
Evaluating and Improving Push based Video Streaming
with HTTP/2

Mengbai Xiao1 Viswanathan Swaminathan2 Sheng Wei2,3 Songqing Chen1

1Dept. of CS
George Mason University

{mxiao3, sqchen}@gmu.edu

2Adobe Research
Adobe Systems Inc.
vishy@adobe.com

3Dept. of CSE
University of Nebraska-Lincoln

shengwei@unl.edu

ABSTRACT

The sever-initiated push mechanism is one of the most prominent
features in the next generation HTTP/2 protocol, having shown its
capability on saving network traffic and improving the web page
retrieval latency. Our prior work has investigated the server push-
based mechanism for HTTP video streaming and proposed a k-

push scheme, where the server pushes k video segments follow-
ing the response to a request. In this study, we further conduct
an analysis and evaluation of the k-push scheme in HTTP stream-
ing. Our results uncover that the push mechanism can efficiently
increase the network utilization (under certain conditions) com-
pared to regular HTTP streaming. However the results also show
that the k-push scheme deteriorates network adaptability and leads
to the “over-push” problem, in which the pushed video content
waste network resources due to user abandonment behaviors. To
overcome these limitations, we propose a new “ adaptive-push”
scheme, which dynamically adjusts the parameter k to adapt to the
runtime environment. To evaluate the performance of adaptive-

push, we implemented a prototype system. The experimental re-
sults show that compared to k-push, adaptive-push can improve the
network adaptability. Furthermore, our real-world trace based sim-
ulation results show that adaptive-push can effectively alleviate the
over-push problem.

CCS Concepts

•Networks → Application layer protocols;

Keywords

HTTP streaming; Video streaming

1. INTRODUCTION
Internet video streaming has gained a huge amount of popular-

ity in the recent years. Cisco predicts that the Internet video traffic
will be 80 percent of all consumer Internet traffic in 2019, up from
64 percent in 2014 [3]. Much of today’s Internet video traffic is
delivered via HTTP streaming, which is widely deployed by the
content providers, such as YouTube [8] and Netflix [14]. In HTTP
streaming, the video is usually chunked into segments with fixed
duration and further encoded into multiple bit rate levels. These

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

NOSSDAV’16, May 13 2016, Klagenfurt, Austria

© 2016 ACM. ISBN 978-1-4503-4356-5/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2910642.2910652

segments are served to clients as HTTP responses where the desired
bit rates are designated in the corresponding requests. The popular-
ity of HTTP streaming results from not only its combination to the
multiple bit rates encoding, which yields the ability of client react-
ing to the bandwidth variation, but also the ease of deployment-it
takes advantage of the existing HTTP based web content delivery
architecture, such as the content delivery networks (CDN), with-
out additional infrastructure. The major implementations of HTTP
streaming include Adobe HDS [13], Apple HLS [12], and Dynamic
Adaptive Streaming over HTTP (DASH) [18].

However, the HTTP streaming implementations can barely ex-
ploit all the available bandwidth of the underlying links due to not
only the TCP repetitive sawtooth pattern traffic but also the over-
head of the HTTP requests. To maximize the utilization of available
bandwidth, the segment duration should be as long as possible. But
this can lead to unnecessary network traffic if the video session is
abandoned in the early stages. The problem becomes more promi-
nent in live streaming since the live latency is determined by the
segment duration [22, 19]. Although a shorter segment duration
benefits the live latency, it essentially lowers the network utilization
while cramming in more requests, which is also known as request

explosion [22].
HTTP/2 helps address some of these problems. HTTP/2 features

the server-initiated push mechanism, which allows the HTTP server
to push back additional responses in advance without receiving the
corresponding requests. This characteristic provides an opportunity
for eliminating the request overhead with short segment duration.
Our prior study [22] investigated the potential of HTTP/2 for HTTP
streaming and showed that the server-initiated push mechanism is
helpful in improving live latency with a k-push scheme, in which
addition k segments are pushed by the server in response to one
request.

In this study, we for the first time conduct an analysis and evalu-
ation of the k-push scheme. Our results show that while the k-push

scheme can improve the underlying network bandwidth utilization
for HTTP streaming, it also leads to several limitations: 1) there is
diminishing marginal returns with the increasing number of pushed
segments, i.e., the parameter k. The gain of streaming through-
put is not linearly related to the increment of k; 2) k-push leads to
a degraded adaptability; and 3) k-push also causes the over-push
problem.

