
Analytic Models of Checkpointing for Concurrent
Component-Based Software Systems

Noor Bajunaid
Computer Science Department

George Mason University
Fairfax, VA 22030

nbajunai@masonlive.gmu.edu

Daniel A. Menascé
Computer Science Department

George Mason University
Fairfax, VA 22030

menasce@gmu.edu

ABSTRACT
Checkpointing and rollback is a key mechanism used to im-
prove the reliability of software systems. The benefits of
this mechanism can be offset by the overhead of checkpoint-
ing when the failure rate is low. The problem of develop-
ing analytic models of rollback and checkpointing has been
continuously addressed for over four decades using differ-
ent assumptions. This paper examines the problem under
a more realistic angle, i.e., one in which there are several
software components sharing resources (e.g., processors and
I/O devices) among themselves and with the checkpointing
processes. Additionally, the paper allows for different com-
ponents to have different computing, rollback, and check-
pointing demands, as well as different failure distributions.
Our models also allow for various checkpointing processes
to be executing concurrently to checkpoint the state of dif-
ferent software components. The analytic models developed
here combine Markov Chains and Queuing Networks and al-
low us to compute the following metrics: (1) average time
needed by a component to complete its execution, (2) aver-
age throughput of a component, (3) availability of a compo-
nent, and (4) checkpointing overhead. The models were val-
idated through extensive simulation and experimentation.

CCS Concepts
•Software and its engineering → Software perfor-
mance; Software reliability; Checkpoint / restart;

Keywords
Checkpointing; concurrent components; analytic models;
Markov chains; queuing networks

1. INTRODUCTION
One of the key mechanisms used to improve the reliabil-

ity of software systems is checkpointing and rollback, which
allows for a software component to store the state of its
computation at regular intervals to reduce the amount of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPE ’17 April 22–26, 2017, L’Aquila, Italy
c© 2017 ACM. ISBN 978-1-4503-4404-3/17/04. . . $15.00

DOI: 10.1145/3030207.3030209

work to be redone in the case of a failure [27]. Without
checkpointing, a software component (referred to as com-
ponent hereafter) has to restart the computation from the
beginning, which could be a problem for long computing
tasks. With checkpointing, the computation resumes from
the latest checkpoint after the computation is restored to
that state.

The benefits of checkpointing can be offset by the over-
head of checkpointing when the failure rate is low. The prob-
lem of developing analytic models for rollback and check-
pointing has been continuously addressed for over four decades
using different assumptions. This paper examines the prob-
lem under a more realistic angle, i.e., one in which there
are several software components sharing resources among
themselves and with the checkpointing processes. Addition-
ally, the paper allows for different components to have dif-
ferent computing, rollback, and checkpointing demands as
well as different failure rates. Our models also allow for var-
ious checkpointing processes to be executing concurrently to
checkpoint the state of different software components. The
analytic models developed here combine Markov Chains and
Queuing Networks (QN) and allow us to compute the fol-
lowing metrics: (1) average time needed by a component to
complete its execution, (2) average throughput of a compo-
nent, (3) availability of a component, and (4) checkpointing
overhead. The models were validated through simulation
and experimentation.

As discussed in Section 5, there is a vast body of work
that presents analytic models for obtaining the checkpoint-
ing interval that optimizes a variety of metrics. Some ex-
amples include: minimize total execution time, maximize
availability, maximize a job’s progress, and minimize the
overhead generated by checkpointing and wasted work due
to rollback. A comprehensive and relatively recent book by
Katinka Wolter [25] contains a thorough description of many
stochastic models for checkpointing, restart, and rejuvena-
tion, including many discussed in the related work section
of this paper and other novel models introduced by Wolter.
However, the aforementioned models do not consider con-
tention among components while executing or checkpoint-
ing.

Table 1 illustrates how the optimal duration of the inter-
val between checkpoints, Topt, varies for each of the metrics
mentioned above and for different numbers of concurrent
components (n = 1, 4, 8, and 16). The results in the ta-
ble were obtained with the models described in this paper
and assume Poisson failures at a rate of 0.005 failures per
time unit. The models presented in this paper allow for

Table 1: Optimal checkpointing interval (Topt) for
different number of components (n) and λ = 0.005.

Metric n = 1 n = 4 n = 8 n = 16
Execution time 10 7 7 7
Availability 10 8 7.5 7
Relative progress 10 7 7 7
Overhead 10 15 20 20

any failure distribution. The results in the table assume
that the checkpointing time (without contention) is equal
to 0.25 time units. According to a well-known result by
Young [26], which does not consider contention, the value of

Topt that minimizes execution time is
√

2× 0.25/0.005 = 10
time units. This value coincides with the value in Table 1
for n = 1. But, for other values of n, the value of Topt is
no longer the same as the one when contention is not con-
sidered. The table clearly shows that Topt varies with the
number of components running concurrently for the other
metrics.

The main contribution of this paper is the development of
analytic models based on a combination of Markov Chains
and QNs to obtain the response time, throughput, and avail-
ability of concurrent and heterogeneous component-based
software systems that use checkpointing. Differently from
prior work, our models take into account contention for pro-
cessors and storage devices by concurrent processes during
their computation and checkpointing phases. Our models
also allows for different software components to have dif-
ferent compute and I/O characteristics as well as different
failure distributions.

This paper is organized as follows. Section 2 discusses
some core results common to the two models described in
the paper and then presents two checkpointing models: (1)
a model that considers homogeneous components (all com-
ponents have similar processing, I/O, and failure character-
istics) and (2) a model for the case of heterogeneous compo-
nents (different components may have different processing,
I/O, and failure characteristics). Section 3 presents several
numerical results using the models of the previous section.
Section 4 discusses a validation of the models. The next
section discusses related work and Section 6 presents some
concluding remarks and discusses future work.

2. MODELING CHECKPOINTING
Consider that a computing node runs n software com-

ponents, C1, · · · , Ck, · · · , Cn, and that they request that
their state be checkpointed every time they achieve a certain
amount of computation. Thus, each component alternates
between two modes: computing and checkpointing. In the
former mode, a component is making forward progress to-
wards its computational goal. In the latter, a checkpoint is
being made of the component. The smaller the amount of
computation before checkpoints, the faster is the recovery
to the failure point at the expense of a higher checkpointing
overhead. Conversely, a larger computing time before check-
pointing decreases the checkpointing overhead but increases
the time to return the computation to the failure point. The
optimal checkpointing frequency depends on the: (1) fail-
ure rate, (2) computing time before checkpointing, and (3)
time/overhead of taking checkpoints.

Checkpoint generation uses the same resources (i.e., pro-
cessors and I/O devices) used by the components running
at a computing node. We also assume that a component
suspends its computation while checkpointing. So, each
component alternates between computing and checkpoint-
ing. When a failure occurs while a component is computing,
its state has to be restored to its latest checkpoint (i.e., a
failure recovery) and the computation has to be restarted
from that checkpointed state. In the process, all the com-
putation since the latest checkpoint is wasted and has to be
re-done.

Our models use the following assumptions:

• A1: Components can fail individually without affect-
ing other components running on the same machine.
Such failures may occur, for example, due to lack of
memory, software bugs, or inability to allocate a needed
resource.

