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Abstract—Moving Target Defense (MTD) has recently emerged as a
game changer in the security landscape due to its proven potential
to introduce asymmetric uncertainty that gives the defender a tactical
advantage over the attacker. Many different MTD techniques have been
developed, but, despite the huge progress made in this area, critical
gaps still exist with respect to the problem of studying and quantifying
the cost and benefits of deploying MTDs. In fact, all existing techniques
address a very narrow set of attack vectors, and, due to the lack of
shared metrics, it is difficult to quantify and compare multiple techniques.
Building on our preliminary work in this field, we propose a quantitative
analytic model for assessing the resource availability and performance
of MTDs, and a method for maximizing a utility function that captures
the tradeoffs between security and performance. The proposed model
generalizes our previous model and can be applied to a wider range of
MTDs and operational scenarios to improve availability and performance
by imposing limits on the maximum number of resources that can be in
the process of being reconfigured. The analytic results are validated by
simulation and experimentation, confirming the accuracy of our model.

1 INTRODUCTION

I N recent years, Moving Target Defense (MTD) has emerged as
a game changer in cyber security because it has the potential of

turning the typical asymmetry of the security landscape in favor of
the defender [1], [2]. As we face more sophisticated and persistent
attackers, Moving Target Defense becomes critical for enhancing
the dependability of today’s complex systems. Avižienis et al. [3]
defined several dependability attributes. Security is sometimes
treated as an attribute of dependability, but a common trend is
that of referring to the composite concept of dependability and
security [3], [4].

As we increasingly depend on IT systems, securing them and
ensuring their dependability is of utmost importance. However,
traditional approaches to cyber defense are governed by slow and
deliberative processes. Adversaries can benefit from this situation
and can systematically probe target networks with the confidence
that they will change slowly, making it possible to eventually
acquire sufficient knowledge to engineer reliable exploits against
their targets. To address this problem, researchers and practition-
ers have developed a myriad of MTD techniques that aim at
presenting adversaries with changing attack surfaces and system
configurations, forcing them to continually re-assess and re-plan
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their cyber operations. This approach enables novel defenses that
can adapt to evolving IT landscapes, sophisticated and persistent
attackers, and changing attack vectors. One important limitation
of current MTD techniques is that most of them are designed to
protect systems against a very narrow set of attack vectors. For
instance, MTD techniques have been developed to protect against
DoS attacks [5], [6], data exfiltration [7], and SQL injection [8]. A
direct consequence of the over-specialization of MTD techniques
is the lack of shared metrics to assess their effectiveness. In fact,
most of the proposed techniques tend to measure their effective-
ness in different and often incompatible ways. Thus, despite the
huge amount of work done in this area, gaps still exist with respect
to the analysis and quantification of MTDs.

When deploying MTDs, as for any other security mechanism,
there exists a trade-off between performance and security [9].
MTDs operate by periodically reconfiguring one or more system
parameters. As the reconfiguration frequency increases, an MTD
technique can provide better security, but inevitably increases the
overhead on the system and reduces the availability of resources,
thus affecting the overall performance. In particular, the problem
of evaluating the impact of MTDs on the availability of resources
and on system performance has not been formally studied. This is
an important problem because, regardless of the MTD technique
used, resources being reconfigured are temporarily unavailable to
legitimate users.

In our previous work [10], we proposed a quantitative analytic
model for assessing the resource availability and performance
of MTDs, and a simple method for determining the highest
possible reconfiguration rate, and thus the smallest probability
of attacker’s success, that meets performance and stability con-
straints. Although that preliminary framework represents a first
important step towards a comprehensive solution to the MTD
quantification problem, several limitations still exist. As shown
in [10], the availability of computational resources may drop
significantly if too many resources are being reconfigured at the
same time, causing a backlog of service requests and response
time peaks. As a simple method to prevent a similar scenario, we
defined a stability metric and devised a method to determine the
maximum reconfiguration rate that meets stability constraints. In
this paper, in order to ensure a baseline for resource availability,
we introduce limits on the number c∗ of resources that can be
reconfigured at the same time. To achieve this objective, we define
two policies – namely the drop policy and the wait policy – to
handle reconfiguration requests that are received when there are
already c∗ resources in the reconfiguration phase. We significantly
revised our previous analytic model to capture the effects of
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these policies on the availability and performance of MTDs. In
summary, this paper provides the following major contributions:
(i) A quantitative analytic model for assessing the availability
and performance of resources that are reconfigured by an MTD
as well as an attacker’s success probability, in the presence of
limits on the number of resources that can be reconfigured at the
same time; (ii) A method for determining the reconfiguration rate
that maximizes a utility function that incorporates the tradeoffs
between the attacker’s success probability and response time;
(iii) A validation of the analytic model through simulation and
experimentation.

