated once the destination node is selected to 

scan obviating the need to build the full shortest path tree. This algorithm is very 

appropriate for a one-to-one path search. 

The script generates two paths for each trip. The first path is based on travel time, 

and the second path is based on distance. As in the case of real paths, each of the two 

computed shortest paths is represented by a node sequence as well as by a link sequence. 

Thus, for each trip between the same O-D pair, there are three paths:  

1. real path, 

2. shortest time path, and 

3. shortest distance path.    
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Link sequence or node sequence along these three paths may or may not be the same. 

Comparing the node/link sequences of two paths can identify whether or not they are 

identical to each other. Only when two paths have the same number of nodes/links in 

their sequences, and at every corresponding place of these two sequences, node/link in 

one sequence, the node/link is exactly the same as each other, can two paths be regarded 

identical.  

 

5.2 Turns and Signals along Paths 

Each node in the network has been tagged with a Boolean attribute to indicate whether a 

signal exists at that location. Because of this, finding the presence of signals along a trip 

path is relatively straightforward. The number of signals in each path can be counted by 

simply going through the node sequence for the path. 

The most challenging part of the Python script developed for this study is the 

procedure that identifies left- or right-turning movements. The routine performs 

geometric calculations on nodes and the links along the paths (real or computed) under 

examination.  

A turning movement is identified when the angle between two successive links is 

greater than 45 degrees. This angle, θ, as shown in Figure 5-2, is the absolute value of the 

difference by subtracting angle α from angle β. As the figure indicates, angle α and angle 

β are angles between links and the positive direction of x axis. Using coordinates of the 

three nodes A, B, and C, which form the two links, angle α and angle β can be calculated 

as follows: 
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Figure 5-2:  Identifying Turns along a Path 
 
 
 
Starting from the first node in any path sequence, for each consecutive three-node group 

the procedure computes the angle θ. If θ is greater than 45°, a turning movement is 

recognized to occur at node B. Depending on the direction of trip and turn, the movement 

is flagged as a left or right turn. The procedure for identifying left or right turn is 

illustrated in Figure 5-3.  

 
 
 

 
Figure 5-3: Identifying the Direction (Left or Right) of a Turn 
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The procedure goes through the whole path sequence and counts the number of left and 

right turns along the path, respectively. Because each of the three paths for a given O-D 

pair can have different lengths, the turn counts are normalized as number of turns per 

mile for later comparisons. 

5.3 Distribution of Road Classes on Real Path 

For analytical convenience, all the 23 road classifications in the network are combined 

into three major classes (Table 5-1). For both measurements of number of links and total 

link length, the class of local roads is dominant in the network. The primary road class 

has values generally higher than but comparable to the secondary road class. 

 
 
 

Table 5-1: Road Classification Used in the Study 

Classes CFCC Code Description Number of  
Links 

Total Link 
Length (Miles) 

Primary 
Road A1, A2 Interstate, US highways 

and their ramps 6,972 1,005 

Secondary 
Road A3 State highways and their 

ramps 5,388 651 

Local Road A4, A51, 
A73 

Rural roads, local streets, 
and other minor roads 178,464 16,808 

 
 
 

To exclude the possibility that drivers have to choose a certain road class merely due to 

the composition of the network rather than their preferences, a concept of “road 
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availability” was defined. This concept reflects how much a specific class of facility can 

be chosen by drivers when they are making a trip. 

The road availability measure cannot be based on the entire network, because 

only a small portion of the network is relevant for a specific trip. This small portion, 

defined as trip proximity in this study, is the smallest rectangular area being able to cover 

the trip path (Figure 5-4). The portion of trip represented in each road class is computed. 

Road lengths are also summed up by road class within the area of trip proximity. The 

following two measures are computed from these accumulation counters:  

1. percentage of trip length in each road class 

2. percentage of trip length in each road class normalized by length of road class 

within the trip proximity 

The Python script examines link sequences of each path and classifies links, summing up 

the link lengths by CFCC codes. The summed miles of each class are divided by path 

length to obtain usages for this class. 
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Figure 5-4: Example of Trip Proximity 

 
 
 
The comparison between availability and usage of a specific trip can rule out the possible 

effect of the network composition on path selection, so as to help identify drivers’ 

preferences among various road classifications. 

 

5.4 Chapter Summary 

The Dijkstra’s algorithm is used to find the shortest paths between O-D pairs determined 

from real paths. For each path, turning movements are identified based on the geometric 

calculation. The information on signal existences at intersections, as well as the 

distribution of road classes, is also extracted from the street network. These path 

attributes will be used in the statistical analysis to examine their impacts on path choices. 
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CHAPTER 6  
FACTORS INFLUENCING ROUTE-CHOICE 

Although the best known impact factors of route-choice are travel time and travel 

distance, in most urban areas, turning movements, traffic lights, and road classifications 

are hypothesized to have a significant effect on travelers’ choices. This chapter identifies 

the impacts of these factors by comparing real paths to computed shortest paths. 

Statistical analysis was conducted to reach sound conclusions. 

6.1 Simple Comparisons: Real Paths vs. Computed Paths 

For analytic conveniences, real paths, shortest distance paths, and shortest time paths are 

categorized in four groups by their length. First, average travel time and travel distance 

on real paths and shortest paths are compared. 

6.1.1 Path Composition by Path Length 

On real paths the median value of path length is 1.539 miles and the average length of all 

paths is 2.184 mile. Thus it is reasonable to put all paths shorter than one mile into one 

group and paths between 1 and 5 miles in another. The maximum path length in the 

dataset is 30.545 miles and relatively long paths represent only a small percentage. For 

this reason, all paths longer than 10 miles can be categorized together. Therefore, the data 

on real paths are presented in four groups: a) shorter than one mile, b) between one and 
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five miles, c) between five and ten miles, and d) greater than ten miles. Shortest distance 

and time paths are categorized in the same way. 

The Table 6-1 shows that most trips have a path length between 1 and 5 miles.  

With paths shorter than 1 mile together, over 90% of trips have a path less than 5 miles, 

no matter if the path is real or computed (Figure 6-1). The reason that longer trips are 

lacking in the dataset is that some of the longer trips were removed in previous steps 

because they were repetitive commuting trips made by the same driver. 

 
 
 

Table 6-1: Real Paths and Shortest Paths by Length 

Path Length Category Real Paths Shortest Distance Paths Shortest Time Paths 

less than 1 mile 1,603 1,858 1,820 

between 1 and 5 miles 3,708 3,540 3,518 

between 5 and 10 miles 304 224 275 

more than 10 miles 79 72 81 

Total 5,694 5,694 5,694 
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Figure 6-1: Real Paths and Shortest Paths by Length 

 
 
 
Table 6-2 shows 1,997 shortest distance paths and 1,951 shortest time paths identical to 

their real path counterparts. On the other hand, more than 60% real paths (about 3,548 

paths) are different from both computed shortest paths. 

 
 
 

Table 6-2: Shortest Paths Identical to Real Path 

Shortest Path Number of Identical Paths Percentage of Identical Paths 

Shortest Distance Path 1,997 35.07% 

Shortest Time Path 1,951 34.26% 
 
 
 
Figure 6-2 further illustrates how many shortest paths are identical to corresponding real 

paths in each path length category. A measure of identical rate was defined as: 
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between 5 and 10 miles 5.34% 3.93% 4.83% 
more than 10 miles 1.39% 1.26% 1.42% 
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𝐼𝑑𝑒𝑛𝑡𝑖𝑐𝑎𝑙 𝑅𝑎𝑡𝑒 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑑𝑒𝑛𝑡𝑖𝑐𝑎𝑙 𝑡𝑟𝑖𝑝𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑡𝑟𝑖𝑝𝑠  

The highest identical rates occur on paths with fewest miles of length, for both shortest 

distance and shortest time paths. The rate decreases when the path length becomes longer. 

The category of “between 5 and 10 miles” has the lowest identical rate, i.e., among all 

real paths in this category, only 14.10% happened to be the shortest distance paths 

between their O-D pairs, and 16.07% to be the shortest time paths. 

 
 
 

 

Figure 6-2: Identical Rate by Path Length 
 

 
 

The identical rate shows that drivers did not necessarily choose the shortest distance 

paths or the shortest time paths. This finding means that drivers must be influenced by 

other factors when they choose their real paths. 
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6.1.2 Average Travel Distance and Travel Time 

Both real and computed paths have a similar average path length (Figure 6-3), especially 

between two computed paths, which have the same average length for paths shorter than 

5 miles. Real paths have an average length slightly longer than theoretic paths, except the 

trips between 5 and 10 miles. In this category, shortest time paths have the longest 

average path length.  