• A2: One or more components may execute concur-
rently on the same machine.

• A3: Different components may have different process-
ing and I/O demands. These demands are not deter-
ministic but are expressed by their average values for
each component.

• A4: Checkpoints for different components are not syn-
chronized with those of other components and may be
generated at different frequencies.

• A5: Different components may have different process-
ing and I/O demands for generating checkpoints. These
demands are not deterministic but are expressed by
their average values for each component.

• A6: Different components may have different failure
distributions.

• A7: Components and their checkpointing processes
share resources (e.g., processors and I/O devices) on
the machine they run and therefore there is contention
for these resources by these processes.

• A8: Similarly to the vast body of literature on check-
pointing modeling (see e.g. [17]) we assume:

– failures are immediately detected,

– no failures occur during checkpointing or during
rollback, a reasonable assumption since the time
to checkpoint and rollback is typically smaller than
the MTTF.

Table 2 summarizes the notation used in this paper. Be-
fore we discuss in subsections 2.2 and 2.3 the homogeneous
component and heterogeneous component models, we present
results that are common to both.

2.1 Core Results
Figure 1 shows what can happen with a component be-

tween two checkpoints assuming two failures occur before
the component is able to complete T time units of computa-
tion. In the figure, the first failure occurs after the compo-
nent has processed for W1 < T time units. Then, the com-
ponent spends a time equal to RT to rollback to the latest
checkpoint. RT includes CPU and I/O time. The compo-
nent then restarts its computation and after computing for

Table 2: Notation used in the checkpointing models

Notation Meaning
n number of components
CCPU,k avg. CPU time to checkpoint component k
CI/O,k avg. I/O time to checkpoint component k
ECPU,k avg. CPU time needed to execute component

k
EI/O,k avg. I/O time needed to execute component k
Ek avg. time (CPU and I/O) to execute compo-

nent
k. Ek = ECPU,k + EI/O,k

TCPU,k CPU time between consecutive checkpoints of
component k

TI/O,k I/O time between consecutive checkpoints of
component k

Tk total time between consecutive checkpoints of
component k. This time, equal to TCPU,k +
TI/O,k, determines when the next checkpoint
has to occur.

T̂k time to complete Ek after the last checkpoint
of component k.

F̃k r.v. that represents the failure instant of com-
ponent k after its last rollback or latest check-
point when it is in computing mode

fF̃k
(x) pdf of F̃k

qk probability that a failure occurs while compo-
nent k is computing.

W̃CPU,k r.v. that denotes the amount of computation
to be re-done (i.e., wasted) per failure of com-
ponent k

W̃I/O,k r.v. that denotes the I/O time to be re-done
(i.e., wasted) per failure of component k

W̃k r.v. that denotes the CPU and I/O time to be
re-done (i.e., wasted) per failure of component

k. W̃k = W̃CPU,k + W̃I/O,k.
RTCPU,k average CPU time needed to rollback compo-

nent k to the latest checkpoint after a failure
RTI/O,k average I/O time needed to rollback compo-

nent k to the latest checkpoint after a failure

W2 < T time units, a second failure occurs. Another period
equal to RT ensues. The component then restarts its com-
putation and this time it succeeds in completing the T time
units of computation before the next checkpoint. It should
be noted though that the time intervals C, W1, W2, RT and
T in Fig. 1 represent time intervals for one component when
there is no contention with other components (i.e., the case
of n = 1). In the general case of n ≥ 1 treated in this paper,
these time intervals are elongated by the contention effect.

The number of checkpointsNXk expected to be performed
by component k is bEk/Tkc, and the remaining amount of

work T̂k to be performed by component k after the last
checkpoint is T̂k = Ek − (Tk.NXk).

The probability of exactly j failures experienced by com-
ponent k between two checkpoints is qjk(1 − qk) assuming

independence among failures, where qk =
∫ Tk−

0
fF̃k

(x) dx.

If the failure model for component k is Poisson, i.e., F̃k
is exponentially distributed with parameter λk, then qk =
1− e−λk Tk . Thus, the average number of failures NFk be-

Figure 1: Timeline between two consecutive check-
points.

tween consecutive checkpoints is

NFk =

∞∑
j=0

j × qjk(1− qk) =
qk

1− qk
. (1)

The average effective CPU time, T eff
CPU,k, that a compo-

nent k spends computing and rolling back from failures be-
tween checkpoints is the product of the average number of
failures NFk by the sum of the average wasted CPU time,
E[W̃CPU], and the average CPU time, RTCPU,k, needed to
recover from a failure, plus the time TCPU,k to execute a
successful computation between checkpoints.

T eff
CPU,k =

qk[E[W̃CPU,k] + RTCPU,k]

1− qk
+TCPU,k k = 1, · · · , n.

(2)
Similarly, the effective I/O time, T eff

I/O,k, needed by com-
ponent k to recover from failures and execute a successful
computation between checkpoints is given by

T eff
I/O,k =

qk[E[W̃I/O,k] + RTI/O,k]

1− qk
+ TI/O,k k = 1, · · · , n.

(3)
Note that T eff

CPU,k and T eff
I/O,k do not include contention,

which is accounted for by the models discussed in later sub-
sections.

The average value of W̃k, E[W̃k], is the average value of

F̃k given that F̃k < Tk because when a failure occurs before
the component completes its Tk seconds of computation, the
computation up to the failure instant is wasted. The ex-
pression for E[W̃k] follows from the definition of conditional
probability:

E[W̃k] = E[F̃k | F̃k < Tk]

=

∫ Tk−
x=0

x.fF̃k
(x)dx∫ Tk−

x=0
fF̃k

(x)dx
. (4)

For example, if F̃k is exponentially distributed (i.e., the
failure model is Poisson), fF̃k

(x) = λke
−λkx where λk is the

failure rate. For this distribution, E[W̃k] can be computed
as

E[W̃k] =

∫ Tk−
x=0

x.λke
−λkxdx∫ Tk−

x=0
λke−λkxdx

(5)

=

1
λk
−
(

1
λk

+ Tk
)
e−λkTk

1− e−λkTk
. (6)

Note that the value of E[W̃k] ∈ (0, Tk). A value of 0 oc-
curs when the failure occurs right at the beginning of the

computing segment and there is no need to re-do any com-
putation after the component is restored to its most recent
checkpoint. The value Tk occurs when the failure takes place
at the very end of the computing segment. In this case, the
entire computing segment has to be re-done after the com-
ponent is restored to its latest checkpoint.

To derive expressions for E[W̃CPU,k] and E[W̃I/O,k], we

note that the fraction of E[W̃k] wasted by the CPU is ECPU,k/Ek.
The same goes for wasted I/O time, as shown in Eqs. (7)
and (8).

E[W̃CPU,k] =
ECPU,k E[W̃k]

Ek
. (7)

E[W̃I/O,k] =
EI/O,k E[W̃k]

Ek
. (8)

A variety of metrics can be computed using the analytic
models described in the following two subsections. Of these,
the following two are key because they capture the con-
tention among the different components while computing,
checkpointing, during rollback and recovery time.