To address these limitations, in this study, we propose adaptive-
push, which dynamically scales the number of segments pushed, k,
during the video playback at runtime. In a HTTP streaming session,
the number of segments pushed is scaled up for higher network uti-
lization, while it is also constrained if the network adaptability is
impacted. Furthermore, since in practice a majority of video ses-
sions are abandoned in the first few seconds, adaptive-push also
suggests a small initial k, which can increase as the user’s ses-
sion progresses. To evaluate the performance of our adaptive-push

scheme, we have implemented a prototype. The experimental re-
sults show that adaptive-push is able to greatly improve the network
utilization and adaptability. Furthermore, our simulations based on
a large-scale real-world trace show the ability of adaptive-push on
alleviating the over-push problem.

2. RELATED WORK
In this section, we briefly introduce HTTP streaming and HTTP/2

with relevant background information.

2.1 HTTP Streaming
In HTTP streaming, the video quality can be properly selected

based on varying bandwidth by the client (i.e., video player). Many
prior studies focused on the quality selection algorithms. QDASH [16]
integrates a proxy-like bandwidth measurement component to ac-
curately and promptly draw the network bandwidth. The authors
also suggest a gradual quality switch algorithm to improve the sub-
jective user-perceived quality. FESTIVE [15] identifies three promi-
nent metrics, namely efficiency, fairness, and stability, in the HTTP
streaming systems. A suite of techniques are developed to help
make beneficial trade-offs among the metrics. Huang et al. [9] sug-
gested that it is difficult to accurately estimate the underlying band-
width above the HTTP layer according to the surveys conducted on
popular video streaming services. Almost all the rate determination
algorithms are implemented on the client side, but this ability will
be constrained by the push mechanism. Given that the server is not
involved in the quality determination makes the makes the integra-
tion of the push mechanism into HTTP streaming more challeng-
ing.

2.2 HTTP/2
HTTP/2 [11] originates from SPDY [6], which was developed

by Google. Many prior efforts have focused on the performance of
these two protocols. Cardaci et al. [1] showed that the SPDY pro-
tocol slightly outperformed HTTP/1.1 over the high latency satel-
lite links. Furthermore, according to a detailed measurement over
four months [5], SPDY does not clearly outperform the HTTP/1.1
over cellular networks, which lacks of harmonious interaction with
TCP. Since the HTTP video streaming services are built on top of
the HTTP protocol, the advancement from HTTP 1.1 to HTTP/2,
as well as the study in HTTP/2, benefits the performance and user
experiences in video streaming as well. In particular, we focus on
the study of potential benefits provided by new features in HTTP/2,
such as server push as discussed in the next subsection.

2.3 Server Push-based Streaming
The server-initiated push in HTTP/2 is a mechanism designed

to help reduce web page load latency. To push a HTTP response,
the server initiates a special frame named push promise. When
receiving the push promise frame, the HTTP client will not send out
the corresponding request until the response is pushed to the client
completely. After that, the client directly retrieves the response
from the browser cache. HTTP/2 only designates a mechanism
of how push works, and the concrete implementation is left to the
application.

With the push mechanism proposed in HTTP/2, there have been
studies in the literature to improve and evaluate HTTP/2 for video
streaming. For example, Mueller et al. [17] explored the perfor-
mance of DASH-compliant streaming over HTTP/2. Sheng et al.
studied the potential of the push mechanism in reducing the live la-
tency [22], eliminating unnecessary requests [21] and saving power
in 4G networks [23]. In [10], the authors focused on improving the
live experience of HTTP streaming by exploiting the HTTP/2 fea-
tures. One major strategy in this work is to adopt full-push while
additional messages are used to control the video quality adapta-

Table 1: Experimental Parameters

Video Length (s) 120
Video Quality (kbps) {49.2, 217.2, 504, 752}
Segment Duration (s) {1, 2}

Push Number k {0, 1, 4, 9}
Bandwidth (kbps) {200, 560, 880}

RTT (ms) {20, 300, 500}

tion. Wael Cherif et al. [2] also investigated the push mechanism
for fast start in the DASH-compliant video streaming.