In terms of the category of more than 10 miles, the shortest distance paths take the 

longest time (Figure 6-4). For all trips, the shortest time paths take less time than the 

other two types, which is consistent with expectation. 

 
 
 

 
Figure 6-3: Average Path Length 
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Figure 6-4: Average Path Time 

 
 
 

6.2 Influence of Road Classifications 

This study firstly examines if drivers’ choices of route were influenced by the network 

composition. Then usages of primary and secondary roads on real paths and shortest 

paths are compared. 

6.2.1 Real Paths: Road Availability vs. Road Usage 

Figure 6-5 compares road availability to road usage of real paths for four path lengths and 

three major road classes. Local roads within proximity dominate for all length groups. 

Although the availability of primary and secondary roads together is only 10% or less, 

the two higher classes have a bigger portion in the road usage. In spite of the network 

composition, drivers were willing (not forced) to choose roads with a higher level of 

functional class. 
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Figure 6-5: Road Availability vs. Road Usage 

 
 
 
As path lengths increase, the portion of the primary road in a real path becomes larger, 

and the portion of the local road becomes smaller. In terms of secondary roads, the 

percentage increases then decreases. For paths shorter than 10 miles, over 50% usage 
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belongs to local road, and primary road only takes the smallest portion. Only when trip 

length is longer than 10 miles, does the percent share of local roads become lower than 

the other two classes. The percent share of primary roads is the highest. 

6.2.2 Primary and Secondary Road Usage 

This section further explores commonalities and differences between real paths and 

shortest paths in terms of usage of primary and secondary roads. In each road class, 

shortest distance paths and shortest time paths trend the same way as real paths when 

path lengths increase (Figure 6-6). In other words, usage of primary roads increases while 

that of local roads decreases. The highest usage of secondary roads happens to paths 

between 5 and 10 miles. However, for trips longer than 10 miles, the smallest percentage 

is secondary road for shortest distance path., For trips between 5 and 10 miles, the largest 

percentage is secondary road for shortest time path. .  
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Figure 6-6: Shortest Distance and Time Paths for Roads Classified by Type and Length 

 
 
 
Figures 6-7 to 6-9 compare primary, secondary, and local road usage on real paths and 

shortest paths. On average, shortest time paths occurred more along primary and 

secondary roads than did the other two sets and accordingly, fewer local roads for all trips. 

This is reasonable because primary and secondary roads yield higher average traveling 
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speeds and less travel time accordingly. Furthermore, for the shortest time path, the 

percentage of local roads declined more sharply than for the other two types of path with 

path length increasing. Meanwhile, shortest distance paths used less primary road than 

real paths in all categories. 

 
 
 

 
Figure 6-7: Usage of Primary Roads along Real and Shortest Paths 
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Figure 6-8: Usage of Secondary Roads along Real and Shortest Paths 

 
 
 

 
Figure 6-9: Usage of Local Roads Real and Shortest Paths 

 
 
 
Table 6-3 and 6-4 present the results of paired sample t-tests. They show that real paths 

have higher percentages of primary and secondary roads than shortest distance paths in 
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almost all circumstances. Only for paths shorter than one mile do real paths have less 

usage of secondary roads than shortest distance paths, where the p-value is bigger than 

0.05 (0.123). 

 
 
 
Table 6-3: Effect of Primary Road on Path Choice - Real vs. Shortest Paths 

Path Results of paired t-test 
Path Length 

Shorter than 1 
mile 

Between 1 
and 5 miles 

Between 5 
and 10 miles 

Longer than 
10 miles 

Real 
Path 

Mean percentage of 
primary road along real 

path (µr) 
0.021 0.093 0.164 0.602 

Degrees of freedom 1602 3707 304 78 

Vs. 
Shortest 
Distance 

Path 

Mean percentage of 
primary road along 

shortest distance  path 
(µs) 

0.013 0.088 0.128 0.540 

Mean difference (µr - µs) 0.0080 0.005 0.037 0.062 

t-statistic 3.667 3.871 3.726 3.534 

p-value (one-tailed) < 0.001 < 0.001 < 0.001 < 0.001 

Vs. 
Shortest 

Time 
Path 

Mean percentage of 
primary road along 

shortest Time  path (µs) 
0.030 0.123 0.254 0.617 

Mean difference (µr  - 
µs) 

-0.009 -0.030 -0.090 -0.015 

t-statistic -4.284 -14.610 -8.375 -1.263 

p-value(one-tailed) 1.000 1.000 1.000 0.895 
H0: µr - µs ≤0, Ha: µr - µs> 0 
At 95% confidence interval of the difference, the p-value less than 0.05 indicates it’s safe to 
reject H0 and Ha may be accepted. 
Values in shaded cells indicate real paths have significantly higher percentage of primary road 
than shortest paths in statistics. 

 
 
 

Paired t-tests also found that shortest time paths have both primary and secondary road 

usage significantly greater than real paths for all paths. On the other hand, shortest 
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distance paths do not have a higher percentage than real paths regarding road usage with 

higher classes. 

 
 
 

Table 6-4: Effect of Secondary Road on Path Choice - Real vs. Shortest Paths 

Path Results of paired t-test 
Path Length 

Shorter than 1 
mile 

Between 1 
and 5 miles 

Between 5 
and 10 miles 

Longer than 
10 miles 

Real Path 

Mean percentage of 
secondary road along 

real path (µr) 
0.040 0.138 0.274 0.260 

Degrees of freedom 1602 3707 304 78 

Vs. Shortest 
Distance 

Path 

Mean percentage of 
secondary road along 
shortest distance  path 

(µs) 

0.038 0.131 0.230 0.187 

Mean difference (µr - µs) 0.002 0.008 0.044 0.074 

t-statistic 1.162 3.352 3.565 3.985 

p-value (one-tailed) 0.123 < 0.001 < 0.001 < 0.001 

Vs. Shortest 
Time Path 

Mean percentage of 
secondary road along 

shortest Time  path (µs) 
0.063 0.189 0.375 0.288 

Mean difference (µr  - 
µs) 

-0.022 -0.050 -0.100 -0.028 

t-statistic -7.666 -18.518 -8.117 -2.077 

p-value(one-tailed) 1.000 1.000 1.000 0.979 
H0: µr - µs ≤0, Ha: µr - µs> 0 
At 95% confidence interval of the difference, the p-value less than 0.05 indicates it’s safe to reject 
H0 and Ha may be accepted. 
Values in shaded cells indicate real paths have significantly higher percentage of secondary road 
than shortest paths in statistics. 

 
 

 
In summary, people tend to choose roads with higher classes. However, real paths did not 

have more primary and secondary roads than shortest time paths. The reason why people 

prefer major roads is that major roads have higher posted speed limits and fewer 
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interruptions, which leads to less traveling time. This feature has been reflected by the 

impedance function of shortest time paths. Therefore, the influence of road classification 

is consistent with shortest time paths. 

6.3 Effect of Turning Movements on Path Choice 

The influence of turning movements on route-choice are studied with regard to: 1) all 

turns regardless of the existence of a signal, 2) turns at signalized intersections, and 3) 

turns at non-signalized intersections. Counts of turns along a path are normalized as 

number of turns per mile due to different path length. 

6.3.1 All Turns Regardless of Signal Existence 

Figure 6-10 illustrates the number of turns per mile along paths for real paths, for shortest 

distance paths, and for shortest time paths. The longer the path length, the fewer the 

number of turns. This pattern appeared for all sets and for both left and right turns. 

All paths have more right turns than left turns on average for trips shorter than 5 

miles. According to analysis of road classification in the previous section, for shorter 

trips the majority of road usage is in the local road category. Local roads have more 

intersections, and consequently may generate more turning movements. However, there 

is no obvious pattern for trips of more than 5 miles because on these trips the influence of 

turns declined due to the increasing percentage of primary and secondary roads. 
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Figure 6-10: Number of Turns per Mile Regardless of Signal Existence 

 
 
 
Figure 6-11 shows that real paths have a smaller average value in all length categories 

than computed paths, in terms of number of left turns per mile.  