• r̄c,k: average time it takes component k to complete
its computation between consecutive checkpoints.

• r̄x,k: average time it takes component k to complete
its checkpoint.

In order to execute Tk units of computing between check-
points, a component needs r̄c,k time units due to contention
with other components performing computing and check-
pointing, recovering from failures, and performing wasted
work. And it will need r̄x,k time units on average to per-
form each checkpoint. Thus, the average total time, R̄c,k, it
takes a component to complete its computation taking into
account contention with other components and checkpoint-
ing is

R̄c,k = [NXk.(r̄c,k + r̄x,k)] + (T̂k.
r̄c,k
Tk

). (9)

where r̄c,k/Tk is the inflation factor that must be applied
to Tk due to failures and contention. We can also define
the checkpointing overhead, Ovk, of component k as the ra-
tio between the time spent in checkpointing (including con-
tention) and the total time (computing plus checkpointing).

Ovk =
NXk.r̄x,k
R̄c,k

. (10)

The availability, Ak, of component k is defined as the frac-
tion of time the component is doing useful work and is com-
puted as the ratio between the time a component is either
computing or waiting for resources divided by the total ex-
ecution time. The term in square brackets in Eq. (11) rep-

resents the inflation factor that has to be applied to T effk

due to contention. This term is the ratio between the aver-
age time, r̄c,k, component k takes executing between check-
points and the time the component would take with no con-
tention. Note that inflation due to failures is not considered
here. This definition of availability can be interpreted as
the notion of achieved availability [8] where checkpointing
corresponds to preventive maintenance and recovery time
plus re-doing computation corresponds to corrective main-
tenance.

Ak =
NXk.Tk.[r̄c,k/(T

eff
CPU,k + T eff

I/O,k)]

R̄c,k
. (11)

We also define a metric called relative progress (RPk) that
indicates the relative progress of the computation, i.e., the
relative amount of useful computation done by component
k during a cycle:

RPk =
Tk

r̄c,k + r̄x,k
. (12)

Equations (9)-(12) require r̄c,k and r̄x,k, which will be
derived first for the case of homogeneous components and
next for the case of heterogeneous components in the next
two subsections, respectively.

2.2 Model for Homogeneous Components
The heterogeneous model can be used to solve systems

with homogeneous components. However, the homogeneous
model has a lower computational complexity. Under the
homogeneous component assumption, we can drop the sub-
script k from the notation introduced in Table 2. All compo-
nents have the same CPU and I/O demands for computing
and checkpointing and the same failure distributions.

Because at any given time there may be a number of com-
ponents in the computing mode and a number of compo-
nents in the checkpointing mode, we model the system of
components using a Markov Chain with states 0, · · · , v, · · · , n
where the state v indicates that there are v components per-
forming their computation and n−v components generating
their checkpoints. The transition rate, µv, between states v
and v − 1 is the rate at which one of the v components
suspends its computation to start its checkpointing process.
The transition rate, λv, between states v and v + 1 is the
checkpointing completion rate for one of the components be-
ing checkpointed. The transition rates µv and λv are com-
puted using a multiclass Queueing Network (QN) model as
explained below. But first, we compute the probability pv
of being at state v of the Markov Chain. This probability is
a function of λv, µv, and n.

An expression for pv (v = 0, · · · , n) is obtained by using
the general birth-death equation for Markov Chains [15, 20]:

pv = p0

v−1∏
i=0

λi
µi+1

v = 1, · · · , n (13)

p0 =

[
1 +

n∑
v=1

Πv−1
i=0

λi
µi+1

]−1

. (14)

The values of pv can be easily computed because the sum-
mation needed to compute p0 is finite.

We now show how to compute the values of λv and µv.
State v means that v components are computing and n− v
are checkpointing. We model this as a 2-class closed QN
where the classes are: COMP and CHECK where COMP
corresponds to segments of the computation between check-
points and CHECK corresponds to the checkpointing pro-
cesses. The population for the COMP class is v and for the
CHECK class is (n − v). Considering without loss of gen-
erality that there are two devices, CPU and I/O, the CPU
and I/O service demands for the COMP class are T eff

CPU and
T eff

I/O, respectively, and for the CHECK class are CCPU and
CIO, respectively.

The solution to the two-class closed QN described above
can be obtained using the well-known Mean Value Analysis
technique [20] and yields the following metrics:

• XCOMP(v): average throughput of component compu-

tation segments between checkpoints when there are v
components in their computing phase.

• XCHECK(n − v): average throughput of component
checkpoints, i.e., average rate at which checkpoints
complete when there are n− v concurrent checkpoints
in progress.

Therefore, we can write the following two relationships:

λv = XCHECK(n− v) (15)

µv = XCOMP(v). (16)

We can also compute the average throughput, X̄COMP,
of components completing their computation before start-
ing checkpointing, and X̄CHECK, the average checkpointing
throughput, as follows:

X̄COMP =

n∑
v=1

XCOMP(v) pv (17)

X̄CHECK =

n−1∑
v=0

XCHECK(n− v) pv. (18)

The average number of components in the computing stage,
n̄c, and the average number of components being check-
pointed, n̄x, are:

n̄c =

n∑
v=1

v pv (19)

n̄x = n− n̄c. (20)

The average time, r̄c, spent by a component between check-
points and the average time, r̄x, a component takes to gen-
erate its checkpoint is computed with the use of Little’s
Law [18].

r̄c =
n̄c

X̄COMP
(21)

r̄x =
n̄x

X̄CHECK
. (22)

Thus, the values of r̄c and r̄x can be used to compute the
average total time, R̄c, it takes a component to complete
its computation taking into account contention with other
components and checkpointing as indicated by Equation (9).
Similarly, the checkpointing overhead, Ov, the avalilability
A, and the relative progress RP can now be computed using
Equations (10)-(12), respectively.

2.3 Model for Heterogeneous Components
This section generalizes the model presented in the previ-

ous section for the case in which the n components may have
totally different characteristics. At any point in time, a com-
ponent is either computing or checkpointing. So, the state
of the system can be represented as (e1, · · · , ek, · · · , en)
where ek = 1 if component k is computing and 0 if it is
checkpointing. For example, if n is 3, the set of states is
{(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0),
and (1, 1, 1)}. Clearly, there are 2n states. For convenience,
we let N = 2n. We number the states from 0 to N − 1 and
the state representation is the n-bit binary number corre-
sponding to the decimal number of the state. We denote by
b(i) the binary representation of state i. For example, when
n = 3, the states would be numbered from 0 to 7 and b(6)

is 110. We always number the bits in b(s) from left to right
starting from 1. Let S be the set of all states.

If we assume that the events of starting a checkpoint for
one component and ending a checkpoint for the same or a
different component cannot occur at exactly the same time,
the only possible transitions between states are the ones that
change only one of the ek’s of a state from 0 to 1 or from 1
to zero. We use the notation �k(b(s)) to represent a func-
tion that flips the k-th bit in b(s) leaving and all other bits
unchanged. So, �4(0011011) = 0010011.