3. K-PUSH ANALYSIS

3.1 K-Push and Rate Adaption Difficulty
To adopt the push mechanism for video streaming using HTTP,

We have proposed the k-push scheme in our prior work [22]. If a
multimedia stream applies the k-push scheme, its HTTP sessions
are then composed of continuous push cycles. In each push cy-
cle, there are k+1 segments involved, where k ≥ 0. The first seg-
ment acquired in a regular HTTP session is called lead segment.
The request of the lead segment designates the number of segments
pushed k and implies the bit rate level in this push cycle. Figure 1
shows a comparison between regular HTTP streaming and k-push
based HTTP streaming. Figure 1 (a) shows a regular HTTP stream-
ing session without push, which is referred as a no-push scheme.
Figure 1 (b) shows a typical HTTP streaming session that applies
the k-push scheme. The k-push scheme performs like the no-push

scheme whenever k = 0.
It is worth noting that there is one key assumption in the pro-

posed k-push scheme. To preserve the stateless nature of the HTTP
server, it is essential that the server is not responsible for video
quality adaptation. From the client side, the adaptation within one
push cycle is also difficult to accomplish. This is because most
clients are browser clients, where there are few interfaces exposed
to the application level to cancel previous HTTP sessions. Hence
the server pushes the following k segments in the same quality level
as the lead segment.

3.2 Playback Bandwidth
The multimedia streams benefit from the k-push scheme in sev-

eral aspects, especially the live latency [22]. The previous work
identifies that the live streaming can take advantage of the push
mechanism since the primary obstacle for improving live latency,
i.e. reducing the segment duration, is the request explosion prob-

lem [22]. The HTTP request rate can be drawn from 1
(k+1)D , where

D is the segment duration. The k-push scheme can effectively alle-

viate this problem by eliminating k
k+1 requests.

To empirically investigate why the streaming sessions can bene-
fit from the push mechanism and its potential problem, we conduct
an experiment playing the same VOD session under different net-
work conditions and various k’s. The video is encoded in 4 bit rate
levels. Table 1 shows the bit rate levels and other experimental pa-
rameters. By carefully capping the network bandwidth at different
values above the video bit rate levels, the network bandwidth uti-
lization can be analyzed by directly observing the average video
quality. Figures 2 and 3 show the results when bandwidth is set as
880 kbps. In these figures, the number of segments pushed (i.e., the
parameter k) is shown in the x-axis while the y-axis is the average
bit rate in kbps. Note that k = 0 represents the no-push scheme.
The Individual histogram in a cluster shows the result of different
RTT.

From the Figure 2 and 3, we can observe that a shorter segment
duration leads to a lower video quality in the no-push case, and this

Figure 1: no-push and k-push

 0

 200

 400

 600

 800

 1000

k=0 k=1 k=4 k=9

A
v
g

.
B

it
 R

a
te

 (
k
b

p
s
)

20ms
300ms
500ms

Figure 2: segment (2s) quality in different
network contexts when varying push num-
ber

 0

 200

 400

 600

 800

 1000

k=0 k=1 k=4 k=9

A
v
g

.
B

it
 R

a
te

 (
k
b

p
s
)

20ms
300ms
500ms

Figure 3: segment (1s) quality in different
network contexts when varying push num-
ber

can be fixed by increasing k. This confirms the request explosion

problem when reducing the segment duration. More interestingly,
the different RTTs lead to the same situation, which degrades the
segment quality in the no-push but gets fixed with increased k. By
observing this, we note that not all available network bandwidth is
used to transfer the payload of video/audio data in HTTP stream-
ing. HTTP requests play a part in shrinking the actual bandwidth
to the playback bandwidth, which is denoted as the effective band-
width used to deliver the video payload. Increasing either the single
request time (higher RTT) or the request rate (shorter segment du-
ration) leads to more time consumed by HTTP requests. In the case
where there is not enough playback bandwidth, lower quality levels
are selected even though the actual bandwidth (880 kbps) is sub-
stantially higher than that for quality requirement (752 kbps). By
gradually eliminating this part of overhead by designating a higher
push number, we find that the playback bandwidth approaches the
actual bandwidth.