 For right turns, the same conclusion is reached. Figure 6-12 and Table 6-6 show 

that drivers tend to choose paths with fewer right turns than shortest path. 
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Figure 6-11: Number of All Left Turns per Mile 

 
 
 

 
Figure 6-12: Number of All Right Turns per Mile 

 
 
 
The results of paired t-tests in Table 6-5 support this observation statistically, except 
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tests yielded p-values over 0.05, which means at 95% confidence interval, it is not safe to 

reject the null hypothesis that real paths have more left turns. 

 
 
 

Table 6-5: Effect of All Left Turns on Path Choice - Real vs. Shortest Paths 

Path Results of paired 
t-test 

Path Length 

Shorter than 1 
mile 

Between 1 and 
5 miles 

Between 5 and 
10 miles 

Longer than 
10 miles 

Real Path 

Mean left turns per 
mile along real 

path (µr) 
1.012 0.678 0.449 0.088 

Degrees of 
freedom 1602 3707 319 62 

Vs. Shortest 
Distance 

Path 

Mean left turns per 
mile shortest 

distance  path (µs) 
1.182 0.859 0.566 0.155 

Mean difference 
(µr - µs) 

-0.171 -0.181 -0.118 -0.067 

t-statistic -5.570 -12.818 -3.485 -2.839 

p-value (one-
tailed) < 0.001 < 0.001 < 0.001 0.003 

Vs. Shortest 
Time Path 

Mean left turns per 
mile along shortest 

time  path (µs) 
1.198 0.785 0.482 0.069 

Mean difference 
(µr - µs) 

-0.186 0.107 -0.034 0.019 

t-statistic -6.055 -7.740 -1.032 2.107 

p-value (one-
tailed) < 0.001 < 0.001 0.303 0.980 

H0: µr - µs ≥ 0, Ha: µr - µs< 0 
At 95% confidence interval of the difference, the p-value less than 0.05 indicates it is safe to reject H0 and 
Ha may be accepted. 
Values in shaded cells indicate real paths have fewer left turns per mile than do shortest paths statistically. 
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Table 6-6: Effect of All Right Turns on Path Choice - Real vs. Shortest Paths 

Path Results of paired 
t-test 

Path Length 

Shorter than 1 
mile 

Between 1 
and 5 miles 

Between 5 and 
10 miles 

Longer than 
10 miles 

Real Path 

Mean right turns 
per mile along 
real path (µr) 

1.206 0.730 0.397 0.066 

Degrees of 
freedom 1602 3707 319 62 

Vs. Shortest 
Distance Path 

Mean right turns 
per mile along 

shortest distance  
path (µs) 

1.272 0.865 0.616 0.138 

Mean difference  
(µr - µs) 

-0.066 -0.136 -0.219 -0.067 

t-statistic -2.095 -10.802 -7.877 -2.839 

p-value (one-
tailed) 0.018 < 0.001 < 0.001 0.003 

Vs. Shortest 
Time Path 

Mean right turns 
per mile along 

shortest time  path 
(µs) 

1.305 0.812 0.499 0.081 

Mean difference  
(µr - µs) 

-0.099 -0.107 -0.102 -0.015 

t-statistic -3.153 -7.740 -4.307 -1.605 

p-value (one-
tailed) 0.001 < 0.001 < 0.001 0.057 

H0: µr - µs ≥ 0, Ha: µr - µs< 0 
At 95% confidence interval of the difference, the p-value less than 0.05 indicates it is safe to reject H0 
and Ha may be accepted. 
Values in shaded cells indicate real paths have less right turns per mile than do shortest paths 
statistically. 

 
 
 

6.3.2 Turns at Signalized Intersection 

For real, shortest distance, and shortest time paths, this study also analyzed turning 

movements at signalized intersections and at intersections without traffic lights. Figure 6-
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13 compares signalized turning movements and shows that neither left turns nor right 

turns are prevalent. The only clear pattern is that the number of turns per mile decreased 

with increasing path length. 

 
 
 

 

 
Figure 6-13: Number of Signalized Turns per Mile 

 
 
 
Figures 6-14 and 6-15 depict average signalized left turns per miles and right turns per 

mile respectively. The results of statistical analysis are shown in Table 6-7 and 6-8. None 

of the paired t-tests yielded the conclusion that real paths have fewer signalized turns. 
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Figure 6-14: Number of Signalized Left Turns per Mile 

 
 
 

 
Figure 6-15: Number of Signalized Right Turns per Mile 
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Table 6-7: Effect of Signalized Left Turns on Path Choice - Real vs. Shortest Paths 

Path Results of paired t-
test 

Path Length 

Shorter 
than 1 mile 

Between 1 
and 5 miles 

Between 5 and 
10 miles 

Longer than 
10 miles 

Real Path 

Mean signalized left 
turns per mile along 

real path (µr) 
0.376 0.250 0.149 0.013 

Degrees of freedom 1602 3707 319 62 

Vs. Shortest 
Distance 

Path 

Mean signalized left 
turns per mile along 

shortest distance  path 
(µs) 

0.285 0.197 0.089 0.014 

Mean difference (µr - 
µs) 

0.091 0.053 0.060 -0.002 

t-statistic 5.371 8.118 6.194 -0.404 

p-value (one-tailed) 1.000 0.999 1.000 0.344 

Vs. Shortest 
Time Path 

Mean signalized left 
turns per mile along 

shortest time  path (µs) 
0.321 0.207 0.089 0.009 

Mean difference (µr - 
µs) 

0.056 0.043 0.060 0.003 

t-statistic 3.240 6.235 6.561 1.709 

p-value (one-tailed) 0.999 1.000 1.000 0.954 
H0: µr - µs ≥ 0, Ha: µr - µs< 0 
At 95% confidence interval of the difference, the p-value less than 0.05 indicates it is safe to reject H0 
and Ha may be accepted. 
Values in shaded cells indicate real paths have fewer signalized left turns per mile than do shortest paths 
statistically. 
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Table 6-8: Effect of Signalized Right Turns on Path Choice - Real vs. Shortest Paths 

Path Results of paired t-test 

Path Length 

Shorter 
than 1 
mile 

Between 1 and 
5 miles 

Between 5 and 
10 miles 

Longer than 
10 miles 

Real Path 

Mean signalized right 
turns per mile along 

real path (µr) 
0.426 0.273 0.144 0.019 

Degrees of freedom 1602 3707 319 62 

Vs. Shortest 
Distance 

Path 

Mean signalized right 
turns per mile shortest 

distance  path (µs) 
0.289 0.199 0.107 0.016 

Mean difference (µr - 
µs) 

0.137 0.074 0.037 0.003 

t-statistic 7.770 12.207 2.877 0.520 

p-value (one-tailed) 1.000 1.000 0.998 0.698 

Vs. Shortest 
Time Path 

Mean signalized right 
turns per mile along 

shortest Time  path (µs) 
0.333 0.221 0.103 0.016 

Mean difference (µr - 
µs) 

0.093 0.052 0.040 0.003 

t-statistic 4.970 8.670 3.358 0.573 

p-value (one-tailed) 1.000 1.000 1.000 0.716 
H0: µr - µs ≥ 0, Ha: µr - µs< 0 
At 95% confidence interval of the difference, the p-value less than 0.05 indicates it is safe to reject H0 
and Ha may be accepted. 
Values in shaded cells indicate real paths have fewer signalized right turns per mile than do shortest 
paths statistically. 

 
 
 

6.3.3 Turns at Non-signalized Intersections 

The analysis of non-signalized turns and the analysis of signalized turns led to different 

conclusions. Both the average value (Figure 6-16 to 6-18) and statistical analysis (Table 

6-9 and 6-10) indicate that real paths, compared with shortest paths, have fewer non-
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signalized turns and these findings are statistically significant. The only exception is the 

comparison of right turns for real paths and shortest time paths longer than 10 miles. 

 
 
 

 
Figure 6-16: Number of Non-signalized Turns per Mile 

 
 
 

 
Figure 6-17: Number of Non-signalized Left Turns per Mile 
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Like the findings for all turns, left turns at intersections without signals are fewer than 

right turns at intersections without signals when path length is shorter than 5 miles. For 

other paths, neither direction of turn prevails over the other. 