We can now build a Markov Chain in which the states are
the N states described above. Each state in S has n incom-
ing transitions and n outgoing transitions to other states
because outgoing and incoming transitions are associated to
“flipping” one of the n bits of the state at a time. Figure 2
shows an example of this Markov Chain for the case of n = 2.
The state transition rates will be explained later. States are
identified by their decimal numbers (0, · · · , 3) and by their
binary number. Note that for clarity, we have added after
the 2-bit binary number another two bits to indicate which
components are checkpointing in each state. These extra
two bits are not needed to represent the state because this
information can be derived by flipping all the bits of the
state’s binary representation.

Figure 2: Example of Markov Chain for the hetero-
geneous case and n = 2.

In order to generate and solve the Markov Chain we need
to write a set of balance equations and solve the resulting
system of linear equations in which the variables are the
probabilities pi, i = 0, · · · , N − 1 of being in each state i.
To find the state probabilities we need N equations, which
can be obtained by applying the principle of flow-in = flow-
out [15] to each state of the Markov Chain. This yields the
following set of equations∑

v∈Sin(s)

pv × µv,s − ps
∑

v∈Sout(s)

µs,v = 0 ∀ s ∈ S (23)

where Sin(s) is the set of all states from which there are
transitions into state s, µv,s is the transition rate from state
v into state s, Sout(s) is the set of states into which there
are transitions from state s, and µs,v is transition rate from
state s into state v. We can rewrite Eq. (23) using the
state numbers from 0 to N − 1. Thus, for each state i, (i =
0, . . . , N − 1) we have the following equation:

N−1∑
j=0

pj × µj,i − pi
N−1∑
j=0

µi,j = 0. (24)

The above equations are not linearly independent so we
need to replace any of them with the equation that says that
the sum of all probabilities is equal to 1 [15]:

N−1∑
i=0

pi = 1. (25)

The matrix of transition probabilities, P, is of the form

P =

µ0,0 µ0,1 · · · µ0,N−1

µ1,0 µ1,1 · · · µ1,N−1

· · · · · · · · · · · ·
µN−1,0 µN−1,1 · · · µN−1,N−1

 (26)

The Markov Chain has the following properties:

• Property 1: Sin(s) = Sout(s) ∀s ∈ S. This is true
because, as indicated above, transitions between states
can only occur when one and only one element ek of the
state changes from one to zero or from zero to one. So,
Sin(s) = Sout(s) = {�1(s)}

⋃
{�2(s)}

⋃
· · · {�n(s)}.

• Property 2: | Sin (s) |=| Sout (s) |= n ∀s ∈ S. This
follows immediately from property 1 above.

• Property 3: µi,i = 0 for i = 0, · · · , N − 1.

• Property 4: the bit that changed when going from
state i to state j can be determined by performing
a bitwise exclusive or operation between the binary
representations of i and j. The result will have a bit
equal to 1 where the change occurred and a zero in all
other positions. This is true because there is only one
bit change between i and j and that change is either
from 0 to 1 or 1 to 0. All other bits remain the same;
therefore the exclusive or between them is 0. Thus,
the changed bit when going from state i to state j is
the only bit equal to 1 in b(i)⊕ b(j).

• Property 5: µi,j = 0 if b(i) and b(j) differ by more
than one bit because transitions can only occur at the
beginning or end of the checkpointing of a single com-
ponent.

• Property 6: Except for Eq. (25), most of the coef-
ficients of the unknowns on equations (24) are zero.
Because of properties 3 and 4 above, only n out of
2n transitions rates are non-zero. Thus, the matrix of
transition rates (see Eq. (26)) is largely sparse, a fact
we benefit from when solving the Markov Chain.

To compute the transition rates µi,j we use a multiclass
QN model similarly as before with the following character-
istics: (1) There are 2n classes. Classes 1 through n repre-
sent the n components and the population of each of these
classes is either 1 or 0, depending on the status of the com-
ponent (i.e., computing (1) or checkpointing (0)). Classes
n+1 through 2n correspond to the checkpointing process for
each of the software components. The population of each of
these classes is also 1 or 0 depending whether a component
is checkpointing (1) or not (0). So, the total population of
this QN model is equal to the number of components n. The
population of class k plus the population of class n + k is
equal to 1 for k = 1, · · · , n because a component cannot be
computing and checkpointing at the same time. Addition-
ally, the service demands for the component classes may be
different. A state s ∈ S represents the population of classes

1 through n of the QN. The population of the remaining
classes is automatically derived from the population of the
first n classes. For example, the state (1, 1, 0, 1, 0) for a
5-component system indicates that components 1, 2, and 4
are computing and components 3 and 5 are checkpointing.
Then, the populations for classes 1 through 5 of the QN are
1, 1, 0, 1, 0 and the populations for classes 6 through 10 are
0, 0, 1, 0, 1.

The CPU and I/O service demands for classes k = 1, · · · , n
are given by equations (2) and (3), respectively. The CPU
and I/O service demands for class n + k (k = 1, · · · , n) are
given by CCPU,k and CI/O,k, respectively.

Appendix A provides the algorithm used to compute the
transition rates µi,j . These rates are used to put together
the system of linear equations in Eqs. (24) and (25). Various
numerical solvers can be used for that purpose. We used
the solver in the R package that handles systems of linear
equations with sparse matrices. The following additional
notation is used in the remaining expressions.

• vk(b): value of the bit at position k (counting from the
left) of binary number b. So, v4(000100) = 1.

• Xk(i): throughput of class k (k = 1, · · · , n) for state
i.

• Xn+k(i): throughput of class n+ k (k = 1, · · · , n) for
state i.

With the values of pi’s we can obtain the probability P ck
that component k is in the computing mode as the sum of all
state probabilities where component k is computing. Note
that P ck is also the average number, n̄c,k, of components of
class k in the computing mode. Thus,

P ck = n̄c,k =

N−1∑
i=0

vk(b(i)) pi. (27)

The probability P xk that component k is checkpointing is
simply 1−P ck and is also equal to n̄x,k, the average number
of components of class k in the checkpointing mode. Thus,

P xk = n̄x,k = 1− P ck . (28)

The average throughput, X̄k, of component k can be com-
puted as

X̄k =

N−1∑
i=0

Xk(i) pi. (29)

Using the example of Fig. 2, we have that X̄1 = X1(3)p3 +
X1(2)p2. The overall average component throughput, X̄COMP,
is

X̄COMP =

n∑
k=1

X̄k.P
c
k . (30)

The average throughput, X̄n+k, of the checkpointing pro-
cess for component k can be computed as

X̄n+k =

N−1∑
i=0

Xn+k(i) pi. (31)

In the example of Fig. 2, X̄3 = X3(0)p0 + X3(1)p1. The
overall average throughput, X̄CHECK, of components in the
checkpointing mode is

X̄CHECK =

n∑
k=1

X̄n+k.P
x
k . (32)

According to Little’s Law [18], the average time, r̄c,k, it
takes component k to complete its computation between
consecutive checkpoints is

r̄c,k =
n̄c,k
X̄k

. (33)

Also according to Little’s Law, the average time it takes
a component k to complete its checkpoint is

r̄x,k =
n̄x,k
X̄n+k

. (34)

The average total time, R̄c,k, it takes component k to
complete its computation taking into account contention
with other components and checkpointing is given by Equa-
tion (9) and the values of the overhead Ovk, the availabil-
ity Ak, and the relative progress RPk are given by Equa-
tions (10)-(12), respectively.