3.3 Beyond Playback Bandwidth
From the previous experiments, we also find that it is not worth

continuing to increase the number of segments pushed for higher
playback bandwidth. Firstly, the marginal return of increasing k is
diminishing. And secondly, the adaptability is sacrificed because
the rate adaptation is not allowed in one push cycle (Section 3.1).
Furthermore, the bandwidth is wasted by the pushed content if the
user drops off the video session without finishing the playback of
all the pushed content. We discuss these problems next in detail.

3.3.1 Playback Bandwidth Variation
From the experiments in the last section, we observe that the

gains of k-push diminishes with higher k. Figures 2 and 3 represent
significant video quality improvement between the cases of k = 0
and k = 1. However, there is no perceptible improvement when k is
increased from 4 to 9. The gains of k-push come from the reduction
of HTTP requests, and these benefits approach a fixed proportion
when k is relatively large. The playback bandwidth is also pushed
up to the actual bandwidth.

3.3.2 Network Adaptability
For one segment, theoretically, the time consumed to transfer it

is expected to be less than the segment duration. Otherwise, the
video playback will stall. However, any temporary additional (su-
perfluous) time can be absorbed by the playback buffer in practice.
When the segment transmission experiences inadequate bandwidth,
the playback would be continuous as long as the buffer length (cal-
culated in time) is longer than the superfluous time.

It is obvious that the minimum required buffer is larger when
more segments are involved in one push cycle. Since video quality
adaptation cannot occur in the middle of one push cycle, more time
is needed to finish a push cycle with more video segments when-

ever the actual bandwidth drops. As a result, the k-push scheme
undermines the network adaptability.

3.3.3 Over-push Problem
Another limitation of k-push is the over-push problem. The user

may decide not to continue watching a video after checking the first
few seconds of the video. In this case, a large push number k would
risk downloading more video segments than required. Therefore k

should be determined more wisely to avoid or minimize such waste.

4. DESIGN AND IMPLEMENTATION OF

ADAPTIVE PUSH
The last section showed that the k-push scheme has a few disad-

vantages while it does have some advantages in HTTP streaming.
In this section, motivated by the results from the previous section,
we propose a new push scheme, called adaptive-push, to take ad-
vantage of the push mechanism in HTTP/2 while minimizing its
negative impact. Both the k-push and the adaptive-push are or-
thogonal to the quality selection algorithms, irrespective of whether
these algorithms exploit the playback bandwidth or not.

4.1 Algorithm Description
The core function of adaptive-push is named next-k and is ex-

ecuted between push cycles. It dynamically scales k for the next
push cycle while leveraging the factors of playback bandwidth vari-
ation, network adaptability and over-push problem. Adaptive-push

iteratively invokes the next-k function until the end of the video ses-
sion. Note that this scheme is only required on the client side, and
no effort is required on the server side.

At a high level, the next-k works as follows: 1) For the very first
cycle, an initial k is used; 2) k is increased according to the old
value from the last push cycle; and 3) the k value is also capped
by both leveraging the current buffer level and predicting the future
bandwidth variation.
How to initialize k: To minimize or even eliminate the over-push
problem, a small value, such as 0, is used for the first push cycle.

How to increase k: Because of the diminishing marginal return on
playback bandwidth and the risk of draining the playback buffer,
adaptive-push increases k with two different rates. When k is small,
it is increased at a fast rate to effectively approach the actual band-
width. Otherwise, a slower rate is more appropriate when the play-
back bandwidth is high enough. T1 and T2 are used to represent two
thresholds that slow or stop the increment of k.
How to cap k: It is straightforward that a valid k needs to meet the
constraint that the future bandwidth can support segment transmis-
sion in current quality without consuming up the playback buffer

(k+1)(
bD

B
−D)< L,

where b is the current bitrate, D is the segment duration, B is the
predicted bandwidth, and L is the buffer length. As a result, k is
decreased to an appropriate value without degrading the network
adaptability.

4.2 Push Implementation
To evaluate the performance of adaptive-push, we have imple-

mented a prototype. We present the implementation details next.
For the ease of portability, as well as the compatibility to HTTP,

adaptive-push uses HTTP header extensions for signaling k. An
additional HTTP header field, named PushDirective, is embedded
in the lead segments. The value of this field exhibits as the number
of segments pushed k. After receiving a request with PushDirec-

tive, an HTTP server is aware of the desire of the client. The server
can either agree with the request, launching a push cycle of k+ 1
segments, or it can scale down k according to some other consider-
ations, e.g., the current workload. Server uses a header extension
field called PushAck in the response to signal k, the number of seg-
ments it is going to push. The client is therefore capable of accom-
modating the agreed number and adjusting its behaviors, such as
adapting the following k requests to the same bit rate level as the
lead segment and deciding when to initiate the next push cycle.