 
 
 

Table 6-9: Effect of Non-signalized Left Turns on Path Choice - Real vs. Shortest Paths 

Path Results of paired t-
test 

Path Length 

Shorter than 
1 mile 

Between 1 and 
5 miles 

Between 5 and 
10 miles 

Longer than 
10 miles 

Real Path 

Mean non-signalized 
left turns per mile 

along real path (µr) 
0.635 0.428 0.299 0.076 

Degrees of freedom 1602 3707 319 62 

Vs. Shortest 
Distance Path 

Mean non-signalized 
left turns per mile 
shortest distance  

path (µs) 

0.897 0.663 0.477 0.141 

Mean difference (µr - 
µs) 

-0.262 -0.234 -0.178 -0.065 

t-statistic -8.757 -17.707 -5.669 -2.960 

p-value (one-tailed) < 0.001 < 0.001 < 0.001 0.002 

Vs. Shortest 
Time Path 

Mean non-signalized 
left turns per mile 
along shortest time  

path (µs) 

0.877 0.578 0.393 0.060 

Mean difference (µr - 
µs) 

-0.242 -0.149 -0.094 0.016 

t-statistic -8.069 -11.785 -3.084 1.687 

p-value (one-tailed) < 0.001 < 0.001 0.001 0.952 
H0: µr - µs ≥ 0, Ha: µr - µs< 0 
At 95% confidence interval of the difference, the p-value less than 0.05 indicates it is safe to reject H0 and 
Ha may be accepted. 
Values in shaded cells indicate real paths have fewer non-signalized left turns per mile than do shortest 
paths statistically. 
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Figure 6-18: Number of Non-signalized Right Turns per Mile 
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Table 6-10: Effect of Non-signalized Right Turns on Path Choice - Real vs. Shortest Paths 

Path Results of paired t-
test 

Path Length 

Shorter than 
1 mile 

Between 1 
and 5 miles 

Between 5 and 
10 miles 

Longer than 
10 miles 

Real Path 

Mean non-signalized 
right turns per mile 
along real path (µr) 

0.780 0.457 0.253 0.047 

Degrees of freedom 1602 3707 319 62 

Vs. 
Shortest 
Distance 

Path 

Mean non-signalized 
right turns per mile 

shortest distance  path 
(µs) 

0.983 0.667 0.509 0.122 

Mean difference (µr - 
µs) 

-0.203 -0.210 -0.256 -0.075 

t-statistic -6.681 -16.465 -9.581 -3.396 

p-value (one-tailed) < 0.001 < 0.001 < 0.001 < 0.001 

Vs. 
Shortest 

Time Path 

Mean non-signalized 
right turns per mile 
along shortest time  

path (µs) 

0.972 0.591 0.395 0.065 

Mean difference (µr - 
µs) 

-0.192 -0.135 -0.142 -0.018 

t-statistic -6.398 -11.344 -6.035 -1.730 

p-value (one-tailed) < 0.001 < 0.001 < 0.001 0.044 
H0: µr - µs ≥ 0, Ha: µr - µs< 0 
At 95% confidence interval of the difference, the p-value less than 0.05 indicates it is safe to reject H0 
and Ha may be accepted. 
Values in shaded cells indicate real paths have fewer non-signalized right turns per mile than do shortest 
paths statistically. 

 
 
 

6.4 Effect of Signals on Path Choice 

Figure 6-19 shows that both shortest distance paths and shortest time paths have fewer 

signals than real paths when the length is shorter than 10 miles. The paired t-test results 

are consistent with this observation. Most of p-values in Table 6-11 are bigger than 0.05, 

which means the null hypothesis that real paths have more signals than shortest paths 
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cannot be rejected. The only exception is in the comparison to shortest distance paths 

regarding trips longer than 10 miles. Considering the small portion of long paths, this p-

value could be regarded as the result of outliers. Therefore, it can be concluded that the 

number of signals is not a factor that significantly impacts drivers’ path choice. 

 
 
 

 
Figure 6-19: Number of Signals per Mile 
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Table 6-11: Effect of Signals on Path Choice - Real vs. Shortest Paths 

Path Results of paired t-
test 

Path Length 

Shorter than 1 
mile 

Between 1 
and 5 miles 

Between 5 and 
10 miles 

Longer than 
10 miles 

Real 
Path 

Mean signals per mile 
along real path (µr) 

3.296 2.535 1.582 0.160 

Degrees of freedom 1,601 3,707 319 62 

Vs. 
Shortest 
Distance 

Path 

Mean signals per mile 
shortest distance  path 

(µs) 
3.059 2.247 1.471 0.252 

Mean difference (µr - 
µs) 

0.236 0.288 0.111 -0.092 

t-statistic 7.390 16.137 2.290 -2.423 

p-value (one-tailed) 1.000 1.000 0.989 0.009 

Vs. 
Shortest 

Time 
Path 

Mean signals per mile 
along shortest time  

path (µs) 
3.129 2.352 1.343 0.165 

Mean difference (µr - 
µs) 

0.167 0.183 0.239 -0.005 

t-statistic 4.924 9.430 4.015 -0.288 

p-value (one-tailed) 1.000 1.000 1.000 0.387 
H0: µr - µs ≥ 0, Ha: µr - µs< 0 
At 95% confidence interval of the difference, the p-value less than 0.05 indicates it is safe to reject H0 
and Ha may be accepted. 
Values in shaded cells indicate real paths have fewer signals per mile than do shortest paths statistically. 

 
 
 

6.5 Summary 

When they choose their paths, drivers prefer roads with higher classes. The percentages 

of primary and secondary roads along real paths are much higher than their percentages 

in the network composition. The longer the trip, the higher the percentage of roads with 

higher classes. 
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  The real paths do not contain more primary or secondary roads than computed 

shortest time paths statistically. This result means that the road classification is not the 

reason why real paths deviate from shortest time paths. 

 The comparison regarding signal numbers along paths reveals that drivers do not 

try to avoid traffic lights. This finding was reached because the statistical analysis does 

not show that shortest paths have more signals per mile. In other words, the number of 

signals along path is not a significant factor influencing drivers’ path choice. 

Paired sample t-tests show that fewer turning movements for real paths than for 

both shortest distance and time paths. Thus, it maybe concluded that the number of 

turning movements significantly impacts the paths drivers choose. Turns at signalized 

intersections did not influence drivers much, but drivers did try to minimize the number 

of non-signalized turns along their path. Statistically, computed shortest paths have more 

non-signalized turns than do real paths and fewer signalized turns. Therefore, one can 

conclude that the number of turning movements, especially at non-signalized 

intersections, is a significant factor affecting drivers’ path choice. 

The exceptions in the analysis are few and they all happen  with paths longer than 

10 miles. Since such paths have much smaller sample size and fewer turns and signals per 

mile than shorter paths, these exceptions do not change the final conclusion. 
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CHAPTER 7  
IMPACT OF TURN PENALTIES ON PATH ALGORITHMS 

Analysis in previous chapters revealed that drivers tend to minimize turns, especially left 

turns, along the route. Presented in this chapter is a methodology for incorporating turn-

penalties as part of the network data structures and path finding algorithm. A turn penalty 

is the time taken to negotiate the indicated turn. It is used as an impedance variable 

within path finding algorithms. The example in Figure 7-1 illustrates different path 

finding results before and after the turn penalties are taken into consideration. 

 
 
 

 
Figure 7-1: Influence of Turn Penalties on Path Finding 
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In this simple network, when turn penalties are not taken into consideration, the time 

impedances from the origin to the destination through Path 1 are 100 seconds and through 

Path 2 are 105 seconds. There are one right turn and one left turn along Path 1, and only 

one right turn along Path 2. Assume that the penalties for a left turn and for right turns are 

10 seconds and 5 seconds, respectively. When turn penalties are considered, the total 

impedance along Path 1 and Path 2 becomes 115 seconds and 110 seconds, respectively. 

Consequently, Path 2 would be the result of a search for shortest path when turn penalties 

are considered. 

 

7.1 Calculation of Turn Penalties 

Commercially available tools for travel demand modeling include algorithms to account 

for turn penalties. However, literature on development and implementation of these 

algorithms has been fairly limited. Very few studies have focused on appropriate values 

for turn penalties and on how to quantify these penalties. Thériault, Vandersmissen & 

Leroux (1999) has chosen penalties of 24 seconds for left turns and 12 seconds for right 

turns. In another study, 30 seconds and 7.5 seconds were thought more suitable penalties 

for left and right turns, respectively (Yiannakoulias et al., 2013). Both these studies were 

based on empirical and qualitative analysis. 

With the advantage of a large-size dataset that contains trajectories of real-world 

trips, this study has focused on finding a reasonable quantitative method to determine 

turn penalties. The analysis is based on calculation of time taken to negotiate the turn.  
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The data on trip paths are represented by a GPS point trajectory and are then 

conflated with network data as a sequence of network links. The time taken for turns at 

intersections is calculated from the time stamps associated with each GPS point. Each 

turn is associated with a deceleration and acceleration zone at the approaches to an 

intersection. Depending on the signal status and traffic conditions, each turn may also be 

associated with stopped delay. The total delay associated with an intersection is the time 

differential between free-flow travel times on the approach links and the time taken to 

negotiate the turns.  