When combining the individual availability of the com-
ponents, one has to take into consideration how the system
stakeholders view the relative importance of the different
components. For example, the overall availability could be
seen as the fraction of time that at least one component is
available. In that case,

A = 1−
n∏
k=1

(1−Ak). (35)

Alternatively, one could define the overall availability as a
weighted average of the individual component availabilities:

A =

n∑
k=1

wk.Ak (36)

where
∑n
k=1 wk = 1. Appendix B provides a discussion

on the computational complexity and computation times of
both models.

3. NUMERICAL EXAMPLES
We implemented both analytic models in Java and used

some functions (e.g., solving systems of linear equations)
provided by the R statistical package. We present here
some numerical examples using the two models developed
in the previous section. The time-related metrics presented
in this section are normalized by the value of E, the average
CPU time needed to complete the execution of a component.
Thus, all normalized time-related metrics are dimensionless
and have interesting interpretations. For example: Rc/E is
the factor by which the average execution time of a com-
ponent is elongated due to contention for resources, check-
pointing, and rollback; T/E is the fraction of a component’s
total CPU time achieved between checkpoints; and (1/λ)/E
is the ratio between the mean time to fail and a component’s
total CPU time.

The top curve of Fig. 3 shows the variation of Rc/E with
T/E for the case of a homogenous model with 3 compo-
nents and Poisson failures with a normalized mean time
to failure equal to 0.5 (i.e., two failures every execution
of a component). The other normalized parameters are
ECPU = 0.85, EI/O = 0.15, CCPU = 0.05, CI/O = 0.075,
RTCPU = 0.06 and RTI/O = 0.07. The figure shows that
Rc/E decreases with T , reaches a minimum, then starts to
increase. This can be explained by looking at the change in
the overhead, Ov, and the expected number of failures be-
tween consecutive checkpoints, NF , also shown on the same

Figure 3: Normalized average execution time (Rc/E)
vs. T/E for the homogeneous case and with Poisson
failures. (1/λ)/E = 0.5, n = 3.

figure. The inflation in execution time for each component is
caused by contention, failures and checkpointing overhead.
The contention is constant in this example because the num-
ber of components is fixed. For smaller values of T , the
checkpointing overhead is very high, however the number of
expected failures in this small interval is small. After some
point (the optimal T for minimum Rc), the decrease in Ov
slows down while the number of failures increases fast. This
increase has a bigger effect on Rc after this point.

Figure 4 shows the normalized execution time vs. average
availability for 1, 3, 5, and 7 concurrent components. The
figure shows that as Rc decreases, A increases. Under con-
stant contention, the achieved availability is affected by the
same two factors as execution time: Ov (preventive mainte-
nance), and NF (corrective maintenance). The figure shows
that the optimal T value that minimizes execution time is
usually the same or very close to the value that maximizes
availability.

Figure 4: Normalized average execution time (Rc/E)
vs. the availability A for the homogeneous case and
with Poisson failures. (1/λ)/E = 0.5, n = 1, 3, 5, and
7.

Figure 5 shows the variation in availability vs. T/E for

Figure 5: Availability A vs. T/E for n = 1, 4, 8, and 16
for the homogeneous case and with Poisson failures.
(1/λ)/E = 2.

1, 4, 8 and 16 concurrent components and λ = 1/(2E). In
all four cases, the availability increases, reaches a maximum,
and then decreases. This has the same explanation as Figs. 3
and 4. As Rc decreases, A increases, they reach their op-
timal values at very close values of T . After this point, Rc
increases and A decreases.

Figure 6 illustrates the variation of the average normal-
ized execution time as components are incrementally added
from 1 to 6. The six components have different resource
demands and different failure distributions. The character-
istics of the six components vary as follows: E = 15 to
40 (with ECPU = 0.85E), T = 2 to 4, CCPU = 0.015 to
0.03, CI/O = 0.02 to 0.04, RTCPU = 0.01 to 0.028, and
RTI/O = 0.002 to 0.04. Components 1, 2, 4 and 5 have Pois-
son failures with failure rates equal to 0.03, 0.07, 0.02,and
0.08, respectively. Components 3 and 6 have Weibull failure
distributions with shape and scale parameters equal to (4,
50) and (3, 70), respectively. The figure also shows a red
line that depicts how the normalized execution time would
vary if all added components had the same characteristics as
component 1. The figure also indicates how the mix of con-
current components influences on the normalized execution
time. For example, Rc/E is very close to 6 for components 2
and 5 and it is close to 5 for all other components for n = 6.

4. EXPERIMENTAL VALIDATION
The first obvious validation of our models was to use the

heterogeneous model in a situation in which the character-
istics of all components were exactly the same. We then
used the homogeneous model to obtain the metrics for the
same inputs and obtained the same values provided by the
heterogeneous model. This confirmed the correctness of our
implementations of the two models. We had done unit tests
previously to confirm that individual components of the im-
plementation (e.g., QN model, Markov Chain solution) were
correct. We then validated the models through both simu-
lation and experiments as described in the next two subsec-
tions.

4.1 Validation Through Simulation
We wrote a Java program that simulates a node with a

Figure 6: Normalized execution time (Rc/E) as com-
ponents are incrementally added.

processor, a disk, and multiple software components. Each
component is provided with a sequence of at least 500 jobs
to execute, each representing a different execution of the
component. The various properties of a component (e.g.,
execution time, checkpointing time, recovery time) are ran-
dom variables with assigned distributions. For each task
execution, values are drawn from the common distribution
for that component. For example, the computation time of
tasks for component k may be exponentially distributed with
mean Ek, uniformly distributed checkpointing and roll back
demands, and time to fail following a Weibull distribution
with given shape and scale parameters. To ensure a con-
stant level of contention during each run, the simulation run
stops when one of the components finishes executing all of its
tasks. At that point, the output results are averaged over all
runs and 95% confidence intervals are computed over 40 runs
in which each component is executed hundreds of times..
The analytic and simulation results are compared through
the error ε = 100× | simulation− analytic | /simulation.

Table 3 compares the execution time, availability and check-
point overhead obtained by the analytic and simulation mod-
els for 5, 10, and 15 homogeneous components. The charac-
teristics of the components are the same as component 1 in
Table 4, which shows input data for a scenario with three
different components that have different values of comput-
ing demands (ECPU,k and EI/O,k), checkpointing demands
(CCPU,k and CI/O,k), and rollback time (RTCPU,k and RTI/O,k).

We used the values in Table 4 as input parameters (means
for exponential distributions) for the heterogeneous analytic
model and the simulation for three different components.
Table 7 displays several results for four versions of the exper-
iments in which the value of Tk and the failure distribution
(F̃) vary according to Table 5. In all variations, components
1 and 3 had exponentially distributed time to fail, while com-
ponent’s 2 time to fail followed a Weibull distribution. Both
distributions have been used in many reliability studies. We
used shape parameters of 4 and 4.5 for the Weibull distribu-
tions, which means that the failure rate increases over time.