4.3 Server and Client Implementation
In adaptive-push, both the HTTP server and the client should

understand the push protocol. Therefore our prototype (and thus the
experimental platform) consists of three components: a HTTP/2
Server, a Video Player and a Network Shaper.

HTTP/2 Server: We select the Jetty [4], a Java-based HTTP server,
as the server-side implementation because of its HTTP/2 support.
The push module is implemented as a Filter class. Once a passing
request with PushDirective is identified as one to a DASH segment,
the server launches a push cycle, where the corresponding segment
and its following k segments are pushed back sequentially.

Video Player: we implement the video player based on the open
source project dash.js [7], which is a DASH-compliant video player
in JavaScript. The video player is packaged as a web application
and deployed on the Jetty server. Whenever the player is about to
start a push cycle, it will invoke the next-k function to determine k.
This k is then sent as the PushDirective.

Network Shaper: in our experiments, we use network shaper to
change network conditions and then observe the performance of the
adaptive-push scheme. The network shaper throttles the network
bandwidth and introduces a planned network delay. We adopt the
Linux command line tool tc to manipulate these two parameters.
The class htb is used for for bandwidth throttling and the queue
discipline netem is used for changing the network delay.

5. PERFORMANCE EVALUATION
Based on the implemented prototype, we conduct experiments

in order to quantify the performance of the adaptive-push scheme.
All of our experiments are conducted on a Linux machine with a
64-bit Intel Pentium CPU 2.8 GHz dual core, 6 GB memory, 2×32
KB L1 caches, 2×256 KB L2 caches and shared 3 MB L3 cache.
The installed operating system is Ubuntu 12.04 with Linux kernel
3.13.0-66-generic.

5.1 Playback Bandwidth
We extend the experiments in section 3.2 to evaluate how much

playback bandwidth can be achieved in the adaptive-push. All ex-
perimental parameters are the same as those shown in Table 1. The
buffer size is set as infinity and the video player downloads the
video segments in a progressive manner. We directly measure the
playback bandwidth instead of the average quality. The playback

 0

 200

 400

 600

 800

 1000

 1200

no-push 9-push a-push-agg a-push-mod a-push-con

P
la

y
b
a
c
k
 B

a
n
d
w

id
th

 (
k
b
p
s
) 20ms

300ms
500ms

Bandwidth

Figure 4: Playback bandwidth when actual bandwidth is 880 kbps
and segment duration is 1 second

bandwidth can be derived by dividing the size of all downloaded
segments by the time consumed. Due to page limit, we only report
the experimental results with 1-second segment duration.

Figure 4 shows the results of experiments conducted with the
network bandwidth of 880 kbps and the segment duration of 1 sec-
ond. The x-axis represents different push schemes. no-push and
9-push are the original k-push scheme when k is set to 0 and 9,
respectively. The remaining three push schemes are the adaptive-

push with various configurations. The differences among them are
how the future bandwidth is estimated. The a-push-agg aggres-
sively estimates the future bandwidth as 880 kbps. The a-push-mod

and the a-push-con predict the future bandwidth moderately and
conservatively, as 415 kbps and 49.2 kbps, respectively. The y-axis
is the measured playback bandwidth in kbps, and the histograms in
a cluster represent various RTTs. Note that the actual bandwidth
is marked in the figure with a horizontal line. As expected, all
schemes have similar playback bandwidth when the network de-
lay is low (20 ms), which means trivial request overhead. When
the network delay is increased, the playback bandwidth diminishes
quickly in no-push, just as in the previous experiments measuring
the average video quality. Similar to what we observed before, the
9-push scheme fixes this problem. The performance of a-push-agg
is almost as advantageous as the 9-push because k is not limited by
the buffer length. The maximum k gets lower when the estimation
of bandwidth is more conservative, leading to the lower playback
bandwidth in both a-push-mod and a-push-con. However, the play-
back bandwidth observed in them are still better than the no-push

scheme.
Figure 5 shows the variations of k in these experiments. The

x-axis represents the video playback progress in seconds and the
y-axis represents the corresponding number of segments pushed k.
The lines in different colors represent the different RTTs. When
the RTT is high (300 ms or 500 ms), we can see that the aggressive
strategy (lines with cross) and the moderate strategy (solid lines)
increase k very fast in the early stages. The curves clearly show the
two rates of increasing k. If the conservative strategy is used, the
buffer length becomes a constraint, and in this case, the k is at most
3.