As shown in Figure 7-2, the turning time should be the time taken to travel 

through the whole distance represented by the dashed line. 

 
 
 

 

Figure 7-2: Definition of a Turning Movement 

 

 

 

Entering/leaving intersection 

Turning in intersection 

The turning time is defined as  
“time taken to travel on 
approach roads and in the 
intersection” 
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Red parts of the dashed line represent lengths traveled out of the intersection in the 

process of completing a turning movement. The length of the approach, where 

negotiating the turn-movement is expected to alter travel speeds, cannot be too long or 

too short. It should include adequate distance for deceleration and acceleration caused by 

intersection conditions, such as waiting for a traffic signal or yielding to vehicles with 

right-of-way. At different intersections, the distance cannot be the same because various 

speed limits, signal statuses, and traffic conditions together determine the initial and final 

speeds, as suggested by Table 7-1. 

 
 
 

Table 7-1: Deceleration Distance for Typical Passenger Car 

Deceleration Distance (feet) 
Final Speed (mph) 

15 10 5 0 

Initial Speed 
(mph) 

55 268 280 287 290 

45 172 184 192 194 

35 96 108 115 117 

25 38 50 57 60 
Note: Calculations are based on AASHTO’s standard deceleration rate of 11.12 ft/s2, and for 0% grade only  
 
 
 
As the primary purpose of this analysis is to develop a method for quantifying the 

influence of turning movements, a uniform length of 200 feet on both approaches to the 

intersection (entering and leaving) is assumed to represent adequately the deceleration 

and acceleration zones.  

Figure 7-3 illustrates a simple turn penalty computation from the GPS data points. In 

this example, the green dots represent network nodes and node N is an intersection where 
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the vehicle is making a right turn. GPS points tracking the vehicle movement are 

represented by black dots and the blue lines represent the network links on the path(s).  

 
 
 

 
Figure 7-3: Calculation of Turning Time from GPS Points 

 
 
 
The calculation of actual turning time follows the steps outlined below: 

1) Find the nearest GPS point P0 to the node N where the turning movement 

occurred; 

2) Start from P0, traverse points along the trip trajectory backward, locate the first 

point P1, which is over 200 feet from P0, and record the time stamp of P1 ; 

3) Repeat Step 2 except traversing forward along the trajectory, identifying P2. 

The duration between two time stamps at P1 and P2 is the actual turning time. In this 

example it took 19 seconds for the driver to complete the turning movement. 
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The calculation of estimated turning time is similar. Starting from the turning node and 

along the real path, the approach links (entering and leaving) to the node are examined 

one-by-one. The travel time on these links was accumulated until the total link length 

reaches 200 feet. Usually the last examined link of forward and backward directions is 

segmented into two parts to get exactly 200 feet long link. Segments closer to node N are 

assumed to fall within the turn-movement influence zone (200 feet). It is assumed that the 

remaining portion of the link is not influenced by the turn movement. Expected travel 

times in each link-segment are calculated in proportion to the segment length. As a result, 

only the time duration corresponding to 200 feet is calculated for forward and backward 

directions, respectively. 

In Figure 7-3, both links L1 and L2 are longer than 200 feet. Table 7-2 presents the  

simple mathematical calculation. 

 
 
 

Table 7-2: Calculation of Turning Time from Link Sequence 

Link Link Length 
(feet) 

Speed Limit 
(mph) 

Time for traversing 
whole link (sec) 

Time for traversing 200 
feet segment (sec) 

L1 330.2 30 7.5 4.56 

L2 657.7 30 14.9 4.56 

The turning time at this intersection can be easily calculated as 4.56 + 4.56  = 9.12 seconds 
 

 
 
 
With both actual and estimated turning times, the right turn penalty at this intersection 

can be easily calculated as 19 – 9.12 = 9.88 seconds. 
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A special situation is presented when two or more turning movements happen at 

multiple successive intersections, and the road segments connecting them to each other 

are shorter than 200 feet. Under this scenario, the multiple turns would be considered 

together (Figure 7-4). The measured road length should start 200 feet before the first 

intersection and end 200 feet after the last one. Therefore, the turning time would include 

the travel time spent on the 400 feet, then within these intersections, and road segments 

between them. Then the time would be split equally as turning time of the multiple 

turning movements respectively. 

 
 
 

 
Figure 7-4: Example of Two Adjacent Turns 

 
 
 
All turning movements of real paths are grouped into four categories by direction of turns 

and signal existence of intersections (Table 7-3). Turn penalties are calculated for each 

individual turning movement, and are averaged for each category . 
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Table 7-3: Turn Penalties 

Turning Movements Number of Turns Average Turn Penalties (second) 

Signalized Left Turn 3,299 29.41 

Signalized Right Turn 2,960 15.06 

Non-signalized Left Turn 7,105 14.71 

Non-signalized Right Turn 5,465 12.51 
  

7.2 Implementation of Turn Penalties in Path Finding Algorithm 

Incorporating turn penalties into path finding algorithms is not very straightforward. The 

labeling method calculates and updates costs from the start node to other nodes until the 

destination is reached with the minimum impedance. During this process, the algorithm 

keeps track of “scanned” nodes, nodes with costs that will not be updated or improved 

anymore. The candidate set is used to store “labeled” nodes that are neighbors of one or 

more of the “scanned” nodes. During the execution of the algorithm, the cost from the 

origin to each labeled node is minimized constantly, and the corresponding scanned node 

is flagged as the precedent to this labeled node. 

 If turn penalties are included in the calculation of impedances, for each labeled 

node, not only its preceding node but also the node that preceded the precedent, need 

should be recorded. Figure 7-5 provides a simplified example to illustrate the process of 

updating impedance to labeled nodes with and without turn penalties.  
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Figure 7-5: Example of Integrating Turn Penalties into Path Finding Algorithm 
 
 
 

In this example, node S is the origin, and the dashed rectangle represents the street 

network that has already been scanned. At this point in the execution of the algorithm, 

two known paths from node S to node C include one path through the node A and the 

other through node B. Assume the impedances of two paths are as follows: 

𝑝 𝑆,… ,𝐴,𝐶 = 100 

𝑝 𝑆,… ,𝐵,𝐶 = 105 

If no turn penalty is considered, node A is flagged as the precedent of node C because this 

path has less impedance. In the following step that updates impedances to nodes D and E, 

the impedances of links CD and CE are added to this current cost respectively. Now the 

path impedances from node S to nodes D and E are: 
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𝑝 𝑆,… ,𝐴,𝐶,𝐷 = 100+ 8 = 108 

𝑝 𝑆,… ,𝐴,𝐶,𝐸 = 100+ 15 = 115 

So far, node B does not appear on the solution space of paths. 

 The calculation becomes more involved if turn penalties are taken into account. 

Both paths reaching node C need to stay in the candidate set before nodes D and E are 

updated because both node A and node B must be included to identify the turning 

movements. The resulting four paths and their impedances are: 

𝑝 𝑆,… ,𝐴,𝐶,𝐷 = 100+ 8+ 10 = 118 (Right turn) 

𝑝 𝑆,… ,𝐴,𝐶,𝐸 = 100+ 15 = 115 (Through movement) 

𝑝 𝑆,… ,𝐵,𝐶,𝐷 = 105+ 8 = 113 (Through movement) 

𝑝 𝑆,… ,𝐵,𝐶,𝐸 = 105+ 15+ 20 = 140 (Left turn) 

7.3 Verification 

To verify the influence of turning movements on path choice, the turn penalties are 

applied to the path finding algorithm. The following four scenarios are examined: 

1) No turn penalties are applied  

2) Penalties are applied on signalized turns only; 

3) Penalties are applied on non-signalized turns only; and 

4) Penalties are applied on all turns regardless of signal status. 

Four sets of paths, one each for the scenarios described above, are generated. Since the 

turn penalties are represented as part of time impedance, only travel time is used as path 
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costs. The first scenario, “no penalty applied”, would yield the same set as the set of 

theoretic shortest time paths in Chapter 5. 