Table 7 shows the average total execution time Rc,k, the
availability, and the overhead for each component k under
the analytic and simulation models along with 95% confi-
dence intervals over 40 runs of the simulation in which each
component executes to completion at least 500 times in each

Table 3: Comparison between analytic and simulation results for the homogeneous case

n
Rc A Ov

simulation analytic ε simulation analytic ε simulation analytic ε
5 3369.3± 32.5 3658.5 8.6% 44.9%± 0.2% 42.5% 5.4% 27.3%± 0.1% 28.0% 2.8%
10 6390.3± 47.9 7245.1 13.4% 44.8%± 0.1% 42.5% 5.1% 27.4%± 0.1% 28.1% 2.3%
15 9647.2± 61.4 10876 12.7% 44.5%± 0.1% 42.5% 4.4% 27.7%± 0.1% 28.0% 1.1%

Table 4: Input parameters for the results on Tables 7
and 8
k ECPU,k EI/O,k CCPU,k CI/O,k RTCPU,k RTI/O,k

1 303.75 119.50 25.40 9.99 30.20 11.88
2 151.25 59.50 18.70 7.36 23.30 9.17
3 203.75 106.88 48.00 18.88 24.70 9.72

Table 5: Four versions of the experiments for results
on Tables 7 and 8

version T F̃1.λ F̃2.(shape, scale) F̃3.λ

1 25 0.009 (4.5, 115) 0.013
2 25 0.008 (4, 67) 0.011
3 50 0.009 (4.5, 115) 0.013
4 50 0.008 (4, 67) 0.011

run. In each run, each component is given a new seed to gen-
erate random samples using the means in Table 4. Note that
all three components are executing concurrently during the
simulation runs and sharing the CPU and I/O resources.
Table 7 shows that the error of the analytic model for Rc,k
is between 9.5% and 11.4%, for exponentially distributed
failures. The errors for the Weibull distribution are higher,
i.e., around 14.5%, but still acceptable for execution times
when queuing effects are present [16]. The lower errors for
the exponential distribution may be due to its memoryless
property, which is consistent with the underlying Markovian
assumptions of the models presented here. But, even un-
der non-Markovian failure assumptions, our models exhibit
fairly robust prediction capabilities.

4.2 Validation Through Experimentation
A second validation was done through experimentation.

We developed a micro-benchmark in C that implements soft-
ware components that perform jobs repeatedly, do frequent
checkpoints and fail randomly according to an exponential
or Weibull distribution. Components receive as input the
number of jobs, the time between consecutive checkpoints
(T), and the failure rate (λ). At the beginning of each job,
the component starts a timer, resets the time to checkpoint
to T , and generates the next failure time using λ. During the
task’s execution, a component constantly checks whether it
is time to fail or checkpoint. If it is time to fail, the compo-
nent rollbacks to the latest checkpoint and redoes the work
that was not checkpointed. If it is time to checkpoint, the
components does so. After each failure or checkpoint, the
component generates a new failure time, resets the time to
checkpoint to T , and resets the un-checkpointed work to
zero. At the end of a job, the component stops the timer
and records the time taken to complete the task (R̄c in our
model).

Each component alternates between CPU and I/O ac-
tivity by invoking the compute() and doIO() procedures
(see Algorithm 1). The first performs thousands of calls
to trigonometric functions and stores the results in an ar-
ray. The second writes the array to a binary file. These
two procedures were run thousands of times to measure the
CPU and disk service demands. The CPU demand was mea-
sured using C’s clock() function, which returns the number
of clock ticks since the program was started. This value is
then divided by the global variable CLOCKS_PER_SEC to ob-
tain the time spent using the CPU. The disk demand was
measured by running the fs_usage command to measure the
time needed for all file system calls. Table 6 shows the CPU
and disk demands of the functions compute() and doIO()
averaged after 2000 runs each with 95% confidence inter-
vals. All experiments were run on a MacBook Pro with a
2.6 GHz Intel Core i5 processor. Only one core was en-
abled to produce contention during experimentation with
multiple concurrent components. The pseudo code for the
micro-benchmark is given in Algorithms 1, 2, and 3.

Algorithm 1 Micro-benchmark Pseudo Code

Input: numTasks, iterations, numCompute, numIO, λ, T
for t = 1→ numTasks do
Reset();
START ← current time();

5: for i = 1→ iterations do
for j = 1→ numCompute do
Execute(compute(), compute time, uncheckedComp);

end for
for j = 1→ numIO do

10: Execute(doIO(), IO time, uncheckedIO);
end for

end for
END ← current time();
taskT imes[t]← END − START

15: end for
printTaskT imes();

Table 6: compute() and doIO() CPU and disk de-
mands in msec with 95% confidence intervals

CPU demand disk demand
compute() 2.66± 0.008 0
doIO() 0.666± 0.005 0.0873± 0.04

Similarly to the simulation, four experiments were con-
ducted according to Tables 4 and 5. For each experiment,
40 runs were conducted. In each run, each of the concurrent
components executed at least 50 jobs. The values generated
using the means in Tables 4 and 5 were averaged and used as
an input to the analytical model. The total execution time,

Algorithm 2 Execute Pseudo Code

Input: procedure, duration, counter
call(procedure);
timeToFail = timeToFail − duration;
timeToCheck = timeToCheck − duration;

5: if timeToFail ≤ 0 then
Rollback();
Redo(uncheckedComp, uncheckedIO);
Reset();

else if timeToCheck ≤ 0 then
10: Checkpoint();

Reset();
else
counter ← counter + 1;

end if

Algorithm 3 Reset Pseudo Code

timeToCheck ← T
timeToFail← nextExponential(λ)
uncheckedComp← 0
uncheckedIO ← 0

availability and checkpoint overhead were averaged over the
jobs in each run, then over all the runs and compared to the
results from the analytical model (see Table 8).

5. RELATED WORK
None of the prior work mentioned below considers, as we

do, the effect of resource contention with other components
or with checkpointing processes. There is a wealth of pub-
lications on analytic modeling of rollback and checkpoint-
ing since the work of Young in 1974 [26]. We highlight a
few here (see [25] for an extensive bibliography). Gelenbe
and colleagues developed comprehensive models for rollback
and checkpointing under various assumptions regarding fail-
ure time distribution and static versus dynamic checkpoint-
ing [11, 13, 12]. Other analytic models can be found in
Chandy et. al. [2] and Tantawi and Ruschitzka [23].

Nicola and Spanje [21] study and compare different check-
pointing strategies and models in order to select one that
adequately represents a realistic system and is yet tractable
for analysis. Dimitrov et al. [6] developed analytic models
to find a checkpointing schedule that optimizes a job’s to-
tal processing time under implicit breakdowns, i.e., failures
are not detected immediately but a special test has to be
performed to detect the failure.

Kishor Trivedi has done substantial work in using perfor-
mance modeling to assess software reliability and the im-
pacts of software rejuvenation [10]. The work in [17] by
Ling et al. uses variational calculus to derive a closed form
expression for the optimal checkpointing frequency as a func-
tion of the failure rate with the goal of minimizing the total
expected cost of checkpointing and recovery.