The same experiments are also conducted while we cap the ac-
tual bandwidth at 560 kbps. The results are shown in Figure 6.
The a-push-med and a-push-con perform better than in the high
bandwidth cases. This is reasonable since the maximum k is also
affected by the selected video quality in addition to the estimated
bandwidth. In all cases the adaptive-push schemes achieve higher
playback bandwidth because of the elimination of almost half of
the requests.

Similarly, Figure 7 depicts the changes of the corresponding k in
the experiments. As shown in the figures, the trends of variations

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100 120 140

P
u

s
h

 N
u

m
b

e
r

k

Video Progress (s)

20ms-con
20ms-mod
20ms-agg

300ms-con
300ms-mod
300ms-agg
500ms-con

500ms-mod
500ms-agg

Figure 5: The variation of k during the
playback when the actual bandwidth is
880 kbps and the segment duration is 1
second

 0

 100

 200

 300

 400

 500

 600

 700

 800

no-push 9-push a-push-agg a-push-mod a-push-con

P
la

y
b

a
c
k
 B

a
n

d
w

id
th

 (
k
b

p
s
) 20ms

300ms
500ms

Bandwidth

Figure 6: Playback bandwidth when ac-
tual bandwidth is 560 kbps and segment
duration is 1 second

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100 120 140

P
u

s
h

 N
u

m
b

e
r

k

Video Progress (s)

20ms-con
20ms-mod
20ms-agg

300ms-con
300ms-mod
300ms-agg
500ms-con

500ms-mod
500ms-agg

Figure 7: The variation of k during the
playback when the actual bandwidth is
560 kbps and the segment duration is 1
second

Table 2: Buffer Length Statistics

Buffer Length (s)
E δ

no-push 29.08 1.69
9-push 16.46 10.34

a-push-con 23.55 7.90

are almost the same as those shown in Figure 5. In addition, when
the bandwidth is 560 kbps, we can observe oscillations in the value
of k when applying the conservative strategy. By further analyzing
the dumped traces, we figure out the reason is the quality switch.
In this case, the increasing k leads to enough playback bandwidth
being sustainable towards the higher quality level. However, higher
video quality imposes a more strict constraint on k while the buffer
length is the same. Eventually the k and playback bandwidth drop
again, restarting another loop.

5.2 Network Adaptability
To evaluate the network adaptability of various push schemes,

we conduct the experiments under dynamic network conditions.
The video played for this evaluation is 5 minute long. We con-
duct the experiment as follows. We do not throttle the network in
the first 30 seconds for accumulating the playback buffer, and then
change the network characteristics every 30 seconds. The band-
width changes every 90 seconds in the sequence of 480 kbps, 640
kbps and 800 kbps. For each bandwidth, the RTT changes per 30
seconds as 20 ms, 300 ms and 500 ms. The buffer management
strategy applied here is straightforward: 1) the client stops down-
loading the segments if the buffer length is greater than 30 seconds;
2) it resumes segment retrieval as long as the buffer drops below 30
seconds; and 3) additionally, the client does not stop acquiring in
the middle of a push cycle. The experiments are conducted with
three schemes: no-push, 9-push, and a-push-con. Each experiment
is repeated 5 times. Intuitively we expect that a scheme with bet-
ter network adaptability will have a high average buffer level and
a small standard deviation. The result is reported in the table 2.
E denotes the expected value of buffer length and δ stands for the
corresponding standard deviation. We find that the no-push scheme
has the best network adaptability while it has the highest average
buffer level and the lowest standard deviation. In contrast, the 9-

push scheme cannot respond to the network variation very well and
it needs more buffer to absorb the jitter. The a-push-con makes a
good tradeoff between these two schemes.