The rest of this paper is organized as follows. Section 2
provides background information on MTDs and discusses our
attack model. Sections 3-7 present our quantitative analytic model,
whereas Section 8 describes the experimental testbed used for
evaluating the model and for analyzing some transient behaviors of
MTDs. Section 9 presents numerical results obtained with the help
of the analytic model and through experimentation. Section 10
discusses related work and Section 11 provides some concluding
remarks and discusses ongoing and future research directions.

2 MTDS AND ATTACK MODEL

Cyber attacks are typically preceded by a reconnaissance phase
in which adversaries collect information about the target system,
including network topology, service dependencies, and unpatched
vulnerabilities. Because most system configurations are static –
hosts, networks, software, and services do not reconfigure, adapt,
or regenerate except in deterministic ways to support maintenance
and uptime requirements – it is only a matter of time for attackers
to acquire accurate knowledge about their targets and plan their
attacks. In order to address this important problem, significant
work has been done in the area of Adaptive Cyber Defense (ACD),
which includes concepts such as Moving Target Defense (MTD),
as well as artificial diversity and bio-inspired defenses. MTD
techniques are mechanisms for continuously changing or shifting
a system’s attack surface, thus increasing complexity and cost for
the attackers [1]. A system’s attack surface has been defined as the
“subset of the system’s resources (methods, channels, and data)
that can be potentially used by an attacker to launch an attack”
[11]. Thus, the majority of MTD techniques operate by period-
ically reconfiguring one or more system parameters in order to
disrupt the knowledge an attacker may have acquired about those
parameters and, consequently, render the attack’s preconditions
impossible or unstable. Intuitively, dynamically reconfiguring a
system is expected to introduce uncertainty for the attacker and
increase the cost of the reconnaissance effort.

Different MTDs may be designed to address different stages of
the Cyber Kill Chain, a framework developed by Lockheed Martin
as part of the Intelligence Driven Defense model for identification
and prevention of cyber intrusions activity. The model identifies
what steps the adversaries must complete in order to achieve their
objective: reconnaissance, weaponization, delivery, exploitation,
installation, command & control, actions on objectives. The ma-
jority of the techniques currently available are designed to address
the reconnaissance phase of the cyber kill chain, as they attempt
to interfere with the attacker’s effort to gather information about
the target system.

A major drawback of many MTDs is that they force the
defender to periodically reconfigure the system, which may intro-
duce a costly overhead to legitimate users, as well as the potential

for denial of service conditions. Additionally, most existing tech-
niques are purely proactive in nature or do not adequately consider
the attacker’s behavior. To address this limitation, alternative ap-
proaches aim at inducing a “virtual” or “perceived” attack surface
by deceiving the attacker into making incorrect inferences about
the system’s configuration [12], rather than actually reconfiguring
the system. Honeypots have also been traditionally used to try to
divert attackers away from critical resources [13], but they have
proven to be less effective than MTDs because they provide a
static solution: once a honeypot or honeynet has been discovered,
the attacker will simply avoid it.