Daly [4] provides a high order estimate of the optimum
checkpoint interval to minimize total application runtime
under Poisson failures. Chen and Ren [3] analyze the rela-
tionships between checkpoint interval and system availabil-
ity, task execution time, and task deadline miss probability,
for soft real-time applications. Bougeret et al. [1] develop
solutions for optimal checkpointing that minimize execution
time for sequential and parallel jobs with Poisson failures

and use a dynamic programming heuristic for the case of
Weibull failures.

Lu et al. [19] derive optimal checkpointing intervals for
systems with latent errors, i.e., errors that may go unde-
tected for some time. This assumption is more realistic
than that of immediate failure detection assumed by the
vast majority of the checkpointing modeling work, includ-
ing ours. The authors discuss the importance of multiver-
sion checkpoints to achieve acceptable failure coverage. Di et
al. [5] present a sophisticated deterministic multilevel check-
point optimization model in the context of exascale systems
with a large number of multi-core nodes. The authors con-
sider a parallel application with many processes running on
many cores. Jones et al. [14] use simulation with real work-
load data to demonstrate the impact of sub-optimal check-
point intervals on application efficiency in HPC clusters.
No analytic model is presented. A comprehensive survey
of roll-back recovery protocols in message-passing systems
was presented in [7]. Recent studies have leveraged the use
of NVRAM as a replacement to disk to store checkpoints [9].

6. CONCLUDING REMARKS
This paper presented two analytic models for assessing the

performance of software systems that use rollback and check-
pointing to improve their reliability. Differently from previ-
ous work, our models allow for a compute node to run many
different software components concurrently, each possibly
having different resource demand and failure distribution
characteristics. Our analytic models compute the average
execution time per component, their availability, overhead
due to checkpointing and rollback, and relative progress,
while taking into account the impact of contention for shared
resources such as processors and I/O devices. Simulation
and experimental results used to validate the models showed
very good accuracy for Poisson and Weibull failures. In the
future, we intend to integrate our models into an autonomic
controller that can dynamically tweak the various parame-
ters of the model to maximize a utility function of execution
time, availability, and overhead.

Acknowledgements
This work was partially supported by the AFOSR grant
FA9550-16-1-0030.

7. REFERENCES
[1] M. Bougeret, H. Casanova, M. Rabie, Y. Robert, and

F. Vivien. Checkpointing strategies for parallel jobs.
In 2011 Intl. Conf. High Performance Computing,
Networking, Storage and Analysis (SC), pages 1–11.
IEEE, 2011.

[2] K. M. Chandy, J. C. Browne, C. W. Dissly, and W. R.
Uhrig. Analytic models for rollback and recovery
strategies in data base systems. IEEE Tr. Software
Engineering, (1):100–110, 1975.

[3] N. Chen and S. Ren. Adaptive optimal checkpoint
interval and its impact on system’s overall quality in
soft real-time applications. In Proc. 2009 ACM Symp.
Applied Computing, pages 1015–1020. ACM, 2009.

[4] J. T. Daly. A higher order estimate of the optimum
checkpoint interval for restart dumps. Future
Generation Computer Systems, 22(3):303–312, 2006.

Table 7: Comparison between analytic and simulation results for the heterogeneous case.

Experiment k
Rc A Ov

simulation analytic ε simulation analytic ε simulation analytic ε

1
1 2525.8± 30.7 2766.7 9.5% 36.6± 0.1% 35.1% 4.1% 46.1± 0.1% 46.8% 1.5%
2 857.1± 5.4 960.9 12.1% 54.3± 0.1% 50.2% 7.5% 45.6± 0.1% 49.7% 8.9%
3 2712.5± 31.0 3009.2 10.9% 26.0± 0.1% 23.0% 11.3% 58.2± 0.1% 61.1% 5.0%

2
1 2469.9± 20.3 2704.1 9.5% 37.3± 0.1% 35.9% 3.8% 47.2± 0.1% 47.9% 1.6%
2 874.5± 4.5 979.0 11.9% 53.5± 0.1% 49.4% 7.6% 44.9± 0.1% 48.6% 8.2%
3 2648.8± 24.3 2922.5 10.3% 26.8± 0.1% 23.9% 10.9% 59.7± 0.2% 62.7% 5.0%

3
1 2078.2± 22.8 2295.2 10.4% 45.9± 0.2% 42.4% 7.8% 26.9± 0.1% 28.1% 4.4%
2 642.0± 3.2 735.1 14.5% 72.3± 0.1% 65.5% 9.4% 26.2± 0.1% 32.3% 23.0%
3 2074.6± 26.3 2310.6 11.4% 35.9± 0.2% 30.0% 16.5% 35.5± 0.2% 39.8% 12.3%

4
1 2008.0± 17.9 2213.7 10.2% 47.7± 0.2% 44.1% 7.4% 27.9± 0.1% 29.3% 4.8%
2 839.2± 5.6 959.8 14.4% 60.3± 0.1% 50.3% 16.6% 21.6± 0.1% 24.9% 14.9%
3 1976.9± 21.7 2186.7 10.6% 37.7± 0.2% 32.1% 14.8% 37.9± 0.2% 42.2% 11.4%

Table 8: Comparison between analytic and experimentation results for the heterogeneous case.

Experiment k
Rc A Ov

experiment analytic ε experiment analytic ε experiment analytic ε

1
1 2688.46± 88.30 2727.87 1.5% 37.5%± 0.7% 34.3% 8.6% 45.8%± 1.0% 47.2% 3.2%
2 1014.58± 31.51 956.58 5.7% 51.7%± 0.5% 50.4% 2.6% 48.1%± 0.5% 49.5% 2.8%
3 2730.61± 156.16 2763.84 1.2% 25.5%± 0.6% 24.1% 5.6% 58.8%± 0.9% 60.3% 2.5%

2
1 2798.21± 139.66 2858.18 2.1% 37.2%± 0.5% 35.7% 4.1% 47.6%± 0.8% 48.0% 0.8%
2 1011.36± 24.87 984.72 2.6% 51.0%± 0.6% 49.6% 2.7% 47.7%± 0.6% 48.6% 2.0%
3 2736.92± 102.02 2929.27 7.0% 25.8%± 0.5% 23.6% 8.6% 60.2%± 0.7% 62.9% 4.5%

3
1 2167.65± 93.79 2309.34 6.5% 47.4%± 1.0% 42.4% 10.5% 25.4%± 0.8% 28.0% 10.4%
2 754.13± 25.89 741.69 1.6% 69.7%± 0.7% 66.0% 5.2% 28.9%± 0.6% 31.9% 10.3%
3 1988.79± 65.21 2354.04 18.4% 38.0%± 0.9% 30.6% 19.6% 33.2%± 1.2% 39.5% 18.7%

4
1 2255.41± 206.68 2225.69 1.3% 48.9%± 0.9% 44.4% 9.1% 26.8%± 1.0% 29.1% 8.7%
2 924.12± 63.52 967.16 4.7% 59.9%± 0.7% 50.3% 16.0% 21.5%± 0.6% 24.6% 14.3%
3 1943.90± 154.25 2171.24 11.7% 39.4%± 1.0% 31.9% 18.8% 36.1%± 0.8% 42.3% 17.1%

[5] S. Di, L. Bautista-Gomez, and F. Cappello.
Optimization of a multilevel checkpoint model with
uncertain execution scales. In Proc. Intl. Conf. High
Performance Computing, Networking, Storage and
Analysis, pages 907–918. IEEE Press, 2014.