The generated paths with turn penalties are then compared to real paths in the trip 

dataset. For each trip, if node sequence along a generated path is the same as its 

counterpart in the base case, the path is then recognized as identical to the real path. By 

examining trips one by one, the identical rate could be identified for each scenario. The 

rate is defined as: 

𝐼𝑑𝑒𝑛𝑡𝑖𝑐𝑎𝑙 𝑅𝑎𝑡𝑒 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑑𝑒𝑛𝑡𝑖𝑐𝑎𝑙 𝑡𝑟𝑖𝑝𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑡𝑟𝑖𝑝𝑠  

Table 7-4 lists the identical rates under different turn penalties applied. 

 
 
 

Table 7-4: Summary of Identical Rates with Turn Penalties Applied 

Applied Penalties Identical Rate 

No Turn Penalty 34.26% 

Signalized Turn Penalties Only 28.04% 

Non-signalized Turn Penalties Only 36.14% 

All Turn Penalties 28.04% 
 
 
 
These results show that considering turn penalties into path finding did not improve the 

rate of identical paths between real world paths and theoretical paths. One possible reason 

for this is that the mere existence of a turn, rather than the delay associated with the turn, 

may have a real influence on the path choice. Also, it is conceivable that generalized turn 

penalties computed in this study may not be true representations of field conditions. It 

can be also concluded from Table 7-4 that, with incorporation of non-signalized turn 
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penalties, the path finding algorithm could have more chances to generate the path 

identical to people’s choice in the real world. On the other hand, when all turn penalties 

are applied (signalized or non-signalized), the algorithm could not improve the rate of 

identical paths compared to the scenario with no penalty.  

 The results also show that the optimal path yielded by incorporating turn penalties 

has not significantly increased the chance of matching theoretical paths to actual paths. 

The primary reason for this may be that the dataset lacks additional information regarding 

attributes of turning movements. Descriptions are not sufficiently specific or satisfactory 

on how a turning movement occurs. For example, the dataset did not indicate presence of 

exclusive turning lane(s). The other possible attributes to include are if a turn is from a 

major road to a minor road, or vice versa, and the type / nature of other traffic devices 

used at the specific intersections. These attributes could yield many more combinations, 

which are expected to produce more accurate turn penalties. 
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CHAPTER 8 NETWORK PRUNING 

The analysis presented in Chapters 4 to 7 provide insights into the influence of street 

network variables, especially intersection control and turns, on route-choice.  In this 

chapter, a detailed study on the effect of network size on path-finding algorithms for a 

one-to-one search is presented.  

8.1 Sub-network Concept 

When the search is limited to finding a path between a single origin-destination pair, only 

a part of the entire street network is relevant for computations; most nodes and links in 

the network could be irrelevant to the process of finding a path. Therefore, it would be 

reasonable to limit the search to a sub-network within which feasible solutions exist. 

Network pruning is the process of extracting or flagging this sub-network from the 

original network. In the sub-network, a feasible set of best alternative paths exists.  

Figure 8-1 presents a simple example of network pruning. Network pruning 

reduces the number of nodes from 19 in the full network to 9 in the sub-network and 

number of links in the full network from 29 to 10 in the sub-network.  
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Figure 8-1: An Example of a Sub-network 
 
 
 

The smaller the size of the sub-network, the shorter will be the computing times for the 

search. The risk of a sub-network is that a valid path may not connect the origin with the 

destination because the sub-network may have excluded necessary connectivity between 

the O-D pair. Also, due to exclusion of some portion of the network, the path search in 

the sub-network may not yield the same unique solution as did by the search in the full 

network. Therefore, the sub-network must be of sufficient size to account for possible 

deviations. The determination of sub-network size is important on achieving the balance 

between efficiency and accuracy. 

Thus, an ideal pruned network should exclude irrelevant nodes and at the same 

time contain the nodes and connectivity necessary for finding a path between the O-D 

  

Original Network 

Sub-network 

  

Extracting Window 
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pair. Given the propensity of drivers to deviate from the intended direction, selection of a 

candidate sub-network for finding the path is a challenging task.  Most commercially 

available GPS navigation systems contain path finding routines that prune a larger street 

network into a sub-network for arriving at route recommendations quickly. However, by 

their very nature such commercially adopted algorithms tend to be proprietary and their 

built in methodologies are seldom published in popular literature.  

The typical path, “as the crow flies” between a given pair of origin and 

destination in a network is rarely a straight line, a la the path flown by a crow. However, 

drivers tend to choose a path as close to a straight line as possible. The degree of 

connectivity, hierarchy of roadway facilities, or pure personal preferences of the trip 

maker may influence the negotiated path and deviate substantially from the straight-line 

path. Though counter-intuitive in nature, a trip maker’s familiarity with the network may 

result in a path choice that has the initial and/or final stretches of the path going in the 

opposite direction of the intended direction of the travel.  

8.2 Bounding-box Method 

To explore the patterns related to deviations in real-world paths, a bounding box method 

is introduced. The bounding box is a rectangle that is determined by the location of given 

O-D pair. All four sides of the bounding box are parallel to the X or Y axis. The origin 

and destination nodes are located at the diagonal corners of the rectangle, and the straight 

line connecting them divides the rectangle into two triangular parts. 

Enlarging the bounding box with a buffer forms a rectangular extracting window 

(something like a cookie cutter) to overlay the original network for obtaining a sub-
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network. Empirical research on appropriate buffer width to obtain the most appropriate 

size of sub-network is currently not available. Therefore, simple rules are laid out for 

methodically selecting a sub-network within which a path can quickly be found for a 

given O-D pair. The basis for establishing these rules is the analysis of real paths chosen 

by the Twin Cities drivers. The methodology focuses on first analyzing real-world paths 

to study deviation patterns from straight-line paths in the intended direction of travel. 

Then rule-sets are adopted and the efficiency of the path finding algorithm for each rule-

set is studied. 

8.3 Exploration on Real Paths 

Analysis of real-world paths aims to reveal the relationship between the path and relative 

O-D locations. The analysis examines the patterns of path deviation from the straight-line 

connecting the O-D pair. The statistical results provide the foundation for the 

methodology of extracting the most appropriate sub-network. 

8.3.1 Definitions of Deviations 

For every point on the path we can measure the perpendicular distances from the closer 

sides of the bounding box, which are parallel to the X and Y axis, respectively. The two 

distances are defined as x and y deviation of this path-point. If the point is located within 

the bounding box, as P1 in Figure 8-2, both x and y deviations are recognized as zero.  

In the same figure both P2 and P3 are out of the bounding-box. However, P2 is 

located between the extended lines of two opposite sides, so its x deviation is zero. Only 

P3 is deviated from the bounding box at both directions of x and y axes. 
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Figure 8-2: Illustration of Point Deviations 
 
 
 

8.3.2 Statistics on Real Paths 

Comparing deviations of every point on the path, the maximum deviations for each path 

were registered. Among 5,694 trips studied, 256 trips are found to contain the entire path 

within the bounding box determined by origin and destination. Only 4 paths have had a 

maximum deviation of more than 5 kilometers. Most paths (4,323) have partial segments 

out of the box and the maximum deviation is shorter than 1 kilometers. 
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The slopes of the straight lines connecting the O-D pairs were examined to 

explore for other characteristics given by O-D locations that may impact the potential 

path deviations. The value of the slope represents the orientation of the destination with 

respect to the origin to some extent. When the absolute value of the slope is great than 1, 

the y-parallel sides of the bounding box are longer than the x-parallel sides. On the other 

hand, the x-parallel sides are longer when the slope’s absolute value is less than 1. 

Table 8-1 shows that path deviations are correlated to the slope. The table 

aggregates real trips by slope value and relationship between values of x and y deviations, 

listing the number of trips for each scenario. Without considering the circumstances of 

equal deviations (only a small portion), it can be seen that when the absolute value of 

slope is less than 1, there are more cases that the x deviation is smaller than y deviation. 

As the slope value increases, the cases when the x deviation is longer are more and more 

frequent. 

 
 

 

Table 8-1: Number of OD Pairs by Various Circumstances 

Absolute Value of 
Slope 

Comparison between x and y Deviations 

x > y x = y x < y 

[0, 0.1] 65 7 617 

[0.1, 0.6] 397 76 1091 

[0.6, 1] 262 38 311 

[1, 1.7] 277 45 278 

[1.7, 10] 1023 65 396 

[10, ∞] 637 21 79 
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Figure 8-3 illustrates the comparison between two scenarios with various slope values. In 

the first, the x deviation is larger than the y deviation; in the second, vice versa. When the 

absolute value of the slope is close to one, the case numbers of these two scenarios are 

very close to each other, which means the x- and y-deviation tend to be same. 