5.3 Over-pushed Video Content
In the most ideal case that every request is issued when watch-

ing last segment, the original HTTP streaming over-pushes at most

one segment. However, this unnecessary network traffic may in-
crease while the number of segments pushed grows in the k-push
scheme. The adaptive-push is also capable of alleviating the over-
push problem. To verify this, we conduct a few simulations based
on a large scale of Apple HLS trace. This trace, which is measured
on the mobile devices, ranges from 07/15/2015 to 08/31/2015,
and there are ∼ 12 million records from the second largest mobile
streaming service provider Vuclip [20]. In this trace, the logged in-
formation includes the time when users stop watching their videos.
To study the over-push result, we implement a simulator in perl and
configure the parameters similar to the previous experiments. In the
simulator, we always select the highest video quality lower than the
playback bandwidth of last push cycle, and the lowest quality is se-
lected for the first push cycle.

Figure 8 shows the result of the simulation under the bandwidth
of 200 kbps when the segment duration is 2 seconds. The y-axis
represents the cumulative distribution function and the x-axis is the
over-pushed video length in seconds. The dashed lines are the sta-
tistical results of k-push and no-push, which are considered as the
upper bound and lower bound to the adaptive-push. The solid lines
are used to plot the result of adaptive-push under different RTTs
combined with the number of segments pushed capping policies.
The no-push case uncovers that ∼ 45% videos over-push 1 second
video to the client. The k-push case shows that 50% videos will
over-push at least 12 second video content. In this figure, thinner
lines are the results when RTT is low. In these cases, the server
over-pushes at most 5 seconds video content since a smaller k is re-
quired to approach the real bandwidth in a low RTT environment.
The thick solid lines plot the results when the RTT is as high as 500
ms. Even though the push number will finally reach the same value
13 as the k-push case, we can find that much less video content
is over-pushed, which benefits from the small initial push number.
There are only ∼ 14% video sessions that will over-push more than
12 second video content.

We vary the network bandwidth and the segment duration in the
remaining simulations. The results are shown in Figures 9 and
10. From these figures, we observe that a shorter segment dura-
tion leads to less over-pushed content due to the finer chunking
granularity. Different polices capping the push number also result
in different over-pushed video length. It is reasonable that a more
conservative decision leads to less over-pushed data. Such a trend
is reflected in all the results.

6. CONCLUSION
HTTP streaming is widely used for delivering Internet video

content today. Various mechanisms have been adopted in HTTP
Streaming to improve the client experience. In this paper, we have
evaluated the potential of the push mechanism introduced in HTTP/2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

C
D

F

Over-pushed Video Length (s)

20ms-con
20ms-mod
20ms-agg

500ms-con
500ms-mod
500ms-agg

no-push
k-push

Figure 8: Cumulative Distribution Func-
tion (CDF) of over-pushed video length
where the bandwidth is 200 kbps and the
segment duration is 2 seconds

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18

C
D

F

Over-pushed Video Length (s)

20ms-con
20ms-mod
20ms-agg

500ms-con
500ms-mod
500ms-agg

no-push
k-push

Figure 9: Cumulative Distribution Func-
tion (CDF) of over-pushed video length
where the bandwidth is 540 kbps and the
segment duration is 2 seconds

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

C
D

F

Over-pushed Video Length (s)

20ms-con
20ms-mod
20ms-agg

500ms-con
500ms-mod
500ms-agg

no-push
k-push

Figure 10: Cumulative Distribution Func-
tion (CDF) of over-pushed video length
where the bandwidth is 880 kbps and the
segment duration is 2 seconds

for video streaming. Motivated by our evaluation results, we have
designed an adaptive-push scheme to improve the performance of
HTTP Streaming. Adaptive-push is designed to exploit the maxi-
mum playback bandwidth by considering the playback bandwidth
variation, the network adaptability, and the over-push problem. It
makes a desirable trade-off between the no-push scheme and the
intuitive k-push scheme, allowing a dynamic push technique to be
integrated into current streaming delivery systems. We have evalu-
ated the effectiveness of our adaptive-push scheme based on proto-
type implementation and simulations. The results confirm that the
adaptive-push scheme can enhance the playback bandwidth while
effectively alleviating the over-push problem.

7. ACKNOWLEDGMENT
We appreciate constructive comments from anonymous referees.

The work is partially supported by NSF under grants CNS-1117300
and CNS-1524462.

8. REFERENCES

[1] A. Cardaci, L. Caviglione, A. Gotta, and N. Tonellotto.
Performance evaluation of spdy over high latency satellite
channel. In Personal Satellite Services, pages 123–134.
Springer, 2013.