As indicated in [14], one of the key MTD problems is the
timing problem, i.e., “when to adapt.” The longer it takes for a
system to adapt (or reconfigure), the more time is available for
an attacker to gather information about the system and therefore
the higher the probability that an attacker will succeed. The attack
model considered here assumes that an attacker will eventually
be able to penetrate a system given sufficient time to obtain
the information necessary to perpetrate the attack. Additionally,
we also consider that the probability that an attacker succeeds
increases monotonically with time. The probability Ps(t) that
an attacker will succeed in t time units in attacking a resource
is important in determining the required reconfiguration rate.
Fig. 1 shows two examples of the Ps(t) function: a linear and an
exponential one. The linear function has the form Ps(t) = t/Ts
and indicates that the probability of success of the attack increases
linearly with time and reaches 1 (i.e., success) at time Ts. The
exponential function indicates a situation in which the attacker
initially accumulates knowledge at a low rate, becomes exponen-
tially more knowledgeable over time, and succeeds at time Ts.
Both curves in Fig. 1 assume Ts = 10. The expression for the
exponential version of Ps(t) is

Ps(t) = 1− 1− e(t−Ts)

1− e−Ts
. (1)

As an example, consider an IP sweep combined with a port
scan, where the attacker’s goal is to discover the IP address of
the machine running a specific service within the target network.
The attacker sequentially scans all IP addresses in a given range.
Assuming an IP space of n addresses and that t∗ time units are
required to scan a single IP, we obtain Ts = n · t∗ and Ps(t) =
t/Ts = t/(n · t∗).

As another example, consider the following DoS attack. The
attacker initially compromises n hosts, which takes t∗ time units.
Then, each of the newly compromised hosts compromises addi-
tional n hosts, which takes additional t∗ time units. At any given
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Fig. 1. Probability of success Ps vs. time for Ts = 10
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time t, the total number of compromised hosts, including the
attacker’s machine, is N(t) = 1 +n+n2 + . . .+nk = 1−nk+1

1−n ,
where k = bt/t∗c. We can assume that the attacker’s success
probability is proportional to the aggregate amount of flood traffic
that compromised hosts can send to the victim, compared to the
victim’s capacity to handle incoming traffic. Let V denote the
volume of traffic the victim can handle per time unit and let v
denote the amount of traffic each compromised node can send per
time unit. Then,

Ps(t) = min

{
1,
N(t) · v
V

}
= min

{
1,
v

V
· 1− nbt/t∗c+1

1− n

}

3 QUANTITATIVE ANALYSIS OF MTDS

The computing environment we consider in this paper consists of c
similar resources (e.g., VMs) available to serve incoming service
requests that arrive with an average arrival rate λ, join a single
queue and are served by any of the available resources, with an
average service time T (i.e, an average service rate equal to 1/T ).
All service requests have the same priority and are served in FCFS
order. An MTD technique consists in each resource occasionally,
at random intervals, reconfiguring itself independently of the other
resources. Thus, each resource handles service requests as well as
reconfiguration requests. While a resource is being reconfigured,
it is not available to handle service requests (see Fig. 2). With-
out reconfigurations, the system behaves exactly like an M/M/c
queue [15]. However, because resources become unavailable while
they are being reconfigured, the number of available resources
varies over time and the M/M/c results do not apply here.

Now, assume that each resource is reconfigured at an average
rate of α. The quantitative models presented here do not depend on
the specific nature of the reconfiguration technique applied to the
system resources. Some examples of MTD-based reconfiguration
techniques include: swapping out a VM with a clean instance [16]
that has a new IP address, Address Space Layout Randomization
(ASLR) [17], service diversification, IP address rotation, and
TCP or SSL connection rotation. These reconfigurations make it
more difficult for an attacker to learn about the resources, and
disrupt attacker’s persistence in the system. The attacker’s success
probability is a function of the average reconfiguration rate α,
which also affects the average number of resources available to
serve requests and the queueing time for service requests.

While these qualitative tradeoffs are intuitive and not sur-
prising, there is a need for quantitative models that allow us
to determine the impact of the reconfiguration rate on resource
availability, response time of service requests, and attacker’s
success probability. We use Continuous Time Markov Chains
(CTMC) (see e.g. [15]) to compute the probability distribution
of the number of resources being reconfigured as a function of α
and other parameters and then use that distribution to determine
resource availability and response time, among other metrics.
Markov chains have been used for many decades to study various
aspects of computer and communication systems. The novelty in
each case is on how the state of a CTMC should be defined to
represent the system to be analyzed.