When the slope is far away from one, the closer the slope value is to zero, the 

likely the y deviation is larger than the x deviation. The change trend is opposite as the 

slope value gets bigger and bigger. 

 

Figure 8-3: Percentages of Two Scenarios Comparing x and y Deviations 
 
 
 

[0, 0.1] [0.1, 0.6] [0.6, 1] [1, 1.7] [1.7, 10] [10, ∞] 
X Dev > Y Dev 9.43% 25.38% 42.88% 46.17% 68.94% 86.43% 
X Dev < Y Dev 89.55% 69.76% 50.90% 46.33% 26.68% 10.72% 
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The relationship between x and y deviations for each slope scenario is quantified in Table 

8-2.These relationships form the basis for experimental design. The goal is identifying 

the bounding-box dimensions. 

 
 
 

Table 8-2: Relationship between X and Y Deviations 

Absolute Value 
of Slope 

Average Deviation (m) 𝒙 𝑫𝒆𝒗𝒊𝒂𝒕𝒊𝒐𝒏
𝒚 𝑫𝒆𝒗𝒊𝒂𝒕𝒊𝒐𝒏

 
x y 

[0, 0.1] 24 170 7.01 

[0.1, 0.6] 42 151 3.59 

[0.6, 1] 65 98 1.51 

[1, 1.7] 82 87 0.94 

[1.7, 10] 150 42 3.60 

[10, ∞] 163 17 9.70 

 

8.3.3 Summary 

The path-deviation analysis has revealed relationships between the size of the sub-

network and O-D locations. Very few paths have deviations more than one kilometer, and 

therefore, the minimum buffer width is set as one kilometer. The analysis also revealed 

that the relationship between x- and y-deviations is correlated to the slope of the straight 

line connecting origin and destination. When the absolute value of the slope is less than 

0.1, the y-deviation is about seven times the x-deviation. The multiple is reduced to 3.6 

times when the slope value is between 0.1 and 0.6 (Table 8-2). When the slope value 

belongs to two symmetric ranges [1.7, 10] and [10, ∞], the multiples are about 3.6 and 

9.7, respectively.  
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The analysis of path deviations asserts an intuitive assumption that the paths 

drivers choose are not far from the proximity area determined by their origin and 

destination. The procedure to extract sub-network would purge the nodes and links 

(alternatively, flag the nodes and links for processing exclusion) that are supposed to be 

irrelevant to the potential path.  

8.4 Experimental Setup 

An experiment is conducted to examine the performance of network pruning (the sub-

network concept) in terms of path finding. The Dijkstra’s algorithm is applied to find the 

shortest paths between computer-generated O-D node pairs. With different buffer types, 

two groups of sub-networks are extracted from the real-world street network using the 

bounding-box method. Measurements regarding accuracy and efficiency are used to 

evaluate the test results. 

8.4.1 Generation of the Experimental Dataset 

The revealed relationships between path deviations and O-D locations are based on paths 

with Euclidean distances shorter than 40 kilometers. Using a 40-kilometer separation as a 

surrogate, the experiment first randomly generated 500 pairs of origin and destination 

nodes with Euclidean distances between O-D nodes of no more than 50 kilometers. These 

O-D pairs thus generated are grouped as shown in Table 8-3. 
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Table 8-3: Statistics of Random O-D Samples 

Group by Euclidean 
Distance Number of Trips 

Euclidean Distance between O-D Nodes (m) 

Average Std. 
Dev Minimum Maximum 

00-05 7 2,706 1,343 757 4,749 

05-10 25 7,816 1,674 5,108 9,979 

10-15 47 12,938 1,334 10,172 14,970 

15-20 61 17,497 1,574 15,015 19,958 

20-25 65 22,245 1,548 20,026 24,911 

25-30 71 27,586 1,574 25,030 29,989 

30-35 66 32,361 1,421 30,028 34,976 

35-40 57 37,654 1,362 35,056 39,793 

40-45 55 42,646 1,477 40,063 44,902 

45-50 46 47,216 1,428 45,003 49,634 

Total 500 281,88 11,897 757 49,634 
 
 
 
The efficiency of the path finding algorithm for the full network and for the sub-network 

must be compared. The Dijkstra’s algorithm was first applied to the entire network. This 

yielded a set of paths and the associated computational speeds as the baseline for 

comparison. Then a set of paths is generated for each buffer width using the Dijkstra’s 

algorithm. Paths generated for the sub-network with varying buffer widths are compared 
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for both accuracy and computational efficiency to the paths in the baseline scenario. 

When finding the paths for full network and sub-networks, the algorithm also 

incorporated turn penalties calculated in Chapter 7. Since turn penalties are represented 

as time cost, the algorithm used only travel time as impedance. 

8.4.2 Size of Sub-network 

The experiment tests two different types of sub-networks, differentiated by their buffer 

types:  

1. Buffer deviations based on field data (proportional buffer) 

2. A uniform buffer 

The first type of sub-network used information about deviations from the field data. The 

statistics on real paths has revealed that the slope of the straight line connecting O-D 

pairs can determine the proportional relationship between paths’ x- and y-deviations. 

Therefore, a narrow buffer can be set for the two shorter sides of the bounding box. A 

wider buffer for the other two sides can be obtained by multiplying a coefficient based on 

the straight-line slope. As the narrow buffer changes, the wider buffer changes 

proportionally (so called “proportional buffer”). Figure 8-4 illustrates two examples of 

the proportional buffer. 
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Figure 8-4: Two Examples of the Proportional Buffer 
 
 
 
The experiment contains a series of tests on different sizes of sub-networks. In each test 

series, the narrow buffer widths for all O-D pairs are the same and the wider buffer 

widths are determined by the straight-line slopes. The narrow widths start at one 

kilometer and increase at one kilometer increments. The wider buffer widths increase 

based on corresponding buffer coefficients. As in the previous section, three buffer 

coefficients - one, two and four - are employed for six ranges of the slope’s absolute 

value (Table 8-4). 
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Coefficient × (Narrow Buffer) 
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Table 8-4: Buffer Widths Based on O-D Locations 

Absolute Value 
of the Slope 

Buffer Width (km) 

x  y 

[0, 0.1] Narrow Buffer 4× Narrow Buffer 

[0.1, 0.6] Narrow Buffer 2 × Narrow Buffer 

[0.6, 1] Narrow Buffer Narrow Buffer 

[1, 1.7] Narrow Buffer Narrow Buffer 

[1.7, 10] 2 × Narrow Buffer Narrow Buffer 

[10, ∞] 4 × Narrow Buffer Narrow Buffer 
 
 
 
The second type of sub-network uses a uniform buffer, which has the same width on all 

four sides of the bounding box and it does not vary for different O-D pairs. This type of 

sub-network has been used in some previous studies (Karami, Sutovsky and Durcik, 

2008). The uniform buffer is used to generate results as control variables. 

 The buffer widths used in tests also start at one kilometer and increase at one 

kilometer increments. The test results are used to compare to those with proportional 

buffer. 

 

8.4.3 Evaluation Approaches 

In the experiment the most important consideration is accuracy –(how close paths within 

the sub-network are to their counterparts in the entire network). The second most 

important consideration is efficiency (how fast the paths can be found in the sub network 

relative to the search in the full network). 
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Two types of errors are defined to evaluate the accuracy of sub-networks. The 

first is a measure of incomplete path. An incomplete path indicates that the pruning 

algorithm failed to find a valid path connecting origin and destination. An incomplete 

path error would be unacceptable under any circumstances.  

The second error measures non-similarity of paths obtained in the full network 

and paths obtained in the pruned networks. The way to identify non-identical paths is 

similar to the way to compare real paths and shortest paths (see Chapter 5). The 

sequences of paths between any given O-D pair yielded by each of the sub-networks and 

their counterpart in the entire network are compared on a node-by-node basis. The two 

paths are considered identical when every node in the path-sequence derived from the 

pruned network is the same as the sequence in the full path. The error rate is the 

percentage of total paths that are not identical. Figure 8-5 shows examples of two paths 

with different sub-network sizes. 
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Figure 8-5: Examples of Paths with Different Sub-network Sizes 
 
 
 
The Python script developed to implement this experiment was executed on a full 

network and all pruned networks using a workstation configured with 2.13GHz Intel(R) 

Xeon(R) processor with 12.0 GB RAM. The computing times (in seconds) taken by each 

run are recorded.  The average computing time per path is used as a normalized measure 

to evaluate the efficiency of the sub-network. 
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8.5 Results and Findings 

Presented in Table 8-5 is a summary of experimental results. It should be noted that a 

large enough sub-network can always yield valid and accurate paths. For both 

proportional and uniform buffer types, the error rates of incomplete paths are reduced to 

zero as the sub-network is enlarged. For example, when the width of the uniform buffer is 

10 kilometers and the narrow width of the proportional buffer is 6 kilometers; all O-D 

pairs can be connected by a valid path within the sub-network. Although there are a few 

paths which are different from their counterparts obtained with the entire network, the 

error rates are very low (1.61% for the uniform buffer and 0.81% for the proportional 

buffer) and therefore are deemed acceptable.  

