“Why do some countries produce so much more output per worker than others?” (Hall and Jones, QJE, 1999)

The channel discussed here:

Differences in worker skill matter more for countries than for individuals

Evidence: Hanushek/Kimko AER, 2000; Jones/Schneider EI, forthcoming

Builds on Kremer’s “O-Ring Theory” (QJE, 1993):

A model of “fragile output” with strategic complementarities

Problem: Predicts same return to skill across and within countries

What I add:

A second diminishing-returns sector that uses less-skilled workers as close substitutes for skilled workers: The “Foolproof” Sector
The O-ring sector’s production function

Each firm produces output this way:
(precisely following Kremer (QJE, 1993))

\[Y_{O/\phi} = Bk^\alpha q^n n \]

\(Y_{O/\phi} \): O-ring sector output per firm.
B is an exogenous productivity factor \textit{identical across countries}.
k = capital per firm
q = skill level of a worker, \(0 \leq q \leq 1 \)
n = number of workers

Output passes through \(n \) hands before becoming final output.

One worker has a small impact on output—no spillovers \textit{assumed}.
Efficient Output in the O-ring sector

Kremer shows that it’s always privately *optimal* and socially *output-maximizing* to combine workers of identical skill within the same firm:

Example: Firm 1: [2 workers, q = 1]. Firm 2: [2 workers, q = 0.5]

versus

Firms 1 and 2: [1 worker, q = 1, 1 worker, q = 0.5]

\[
\text{Output: } 1^2 + 0.5^2 > 2 \times 0.5^2
\]

Nothing below changes this outcome—a key condition

Assume free entry of O-ring firms

In the O-ring sector, two mediocre lawyers are no substitute for one excellent lawyer.
Equilibrium Wages in the O-ring sector

After a surprisingly long derivation, Kremer proves:

$$w_0 = (1 - \alpha)Bk^\alpha q^n$$

Or, fraction α of output goes to capital owners,

$(1 - \alpha)$ is divided up among the firm’s n workers.

Nothing below changes this outcome—a key condition

If q falls by ε, wage falls by factor of $\approx n\varepsilon$

Implication: Any firm offering a pay cut of less than $n\varepsilon$ gets all the low-skilled workers.
The Foolproof Sector: The Labor Force

How workers are combined:

\[\hat{L}_F = q_u L_u + q_h L_h \]

Foolproof Labor Force =

quality-weighted sum of all workers

\[h = \text{high-skilled} \]
\[u = \text{unskilled} \]

In the Foolproof sector, two mediocre lawyers can provide as much service as one excellent lawyer.

Whenever a growth regression uses average years of schooling, this is the implicit model.
The Foolproof Sector: Output and wages

Key assumption: Diminishing returns to labor in Foolproof sector

\[Y_F = A(\hat{L}_F)^{1-\alpha} \]

\(A \): Level of technology, *same across countries*

\(\alpha \): Same as in O-Ring sector, only for simplicity

For workers of a given skill level \(s \), the competitive wage \(w_{FS} \) will equal the marginal product of their class of labor:

\[w_{FS} = (1-\alpha)A(\hat{L}_F)^{\alpha}qs \]

As quality-weighted pool of workers rises, wage falls.

If \(q \) falls by \(\varepsilon \), wage falls by factor of only \(\varepsilon \)
Equilibrium between the O-Ring and Foolproof sectors

If workers of a given skill level are working in both sectors, then they must earn the same wage: Law of one price.

\[W_{OS} = W_{FS} \]

\[(1-\alpha)Bk^\alpha q_s^n = (1-\alpha)A(\hat{L}_F)^{-\alpha} q_s \]

In benchmark case, this holds for high-skilled workers.
General Equilibrium (1 of 2):
O-ring pins down labor wage, Foolproof pins down labor quantity

Stay with two-skill case: Lots of high-skill workers (h), plus a few unskilled workers (u), labor inelastic.

1. High-skilled workers work *somewhere*; consider the interesting **benchmark** case, where they work in both sectors:

 \[L_h = L_{ho} + L_{hf} \]

2. This pins down *exact* wage in O-ring sector:

 \[w_{ho} = (1-\alpha)Bk^\alpha q_h^n \]
General Equilibrium (2 of 2)

3. Quantity of O-ring workers is pinned down by Foolproof sector:

Too few quality-weighted workers in Foolproof: \(w_{Fh} > w_{ho} \)

Too many quality-weighted workers in Foolproof: \(w_{Fh} < w_{ho} \)

Benchmark case: Some skilled workers in both sectors.

Number of O-ring firms =

\[
\text{Number of skilled O-ring workers/workers per firm}
\]

4. In benchmark, Foolproof absorbs all unskilled workers plus enough skilled workers to keep high-skilled wage equal across sectors.
What this world looks like,
Ignoring capital and the Foolproof Magnet

\[n = 5, A=B=1, \text{ignore capital} \]

Country 1: \(q_h = 1, q_u = 0.9 \)

Country 2: \(q_h = 0.9, q_u = 0.9^2 \)

\[w^A_h = 1, w^A_u = 0.9 \]

\[w^B_h = 0.59, w^B_u = 0.53 \]

Big returns to skill across countries. (As seen by growth econometrician)

Low returns to skill within countries. (As seen by labor econometrician)
But things aren’t *that* bad in Country 2: They’re worse!