[6] B. Dimitrov, Z. Khalil, N. Kolev, and P. Petrov. On
the optimal total processing time using checkpoints.
IEEE Tr. Software Engineering, 17(5):436, 1991.

[7] E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B.
Johnson. A survey of rollback-recovery protocols in
message-passing systems. ACM Computing Surveys
(CSUR), 34(3):375–408, 2002.

[8] E. Elsayed. Reliability Engineering. Number v. 1 in
Reliability Engineering. Addison Wesley Longman,
1996.

[9] S. Gao, B. He, and J. Xu. Real-time in-memory
checkpointing for future hybrid memory systems. In
Proc. 29th ACM on Intl. Conf. Supercomputing, pages
263–272. ACM, 2015.

[10] S. Garg, Y. Huang, C. Kintala, and K. S. Trivedi.
Minimizing completion time of a program by
checkpointing and rejuvenation. In ACM
SIGMETRICS Performance Evaluation Review,
volume 24, pages 252–261. ACM, 1996.

[11] E. Gelenbe. A model of roll-back recovery with
multiple checkpoints. In Proc. 2nd Intl. Conf. Software

Engineering, pages 251–255. IEEE Computer Society
Press, 1976.

[12] E. Gelenbe. On the optimum checkpoint interval. J.
ACM, 26(2):259–270, 1979.

[13] E. Gelenbe and D. Derochette. Performance of
rollback recovery systems under intermittent failures.
C. ACM, 21(6):493–499, 1978.

[14] W. M. Jones, J. T. Daly, and N. DeBardeleben.
Application monitoring and checkpointing in hpc:
looking towards exascale systems. In Proc. 50th
Annual Southeast Regional Conference, pages 262–267.
ACM, 2012.

[15] L. Kleinrock. Theory, Volume 1, Queueing Systems.
Wiley-Interscience, 1975.

[16] E. Lazowska, J. Zahorjan, G. Graham, and K. Sevcik.
Quantitative System Performance: Computer System
Analysis Using Queueing Network Models. Prentice
Hall, 1984.

[17] Y. Ling, J. Mi, and X. Lin. A variational calculus
approach to optimal checkpoint placement. IEEE Tr.
Computers, 50(7):699–708, 2001.

[18] J. D. Little. A proof for the queuing formula: L= λ w.
Operations Research, 9(3):383–387, 1961.

[19] G. Lu, Z. Zheng, and A. A. Chien. When is
multi-version checkpointing needed? In Proc. 3rd
Wkhp. Fault-tolerance for HPC at extreme scale, pages

49–56. ACM, 2013.

[20] D. A. Menascé, V. A. Almeida, L. W. Dowdy, and
L. Dowdy. Performance by design: computer capacity
planning by example. Prentice Hall Professional, 2004.

[21] V. F. Nicola and J. M. Van Spanje. Comparative
analysis of different models of checkpointing and
recovery. IEEE Tr. Software Engineering,
16(8):807–821, 1990.

[22] R Core Team. R: A Language and Environment for
Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria, 2016.

[23] A. N. Tantawi and M. Ruschitzka. Performance
analysis of checkpointing strategies. ACM Tr.
Computer Systems (TOCS), 2(2):123–144, 1984.

[24] S. Urbanek. Rserve: Binary R server, 2013. R package
version 1.7-3.

[25] K. Wolter. Stochastic Models for Fault Tolerance,
Restart, Rejuvenation, and Checkpointing. Springer
Verlag, 2010.

[26] J. W. Young. A first order approximation to the
optimum checkpoint interval. C. ACM, 17(9):530–531,
1974.

[27] W. Zhao. Building dependable distributed systems.
John Wiley & Sons, 2014.

APPENDIX
A. TRANSITION RATES FOR THE HETERO-

GENEOUS MODEL
The following notation is used in Algorithm 4 that de-

scribes how the transition rates µi,j for i = 0, · · · , N − 1
and j = 0, · · · , N − 1 are computed.

• nc(i): number of components in the computing mode
in state i. This is equal to the number of 1’s in b(i).

• nx(i): number of components in checkpointing mode in
state i. This is equal to the number of 0’s in b(i).

• f(b): position of the first bit 1 in a binary number b
with a single 1 bit. These positions are counted from
the left to the right starting at 1. So, f(000100) = 4.
f(b) can be computed as n − log2 b10 where n is the
number of bits in b and b10 is the decimal value that
corresponds to b.

• vk(b): value of the bit at position k (counting from the
left) of binary number b. So, v4(000100) = 1.

• n1(b): number of bits equal to 1 in the binary number
b.

• Xk(i): throughput of class k (k = 1, · · · , n) for state i.

• Xn+k(i): throughput of class n + k (k = 1, · · · , n) for
state i.

B. MODEL COMPUTATIONAL EFFORT
The homogeneous model requires solving a 2-class closed

MVA model n+1 times for populations (0, n), (1, n−1), · · · , (n, 0).
We used exact MVA [20] but we substantially reduced the
computational complexity of solving the n+ 1 QNs by stor-
ing in a hash table for further reuse the results for sub-
populations as they are obtained. As Fig. 7 indicates, the
traditional approach requires close to 1,000 evaluations of a

Algorithm 4 Computation of µi,j ’s

Input: N
for i = 0→ N − 1 do

for j = 0→ N − 1 do
if i=j then

5: µi,j = 0
else

/* find the component k that changed mode. */
/* check different bits between states i and j */
bs = b(i)⊕ b(j);

10: if n1(bs) = 1 then
/* There is only one bit of difference */
k = f(bs);
if vk(b(i)) = 1 then
µi,j = Xk(i) /* comp. k starts checkpointing
*/

15: else
µi,j = Xn+k(i) /* comp. k finished check-
pointing */

end if
else
µi,j = 0 /* more than one bit of difference */

20: end if
end if

end for
end for

Figure 7: Number of times a QN needs to be eval-
uated for the homogeneous model under traditional
methods and under our approach.

QN model for 16 components while the optimized method
requires around 160 evaluations.

For the heterogeneous model, all n transition rates out
of a given state can be obtained by solving a single multi-
class QN. We use approximate MVA (AMVA) [20] instead
of exact MVA to speed up the model solution. We need to
solve 2n AMVA QNs with 2n classes. But the population
of these classes is limited to 1, which reduces the computa-
tional complexity of solving each of these QNs.

The heterogeneous model requires the solution of the sys-
tem of linear equations in Eqs. (24) and (25). For a system
of n components, the system of linear equations is a 2n× 2n

sparse matrix that has (2n − 1)(n + 1) + 2n non-zero ele-
ments. We leveraged the sparseMatrix library in R [22] by
sending requests to an instance of Rserve [24] running on the
same machine. It took about 3.5 minutes to solve a system
with 13 components on a laptop with a 2.6 GHz Intel Core
i5 processor and 8 GB 1600 MHz DDR3.

