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1 Manski Bounds
² Let t = 1 denote residential treatment, t = 0 denotes nonresidential or

non treatment.

² The measured outcome, recidivism, is denoted y, y = 1 is recidivate,
y = 0 is does not recidivate. Where recidivate is re-o¤ending within a
2 year period.

² y(t) = 1 means the individual would recidivate if assigned treatment t
and y(t) = 0 means the individual would not recidivate given treatment
t. Note that many of these outcomes will be counter-factual.

² Let z = 1 if an o¤ender is actually sentenced to residential treatment
and z = 0 if assigned to non treatment then P [z = 1] = prob of
treatment and P [z = 0] = prob of nontreatment. I will simplify this
notation to Pz and (1 ¡ Pz).

Now remember the ATE or what Manski and Nagin call the classical
treatment e¤ect

CTE = P [y(1) = 1]¡ P [y(0) = 1]

this is simply the expected outcome if everyone were assigned to treatment
minus the expected outcome if everyone were assigned to nontreatment.

Now let’s expand each element of the CTE

P [y(1) = 1] = P [y(1) = 1jz = 1] ¤ Pz + P [y(1) = 1jz = 0] ¤ (1 ¡ Pz)
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this is just a de…nition or a use of the law of total probability. In other
words, since either z = 1 or z = 0 then

P [anything] = P [anythingjz = 1) ¤ Pz + P [anythingjz = 0] ¤ (1 ¡ Pz)

Similarly,

P [y(0) = 1] = P [y(0) = 1jz = 1] ¤ P [z = 1] +
P [y(0) = 1jz = 0] ¤ P [z = 0]

So we can also write the CTE as

CT E = (P [y(1) = 1jz = 1] ¤ Pz +P [y(1) = 1jz = 0] ¤ (1 ¡ Pz))
¡ (P [y(0) = 1jz = 1] ¤ Pz + P [y(0) = 1jz = 0] ¤ (1 ¡ Pz))

Now of this CTE what does the data tell us?
The data tell us:

² Pz

² P [y(1) = 1jz = 1] = the probability of recidivism given treatment for
the group actually treated.

² P [y(0) = 1jz = 0] = prob of recidivism given nontreatment for the
group not treated.

The data do not tell us::

² P [y(1) = 1jz = 0] = prob. of recidivism given treatment for the group
not treated. (counter-factual)

² p[y(0) = 1jz = 1] = prob of recidivism given non treatment for the
group treated. (counter-factual)

thus here is the CTE again with the unknown elements bolded:

CTE = (P [y(1) = 1jz = 1] ¤ Pz +P[y(1) = 1jz = 0] ¤ (1 ¡ Pz))
¡ (P[y(0) = 1jz = 1] ¤ Pz +P [y(0) = 1jz = 0] ¤ (1 ¡ Pz))
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² Traditional analysis says under random assignment:

P[y(1) = 1jz = 0] = P [y(1) = 1jz = 1] (1)

P[y(0) = 1jz = 1] = P [y(0) = 1jz = 0] (2)

² So create a research design that makes it plausible for use to substitute
these elements and identify the CTE.
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² Manski says let’s not assume so much about the counterfactual proba-
bilities. What is the minimum that we can assume about these proba-
bilities?

So what is the least that we can assume about say

P[y(1) = 1jz = 0]

Well we can certainly assume that the lowest this probability could be is
zero and the highest it could be is 1, that is we could assume that none of the
non-treated group would recidivate if treated or all of them would. Similarly,
with

P[y(0) = 1jz = 1]

we can be sure that this probability is no smaller than zero and no bigger
than 1, ie. if they were not treated none of the treated group would recidivate
or all of them would.

Now return to the CTE, what is the lower bound or best case given that
we want low recidivism scenario for treatment? It is:

P[y(1)= 1jz = 0] = 0 (Lower Bound)
P[y(0)= 1jz = 1] = 1

i.e. the best case for treatment is that if the nontreated had been treated
then none would have recidivated and if the treated had not been treated
than all would have recidivated.