[2] W. Cherif, Y. Fablet, E. Nassor, J. Taquet, and Y. Fujimori.
Dash fast start using http/2. In Proceedings of the 25th ACM

Workshop on Network and Operating Systems Support for
Digital Audio and Video, pages 25–30. ACM, 2015.

[3] Cisco. Consumer Internet Traffic Report.
http://www.cisco.com/c/en/us/solutions/collateral/
service-provider/ip-ngn-ip-next-generation-network/white_
paper_c11-481360.html.

[4] F. ECLIPSE. Jetty. http://www.eclipse.org/jetty/.

[5] J. Erman, V. Gopalakrishnan, R. Jana, and K. Ramakrishnan.
Towards a spdy’ier mobile web? In Proceedings of the ninth

ACM conference on Emerging networking experiments and

technologies, pages 303–314. ACM, 2013.

[6] M. B. et al. SPDY Protcol.
https://tools.ietf.org/html/daft-ietf-httpbis-http2-00.

[7] D. I. FORUM. dash.js.
https://github.com/Dash-Industry-Forum/dash.js/wiki.

[8] I. GOOGLE. YouTube. https://www.youtube.com/.

[9] T.-Y. Huang, N. Handigol, B. Heller, N. McKeown, and
R. Johari. Confused, timid, and unstable: picking a video
streaming rate is hard. In Proceedings of the 2012 ACM

conference on Internet measurement conference, pages
225–238. ACM, 2012.

[10] R. Huysegems, T. Bostoen, P. Rondao Alface, J. van der
Hooft, S. Petrangeli, T. Wauters, and F. De Turck.
Http/2-based methods to improve the live experience of
adaptive streaming. In Proceedings of the 23rd Annual ACM

Conference on Multimedia Conference, pages 541–550.
ACM, 2015.

[11] IETF. Hypertext Transfer Protocol Version 2 (HTTP/2).
https://tools.ietf.org/html/rfc7540.

[12] A. Inc. HTTP Live streaming.
http://developer.apple.com/resources/http-streaming.

[13] A. S. Inc. HTTP Dynamic Streaming on the Adobe Flash
Platform.
http://www.adobe.com/products/httpdynamicstreaming.

[14] N. Inc. Netflix. https://www.netflix.com/.

[15] J. Jiang, V. Sekar, and H. Zhang. Improving fairness,
efficiency, and stability in http-based adaptive video
streaming with festive. In Proceedings of the 8th

international conference on Emerging networking

experiments and technologies, pages 97–108. ACM, 2012.

[16] R. K. Mok, X. Luo, E. W. Chan, and R. K. Chang. Qdash: a
qoe-aware dash system. In Proceedings of the 3rd

Multimedia Systems Conference, pages 11–22. ACM, 2012.

[17] C. Mueller, S. Lederer, C. Timmerer, and H. Hellwagner.
Dynamic adaptive streaming over http/2.0. In Multimedia
and Expo (ICME), 2013 IEEE International Conference on,
pages 1–6. IEEE, 2013.

[18] T. Stockhammer. Dynamic adaptive streaming over http–:
standards and design principles. In Proceedings of the
second annual ACM conference on Multimedia systems,
pages 133–144. ACM, 2011.

[19] V. Swaminathan and S. Wei. Low latency live video
streaming using http chunked encoding. In Multimedia

Signal Processing (MMSP), 2011 IEEE 13th International
Workshop on, pages 1–6. IEEE, 2011.

[20] Vuclip. Vuclip. http://www.vuclip.com/index.html.

[21] S. Wei and V. Swaminathan. Cost effective video streaming
using server push over http 2.0. In Multimedia Signal

Processing (MMSP), 2014 IEEE 16th International
Workshop on, pages 1–5. IEEE, 2014.

[22] S. Wei and V. Swaminathan. Low latency live video
streaming over http 2.0. In Proceedings of Network and

Operating System Support on Digital Audio and Video
Workshop, page 37. ACM, 2014.

[23] S. Wei, V. Swaminathan, and M. Xiao. Power efficient
mobile video streaming using http/2 server push. In
Multimedia Signal Processing (MMSP), 2015 IEEE 17th
International Workshop on, pages 1–6. IEEE, 2015.