Two forces at work in Country 2

1. Capital multiplier in O-ring sector:
 - Low-skilled countries lose lots of capital
 - Low-skilled countries become less productive
 - Country 2 wages fall lower than 0.59

2. Fixed Total Factor Productivity (A) in Foolproof sector:

 The Foolproof Magnet
 - Lower O-ring wages lure skilled workers
 into Foolproof sector
 - Diminishing returns in Foolproof sector
 lower average productivity

Result: Productivity plummets in Country 2 below Kremer’s levels
Net results of Benchmark model: A review

In each country, the best workers work in O-ring sector.

Why?
Because less-skilled workers would rather work in Foolproof.

The Foolproof sector is “attached” to the O-Ring sector.

Why? Because skilled workers can and do work in both sectors.

In each country, unskilled workers earn a wage that is slightly less than that country’s skilled workers.

Why? See previous two answers.
Example: 30% difference in skill yields a 30X productivity gap: $A = B = 100$, $n = 3.8$, $r = 0.04$, $L_h = 1M$, $L_u = 100K$, $q_u = 0.9q_h$

The impact of skilled worker quality in a Foolproof/O-ring economy

This 30% skill gap would only create a 30% wage gap within a country
The Ladder: O-Ring Sectors as Rungs, Foolproof Sectors as gaps between rungs

The gap between the rungs; Here filled by Foolproof—other possibilities surely exist

Potential O-Ring (U) if there are enough unskilled

O-Ring (H)
Beyond the Benchmark: Unskilled workers out of reach of the O-Ring

Consider two-skill case: H and U:

If there are too many unskilled workers, then Foolproof wage falls too low:

\[
W_{Oh} > W_{Fh} \\
(1-\alpha)Bk^\alpha q_h^n > (1-\alpha)A(q_uL_u)^\alpha q_h
\]

N.B.: The Foolproof supply is all unskilled:
All skilled workers stay in O-ring sector.
Out of reach of the O-Ring (2)

If only a few too many unskilled:
 Labor econometrician sees big returns to skill:
 (e.g., time-varying returns to skill in U.S.? Bigger empirical returns in LDCs?)

If far too many unskilled:
 Wage falls to new O-Ring level:
 \[w_{hU} = (1-\alpha)BkU^\alpha qU^n \]

Unskilled workers in both O-ring and Foolproof sectors:

The cycle continues

If many workers with many levels of skill: Kremer (QJE, 1993)

Kremer as limiting case
Implications

1. Low-skilled immigrants don’t hurt natives.
2. Border areas as regions of Foolproofness.
3. The Flat World: Increasing the reach of Foolproofness?
5. There can be only one Foolproof Sector in each economy; and it’s at the bottom.
6. These results generalize to continuous skills.
7. Empirical work can sort out “degrees of O-ringness” and “degrees of Foolproofness.” (Chad Jones, working paper)
8. A naïve prediction: Life at the top should be the same everywhere.

Barbers should earn more in the Britain than in India, but corporate executives in Britain and India should live quite similar lives.
Conclusion

The market abhors a vacuum:

Diminishing (or constant) returns sectors will fill in gaps between rungs on the O-ring ladder.

“To easy” to match the data:

Chad Jones (working paper, 2007) develops degrees model with degrees of O-ring-ness…

…Can data point to the right degree?

A story that fits some key facts…Without an appeal to externalities or variations in total factor productivity:

Only exogenous cross-country difference: Persistent, measurable differences in individual worker skill across countries.
Figure 1: IQ and Immigrant Skill
(Source: Jones and Schneider, Econ Inq., forthcoming)

Notes: The x-axis reports estimates for national average IQ for country i from Lynn and Vanhanen (2006). The y-axis reports values for uws_i, the unmeasured worker skill estimate for immigrants from country i, as estimated in Hendricks (AER, 2002). uws_i is the log average wage of immigrants for country i, adjusting for age and education. The trendline reflects the OLS coefficient of 0.95, and the R^2 is 22%.
Figure 2: National Average IQ (Lynn & Vanhanen, 2006) and Year 2000 GDP Per Worker

Y-axis shows GDP per worker in logarithmic scale. Coefficient on national average IQ is 0.067, and the R^2 is 58%. The outlier in the lower-right corner is China (IQ = 105).
A detour: Capital in partial equilibrium

Kremer shows that in O-ring sector,

\[k^* = \left(\frac{\alpha q^n nB}{r} \right)^{\frac{1}{1-\alpha}} \]

Yields another a multiplier effect of quality in O-ring sector: Best workers get more machines, as in Cobb-Douglas world

Take \(r \) as given for simplicity. Justifications:
- Steady-state of Solow or Ramsey model
- A open-economy world with free flow of capital.