Project 2 Specification
64-bit Signed Multiplier-Accumulator (MAC)
April 1, 2002
David Wilson
1. Functional Requirement:

A 64-bit signed multiplier-accumulator (MAC) shall be designed to operate on either one or two sequences of signed 64-bit numbers. If time permits, the MAC shall be modified to operate on two complex numbers \(\{ x_i = a + jb, y_i = c + jd \} \) (see pg. 162 of “The Designer’s Guide to VHDL”, by Peter J. Ashenden). The MAC shall multiply and add the sequences of numbers according the equation below where \(N \) is the length of the sequences:

\[
\sum_{i=1}^{N} x_i y_i
\]

The complex numbers and their sum shall be calculated as follows:

- \(\text{Product}_{\text{real}} = ac - bd \)
- \(\text{Product}_{\text{imaginary}} = ad + bc \)
- \(\text{Sum}_{\text{real}} = a + c \)
- \(\text{Sum}_{\text{imaginary}} = b + d \)

Finally, the MAC shall be capable of accumulating up to 256 partial products, permit parallel read-out of the sum, and be optimized for maximum throughput.

2. Application:

MAC’s that perform multiplications on a stream of complex numbers are used in many digital signal processing applications such as digital demodulation and filtering and equalization.

3. The MAC shall utilize a pipelined architecture illustrated in Fig. 1 and Fig. 2 to maximize the throughput of the MAC. The multiplier and accumulator blocks will consist of a right-shift multiplier and carry-lookahead adder respectively.

![Figure 1. MAC for Two Signed 64-bit Numbers](image-url)
4. Computer aided design (CAD) tools:

The following CAD tools (available in the ECE labs) shall be used in the MAC design:

VHDL simulator and compiler: ModelSim SE, Version 5.5e
Logic Synthesis: Leonardo Spectrum, Version: v2001_1d.46

Figure 2. MAC for Two 64-Bit Signed Complex Numbers