To ensure that there is always a minimum number of resources
available to handle service requests, we consider policies that limit
the maximum number c∗ of resources being reconfigured. Note
that if c∗ = c (i.e., the unlimited case), the results obtained here
revert to our previous simpler model [10]. If c∗ resources are

being	reconfigured	

in	use	by	a	service	request	

available	for	use	

λ	

Fig. 2. Queuing representation of the reference scenario

being reconfigured, additional reconfiguration requests may either
be dropped (drop policy) or queued (wait policy). We analyze
this generic MTD in three steps: (i) analysis of the effect of the
reconfiguration rate α on the probability distribution of available
resources; (ii) analysis of the effect of that availability on response
time; and (iii) calculation of the effective reconfiguration rate and
determination of the attacker’s probability of success.

We summarize our assumptions below .

• A1: All c resources have the same average processing rate
1/T and serve requests from a single queue in FCFS order.

• A2: The average processing rate 1/T of the resources
does not depend on the number of service requests in the
system. Note that this assumption, called homogeneous
service times, is more general than the assumption that
service times are exponentially distributed [18].

• A3: The average rate λ at which service requests arrive
does not depend on the number of requests in the system.
This assumption, called homogeneous arrivals, is more
general than the Poisson arrivals assumption. [18].

• A4: All service requests have the same priority.
• A5: All resources reconfigure independently of each other

and do so at the same average rate α. Resources are
not reconfigured while processing a service request. We
consider two policies to handle this situation: drop or
queue the reconfiguration request.

• A6: The average rates λ, 1/T , and α are assumed to
be stationary (i.e., not changing over time), as they re-
spectively depend on (1) the nature of the service re-
quest arrival process, (2) the capacity of resources and
the characteristics of incoming service requests, and on
(3) system owner’s setting for the reconfiguration rate.
While these average rates are assumed to be stationary,
the respective processes are not deterministic. Clearly,
changes in any of these average rates can be taken into
account by recomputing the models described here.

• A7: The time S to reconfigure a resource is assumed to
be exponentially distributed in our models, even though
in our experiments this time was normally distributed and
our models showed to be quite robust with respect to the
reconfiguration time distribution (see Section 8).

4 ANALYTIC MODEL OVERVIEW

Our analytic model is derived from the queuing representation in
Fig. 2. It can be further divided, as shown in Fig. 3, into two
parts: a reconfiguration model R for reconfiguration requests and
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a performance model S for service requests. The reconfiguration
model takes as inputs the target rate α at which resources are
reconfigured, the average reconfiguration time S, the number of
resources c, and the maximum number of resources c∗ that can be
reconfigured at the same time. This model produces as outputs
the availability of resources, the average number of resources
available, and the probability distribution {prk} of the number
of resources being reconfigured. See Table 1 for the names and
descriptions of all variables. The {prk} distribution, along with the
number of resources, the maximum number of resources that can
be reconfigured at the same time, the average arrival rate λ of
service requests, and the average service time T of requests are
inputs to the performance model, which produces the distribution
{Pk} of service requests in the system and the average response
time of requests. The performance model only addresses server-
side response time; networking issues and/or delays between
clients and the servers depicted in Fig. 2 are outside the scope of
this paper and have been addressed elsewhere. The reconfiguration
and performance models are solved using CTMCs as explained in
the next two sections and are combined iteratively as explained in
Section 7.

5 RECONFIGURATION MODELS

This section presents analytic models for the drop and wait
reconfiguration policies.