The sub-networks obtained using uniform and proportional buffers are also 

expected to improve the computing efficiency of path finding. When the algorithm is 

applied to find a path in the entire network, it took on average 125 seconds per path. In a 

sub-network extracted using the proportional buffer, it took only 30.91 seconds per path 

when the number of incomplete path is zero. The sub-network with uniform buffer needs 

slightly more time (35 seconds per path).  Figures 8-6 and 8-7 show reductions in 

computing time of all sizes of sub-networks. Both types of sub-networks can reduce by 

more than 70% the computation time compared to using the entire network. 
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Table 8-5: Error Rates and Computing Time of Sub-networks with Various Buffer Widths 

Buffer Width 
Number of Paths 

Total 
Error Rate 

Average 
Computing Time 

per Path (sec) 
incomplete non-identical 

Uniform 
Buffer 

1 km 70 191 52.62% 9.73 
2 km 19 169 37.90% 11.97 
3 km 11 86 19.56% 14.03 
4 km 6 60 13.31% 16.85 
5 km 3 42 9.07% 22.50 
6 km 2 30 6.45% 23.13 
7 km 2 22 4.84% 24.54 
8 km 1 18 3.83% 27.51 
9 km 1 11 2.42% 33.17 

10 km 0 8 1.61% 33.50 

Proportional 
Buffer 

Narrow Buffer =  
1 km 19 130 30.04% 11.18 
2 km 5 61 13.31% 14.76 
3 km 4 30 6.85% 18.74 
4 km 3 16 3.83% 19.22 
5 km 1 7 1.61% 27.06 
6 km 0 4 0.81% 30.91 
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Figure 8-6: Reduction in Computing Time: Proportional Buffer 
 
 
 

 

Figure 8-7: Reduction in Computing Time: Uniform Buffer 
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Tests are also conducted to compare the efficiency and accuracy of proportional and 

uniform buffers. Four sizes of sub-network are selected for both buffer types, respectively, 

forming four pairs for comparison. Each pair of two buffers generates the same number 

of incomplete paths, as shown in Table 8-6. 

 
 
 

Table 8-6: Buffer Widths of Selected Sub-networks 
Number of Incomplete 

Paths 
Width of Uniform Buffer 

(km) 
Narrow Width of Proportional 

Buffer (km) 
19 2 1 
3 5 4 
1 9 5 
0 10 6 

 
 
 
Figures 8-8 and 8-9 illustrate that the proportional buffer has advantages on both 

evaluation measurements. While the rates of incomplete path are the same, the 

proportional buffer always has lower rates of non-identical path and shorter computing 

time. 
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Figure 8-8: Comparison of Two Buffers on Result Accuracy 
 
 
 

 

Figure 8-9: Comparison of Two Buffers on Computation Efficiency 
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8.6 Summary 

The sub-network greatly improves the efficiency of path finding algorithms without 

losing much accuracy. When both uniform and proportional buffers are to extract the sub-

network, the average computing times are 10% to 30% shorter than the time to generate 

the paths in the entire network. The proportional buffer is more efficient than the uniform 

buffer, with the same level of accuracy.  Useful rules for network pruning can be derived 

from this investigation. These rules can be incorporated in path finding algorithms for use 

in a variety of situations. 
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CHAPTER 9 CONCLUSIONS 

9.1 Summary of Research Findings 

This research examined the influence of certain street network and path variables on 

drivers’ path choices in a metropolitan urban area (the Twin Cities of Minneapolis-St. 

Paul, Minnesota). Computed shortest distance paths and computed shortest time were 

compared to actual paths chosen in the real world. The analysis indicated that drivers do 

not necessarily choose the theoretical shortest paths. Instead, they are willing to spend 

longer time or travel longer distances on paths that have fewer turning movements.  

Generally, drivers tend to avoid turning movements during their travel. There is 

statistical evidence to indicate that real paths have fewer turns per mile than both shortest 

time and shortest distance paths. When they must make a turn (left or right) to complete 

their trips, drivers seem more prone to making the turn at a signal controlled intersection, 

while at the same time trying to minimize the number of turns occurring at non-signalized 

intersections.. 

The research also explored the influence of traffic lights on path choice. The 

number of traffic signals is found not to be a significant factor during path choice 

processing. Statistical results also showed that in terms of the number of signals per mile, 

theoretical paths are not different from real paths. 
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Among various classes of the street network in urban area, drivers prefer choosing 

roads with higher classes, even though the local road has a much bigger portion in the 

network composition. The longer the trips, the more primary and secondary roads the 

paths have. 

Through the investigations on real paths, the study found the orientation of the 

straight line connection the O-D, which is determined by the O-D locations, is relevant to 

the relationship of x and y deviations of the real path. This relationship can help to 

develop the extracting method for the sub-network. 

The experiment on two types of sub-network, with the proportional buffer and 

with the uniform buffer, showed that both of them can reduce computing time 

significantly.  The ability to achieve expected accuracy is limited by the buffer width 

around the bounding box. Results of experiments also showed that the new concept of 

proportional buffer has advantages over the usually used uniform buffer in terms of 

balance between accuracy and efficiency of the algorithm. For a given error rate, the 

proportional buffer can save more computing time than the uniform buffer.  

9.2 Research Contributions 

This research used a large dataset of paths with trajectories tracked by GPS to identify the 

impacts of certain network and path characteristics on drivers’ route-choice. Prior to this 

effort, most studies relating path choice behavior to network and path characteristics were 

based on stated preference surveys. Compared to stated preference surveys, the GPS 

tracking data are a better representation of how drivers choose route in actual practice. 

The findings from this influential analysis will make it easier to find paths more 
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consistent with drivers’ real choices and consequently provide more sound and solid 

solutions to traffic assignment problems and other problems in transportation planning. 

 This study not only revealed the impacts of turning movements on path choice, it 

also developed a methodology to quantify these impacts as turn penalties. The method 

computes turn penalties based on the difference between the time recorded by the GPS 

device and the time estimated from network link attributes. Individual turn penalties are 

averaged by directions of turns (left or right) and signal existence at intersections 

(signalized or non-signalized). 

 This research defined the concept of road availability to represent how much a 

specific class of road can be chosen by drivers when they are making a trip. This concept 

can help exclude possible impacts of the network composition on drivers’ actual choice, 

so as to help identify drivers’ preferences among different road classes. 

This research also proposed a novel proportional buffer method to extract the sub-

network for a specific pair of origin and destination. The experimental results showed 

that the proportional buffer is superior to the uniform buffer considering the balance 

between efficiency and accuracy. Even though certain commercially available route 

guidance systems / solutions have successfully addressed network pruning methods for 

faster and real-time solutions to shortest path algorithms, those solutions are proprietary 

in nature, and hence the literature available on this subject is very limited. This research 

is expected to fill the gap in the literature on the methodologies for efficient network 

pruning.  

 



118 
 

9.3 Recommendations for Future Work 

The main contribution from this study should be seen as the methodologies that are 

developed to addressing the research questions, rather than the end results. Certain 

observations made in this study may be applicable only to the trip data collected from 44 

volunteers in St. Paul-Minneapolis, Minnesota. While the trends observed from this data 

may be applicable to other population groups and areas, care must be taken in 

generalizing the results or using the numerical values in traffic impact and transportation 

planning studies. More real-world observation data from other metropolitan areas and 

rural areas would provide more statistically significant results and findings. 

Another recommendation for future research is to categorize the time-periods for 

impacting path choice. For example, trips can be grouped by occurring time, exploring 

the influences of signals and turns during peak and non-peak periods. Because of vehicle 

queues at intersections, the turning time is expected to be longer during peak periods than 

during non-peak periods. However, this assumption needs further verification. In addition, 

turning movements can be further classified.   
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