What about the upper bound (worst case - given that we want low re-
cidivism)

P[y(1)= 1jz = 0] = 1 (Upper Bound)
P[y(0)= 1jz = 1] = 0

i.e. the worst case for treatment is that if the nontreated had been treated
then all of them would have recidivated and if the treated had not been
treated the none would have recidivated.
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Recall the CTE

CTE = (P [y(1) = 1jz = 1] ¤ Pz +P[y(1) = 1jz = 0] ¤ (1 ¡ Pz))
¡ (P[y(0) = 1jz = 1] ¤ Pz +P [y(0) = 1jz = 0] ¤ (1 ¡ Pz))

Now under the best case and worst case for treatment the CTE is (substi-
tuting the Lower Bound and Upper Bound from above):

CTELB = (P [y(1) = 1jz = 1] ¤ Pz) ¡
(Pz + P [y(0) = 1jz = 0] ¤ (1 ¡ Pz))

CT EUB = (P [y(1) = 1jz = 1] ¤ Pz + (1 ¡ Pz)) ¡
(P [y(0) = 1jz = 0] ¤ (1 ¡ Pz))

Or putting this all together to get the no-assumptions CTE.

(P [y(1) = 1jz = 1] ¤ Pz) ¡ (P [y(0) = 1jz = 0] ¤ (1 ¡ Pz) + Pz) ·
CTE

· (P [y(1) = 1jz = 1] ¤ Pz + (1 ¡ Pz)) ¡ (P [y(0) = 1jz = 0] ¤ (1 ¡ Pz))

Note that there are some common elements on both sides

stuff ¡ Pz · CTE · stuff + (1 ¡ Pz)

So we know that the no-assumptions bound on the CTE has width 1.
Since the CTE can be at most 1 and the no-assumptions bound has width

1 then 0 is always included within the possibilities of the no-assumptions
bound so in one sense this is dissapointing. Realistically the no assumptions
bound can’t even tell us the sign of the CTE. On the other hand without any
data at all the CTE can be between -1 and 1 so the data half the bound.
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2 Data
Manski and Nagin have data on 13,197 juveniles from 1970-1974 in Utah.
The data says the following

² Pz = 0.11

² P [y(1) = 1jz = 1] = 0.77 the probability of recidivism given treatment
for the group actually treated.

² P [y(0) = 1jz = 0] = 0.59 prob of recidivism given nontreatment for the
group not treated.

Note that the probability of recidivism is higher for the treated - this
is actually a pretty common …nding. It could be selection, of course, but
we should not rule out brutalization or labeling - calling someone a juvenile
delinquent may get them to act more like a juvenile delinquent or peer e¤ects.

² The CTE assuming random assignment or what you might call the
naive CTE is simply: 0.77 ¡ 0.59 = 0.18,treatment causes recidivism.

² The no-assumptions bound on the CTE is ¡0.56 · CTE · 0.44

thus the no-assumptions bound tells us that without assumptions the data
is just not very informative - the treatment e¤ect could reduce recidivism by
about 50% or increase it by about 50%.

We can also look at the no-assumptions bound CTE in various subgroups.
Manski and Nagin look at bound depending on prior referrrals to the juvenile
justice system and …nd:

No Assumptions Bound by Priors
Priors Sample Size Random (Naive) CTE No assum. LB No assum. UB
0 7406 0.09 -0.48 .52
1 2719 0.07 -0.65 0.35
2+ 3072 0.02 -0.65 0.35
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3 Adding Assumptions
The Outcome Optimization Model Assume that judges estimate recidi-

vism probabilities and treatment e¤ects and assign o¤enders to the
treatment that is most likely to reduce recidivism.

