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Introduction 
The path finding problem is a classical operations research problem with numerous applications. 
In this regard, the deterministic shortest path problem was initially considered with various 
proposed solution algorithms (1–8). The computational burden of the shortest path finding 
algorithms has a polynomial growth order of the network size, which limits the real-time 
applications in large-scale networks. Therefore, many studies presented different algorithms to 
improve the efficiency of shortest path finding algorithms using heuristic approaches (9, 10). A* 
algorithms are one of the main categories of these heuristic algorithms, in which the scan eligible 
list order is prioritized based on the probability of a node being in the shortest path (11–19). The 
efficiency of these algorithms is highly dependent on the quality of the travel time estimation from 
each node to the destination. 
 The branch pruning approach is another method to limit the search area for the shortest 
path calculation (18, 20–22) which is quite similar to the A* algorithm with the difference that the 
low priority nodes in this method are pruned from the search list and will never be scanned. A 
major limitation of this approach is that it may be terminated without finding the optimal path. 
Several decomposition-based algorithms are also suggested, in which large-scale networks are 
decomposed into several small sub-networks (23–26). The mentioned heuristic algorithms cannot 
be applied to stochastic networks due to the non-additivity and non-linearity of link travel times in 
such networks. Therefore, the reliable path finding problem gained attention to consider 
uncertainty and dynamic nature of link travel times (27–33). However, the computational burden 
in stochastic networks is much higher relative to the deterministic ones. Overcoming this 
computational burden requires developing innovative solution approaches, especially for large-
scale applications. In this paper, we intend to describe a methodology to improve the 
computational efficiency of the optimal path-finding algorithms in stochastic dynamic networks, 
considering heterogeneity of users towards risk and correlation of link travel times. 
 
Methodology Development 
There are many algorithms in the literature for optimal paths finding in stochastic networks. 
However, these algorithms are not computationally efficient, especially for applications in large-
scale networks. In the path finding problems, only a part of the entire network is relevant to the 
optimal path between a certain origin and destination. Thus, this study aims to demonstrate the 
ability to reduce the network size throughout the iterations of a Monte-Carlo Simulation-based 
(MCS) approach, recently introduced in the literature.  
 Each path has a minimum travel time and a maximum travel time. Therefore, comparing 
the optimistic travel time through any node to the destination, with the pessimistic travel time for 
the OD pair specifies if the node should be retained in the sub-network or not. The schematic view 
of this optimistic/pessimistic travel time comparison is illustrated in Figure 1. One way to find the 
optimistic and pessimistic travel times is to consider minimum and maximum travel times for all 
links in the network and calculate the origin-based and destination-based deterministic shortest 
paths trees from the origin to the destination through any node. The sum of the travel time from 
the origin of interest to the node, and the travel time from the node to the desired destination while 
all links are set to the minimum travel time value specifies the optimistic travel time. However, 
the pessimistic travel time is calculated from the origin to the destination using the deterministic 
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static shortest path algorithm when all links have the maximum value of travel time. These two 
optimistic and pessimistic travel times are then compared to make a decision about each network 
node (34). However, the probability of all network links being at their maximum or minimum 
travel time at the same time is low, especially when there are many links in the optimal path. 
Furthermore, to the best of our knowledge, there is no other approach developed in the literature 
that can find optimistic/pessimistic bounds that can be implemented efficiently on any general 
network with different configurations and characteristics. Therefore, a learning approach can be 
presented to derive efficient optimistic/pessimistic bounds. This learning approach can use the 
generated information within the early iterations of the simulation-based approach, as previously 
proposed in the literature (33) to solve the path finding problem in stochastic networks.  

 

 
𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜→𝑖𝑖 + 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖→𝑑𝑑 > 𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑜𝑜→𝑑𝑑 ⇒ Eliminate node 𝑖𝑖 

 
Node 1 should be eliminated 

Node 2 should remain in the sub-network ... 
 

Figure 1 A schematic illustration of network contraction for the reliable path finding problem 

 
Findings 
The realizations of link travel times are studied here to find a relation between minimum/maximum 
labels and free flow travel times. This relation helps to propose realistic optimistic/pessimistic 
bounds for network contraction. The MCS approach for solving Shortest Path problem with On-
Time Arrival Reliability (SPOTAR) problem is used in this study (33, 35). The first stage of the 
stochastic path finding problem, including solving a deterministic shortest path problem at each 
iteration, is executed for 100 iterations for a randomly selected destination in the time-dependent 
Chicago downtown network (destination 84) (34). The travel time labels from each node to the 
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destination for different departure time intervals and iterations bring about the insights required 
for the optimistic/pessimistic bounds. Thus, the minimum realized time-dependent labels of each 
node over 100 iterations are used to estimate the optimistic travel time from origin through that 
node to the destination. Similarly, the maximum realized time-dependent labels over 100 iterations 
of each origin node are used to estimate the pessimistic travel time from that origin to the 
destination. The maximum and minimum time-dependent labels over 100 realizations of any node 
located at a certain free flow travel time from the destination, divided by the free flow travel time, 
are demonstrated in Figure 2. Each dot in these figures represents a node in the network. The 
figures reveal that the ratio of optimistic bounds to free flow travel times increases with the 
growing order of the free flow travel time from each node to the destination, whereas the ratio of 
pessimistic bounds to their corresponding free flow travel time decreases with growth in the order 
of free flow travel time from nodes to the destination. Thus, there is a relation between 
optimistic/pessimistic bounds and free flow travel times. This relation is an intuition for improving 
the results, especially for OD pairs with large distances, since the maximum bounds are decreasing 
and the minimum bounds are increasing as the free flow travel time increases. 

 

  
 

Figure 2 a) Maximum b) Minimum time-dependent label over 100 realizations from each node 
to destination 84 of the Chicago downtown network, divided by its free flow travel time, versus 

the free flow travel time from each node to the same destination 
 
Conclusion 
Finding optimal paths in a computationally reasonable time is a common requirement of the path 
finding algorithms. The goal of this study was to show the capability of existing MCS algorithms 
to use the information of some early iterations and reduce the network size for later iterations. The 
ratio of maximum and minimum labels to the free flow travel time of all iterations of an MCS 
approach for solving SPOTAR problem is utilized in this paper to show this capability. Therefore, 
a learning approach can be proposed to compare the optimistic and pessimistic solutions resulting 
from the realizations of travel time from the early iterations of MCS approaches. The network can 
be iteratively contracted till reaching a limit for the optimistic/pessimistic bounds. 
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