The outcome optimization model implies (assuming rational expecta-
tions):

P [y(1) = 1jz = 1] · P[y(0) = 1jz = 1]
P [y(0) = 1jz = 0] · P[y(1) = 1jz = 0]

These conditions let us create new LB and UB on the CTE. Recall the
CTE

CTE = (P [y(1) = 1jz = 1] ¤ Pz +P[y(1) = 1jz = 0] ¤ (1 ¡ Pz))
¡ (P[y(0) = 1jz = 1] ¤ Pz +P [y(0) = 1jz = 0] ¤ (1 ¡ Pz))

now consider the …rst bolded element P[y(1) = 1jz = 0] under outcome
optimization the least this can be is P [y(0) = 1jz = 0] and forP[y(0) = 1jz = 1]
the largest this can be is still 1. Thus the new LB or best case scenario is:

CTELB = (P [y(1) = 1jz = 1] ¤ Pz + P [y(0) = 1jz = 0] ¤ (1 ¡ Pz)) ¡
(Pz + P [y(0) = 1jz = 0] ¤ (1 ¡ Pz))

= P [y(1) = 1jz = 1] ¤ Pz ¡ Pz = ¡Pz(1 ¡ P [y(1) = 1jz = 1])
= ¡Pz ¤ P [y(1) = 0jz = 1]

what about the UB? P[y(1) = 1jz = 0] can be at most 1 andP[y(0) = 1jz = 1]
is least P [y(1) = 1jz = 1] making the substitutions we have:

CTE = (P [y(1) = 1jz = 1] ¤ Pz + (1 ¡ Pz)) ¡
(P [y(1) = 1jz = 1] ¤ Pz + P [y(0) = 1jz = 0] ¤ (1 ¡ Pz))

= ((1 ¡ Pz)) ¡ P [y(0) = 1jz = 0] ¤ (1 ¡ Pz)
= (1 ¡ Pz)(1 ¡ P [y(0) = 1jz = 0])
= (1 ¡ Pz)P [y(0) = 0jz = 0]
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so putting this alltogether we can get the new CTE bounds assuming
outcome maximization:

¡P [y(1) = 0jz = 1] ¤ Pz · CT E · P [y(0) = 0jz = 0] ¤ (1 ¡ Pz)

Using this new bound Manski and Nagin …nd:

Bounds With Outcome Opt. Assum.
Priors Outcome Opt. LB Outcome opt. UB
0 -0.02 .50
1 -0.03 0.26
2+ -0.04 0.13

² With outcome optimization the data is consistent with at best a two
to four percent reduction in recidivism - and are also consistent with a
large increase in recidivism.

² Not surprisingly if you assume that judges are doing their best to min-
imize recidivism then when the observed data tell you that recidivism
increases with treatment the treatment e¤ect must be small at best.

The Skimming Model Assume that judges assign the worst o¤enders to
residential treatment regardless. (Perhaps because they want to punish
or not look soft or protect themselves if recidivism occurs.)

Under the skimming model bounds they …nd:

Bounds with Skimming Assum.
Priors Skimming LB Skimming UB
0 -0.48 .09
1 -0.65 0.07
2+ -0.65 0.02

² The skimming model is consistent with very large reductions in recidi-
vism or with small increases in recidivism.
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4 IV plus Bounds
² Suppose that x does not in‡uence treatment e¤ectiveness - this is called

an exclusion restriction because such a variable can be excluded from
the determination of treatment e¤ectiveness but suppose that x does
in‡uence treatment assignment. i.e. suppose x is an IV.

² Create strata of x - and …nd the bounds in each strata of x. Since x
doesn’t in‡uence treatment e¤ectivness the lowest of the upper bounds
in the strata is the upper bound on the e¤ect and similarly the highest
of the lower bounds in the strata is the lower bound on the e¤ect.

² In other words, you can take the intersection of the bounds.

Bounds on CTE using District as Exclusion Restriction and Di¤erent Assum.
Priors Outcome Opt. LB Outcome opt. UB Skimming LB Skimming UB
0 0.06 .46 -.43 0.03
1 0.07 0.19 -.59 -0.08
2+ 0.02 0.06 -.62 -0.11

So what this says is that with the outcome optimization model the district
exclusion restriction lets us reject any good e¤ect from treatment. With the
skimming model, however, the district exclusion lets us reject almost any bad
e¤ect from treatment!

Hard to say what the policy conclusion is here except the following - the
conclusions follow much more from the assumptions made about treatment
assignment than they follow from the data. This alone is useful to know. Of
course, it is also a bit depression. But although it would be nice if the data
told us more but there is no use making claims that we cannot back up.
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