5.1 Core Results
This subsection describes core results that apply to both re-
configuration policies. In later subsections we provide specific
results for each policy. Each resource cycles through periods
in which it is available for use or is being reconfigured. We
use k, (k = 0, . . . , c) to denote the number of resources being
reconfigured. Several useful results can be obtained from the
probabilities prk that k resources are being reconfigured. These
probabilities are a function of the reconfiguration rate α, the
average time S to reconfigure a resource, the number of resources
c, and the maximum number c∗ of resources that can be recon-
figured at the same time. Note that c∗ is a parameter set by the
system admins to control the tradeoff between performance and
availability as we discuss later. Thus,

prk = f(k, α, S, c, c∗). (2)

Reconfigura+on		
Model	(R)	

Performance		
Model	(S)	

α	

S	
c	 Availability	

Avg.	no.	available	
resources	

λ	

T	

Avg.	response		
+me	

c*	

c	

{Pk}		

α’	

Adjust		
Reconfigura+on	Rate	

c*	

{pk}		

Fig. 3. Analytic model framework

TABLE 1
Summary of variable names and their description

Variable Description
Ps(t) Probability that an attacker will succeed in t time units
Ts Time needed for an attacker to succeed. Ps(Ts) = 1
c Number of resources
c∗ Maximum number of resources than can be in the process of

being reconfigured
ca Minimum number of resources that are available for use.

ca = c− c∗

c̄ Average number of resources not being reconfigured.
n̄r Average number of resources being reconfigured
n̄qr Average number of waiting reconfiguration requests.

This number is zero for the dropped policy
α Target reconfiguration rate (measured in rec/sec)
α′ Effective reconfiguration rate (measured in rec/sec)
S Average time to reconfigure a resource
pk Probability that there are k reconfiguration requests in the system
prk Probability that k resources are being reconfigured
Pk Probability that there are k service requests in the system

(being served or waiting to be served)
λ Average arrival rate of service requests
pd Probability that a reconfiguration request is dropped
aged Average age of a resource under the drop policy
agew Average age of a resource under the wait policy
d Average reconfiguration delay, i.e., average time between the

start of a reconfiguration and its scheduled start
T Average time a service request spends using a resource
R Average server-side response time of service requests

To derive the core results, we assume we know the values of
prk, and then show in subsequent sections how these probabilities
can be obtained for each reconfiguration policy. Let c̄ be the
average number of resources available for use (i.e., not being
reconfigured) and n̄r the average number of resources being
reconfigured. Thus,

c = c̄+ n̄r. (3)

But, n̄r can be obtained from the probabilities prk as

n̄r =
c∗∑
k=1

k · prk. (4)

The availability A of the set of resources is given by the
fraction of resources available for use, i.e.,

A =
c̄

c
= 1−

∑c∗

k=1 k · prk
c

. (5)

While α is the target reconfiguration rate, it cannot always be
achieved because the start of a reconfiguration may be delayed
for some time d due to a reconfiguration request being dropped
or queued. This is illustrated in Fig. 4, which shows the effective
time between reconfigurations. This time is also the average age
of each of the resources and defines the effectiveness of the MTD.

1/α′ = 1/α+ d. (6)

Therefore, the effective reconfiguration rate is α′ = α/(1+α·
d). It turns out that the value of the delay d depends primarily on
the results of the reconfiguration model R, but is also influenced
by whether the resource is idle or not when a reconfiguration is
scheduled to start, which depends on the results of the performance
model S . The cyclic dependency between the two models is
addressed in detail in Section 7. The next section derives the
equations for the reconfiguration model assuming that the effective
reconfiguration rate is equal to the target rate (i.e., d = 0). Then,
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in Section 6, we derive the performance model for service requests
as a function of the probability distribution of the number of
resources being reconfigured.

End	of	a	reconfigura.on	 Scheduled	start	
of	new	reconfigura.on	

Actual	start	
of	new	reconfigura.on	

1/α	
1/α’	

d	

Fig. 4. Target and effective reconfiguration rate

5.2 Drop Reconfiguration Requests Policy
Figure 5 illustrates the flowchart of the reconfiguration process for
the drop policy. If the number of resources k being reconfigured
is equal to c∗, a request to reconfigure is dropped and a new
reconfiguration request is generated after 1/α time units on
average. If the threshold c∗ has not been reached and the resource
to be reconfigured is idle (i.e., not handling a service request), k is
incremented by 1, the resource is reconfigured, k is decremented
by 1, and a new reconfiguration request is generated after 1/α
time units on average. If the resource to be reconfigured is not
idle, the reconfiguration has to wait for the resource to become
available.

Because our analysis throughout the paper uses Continuous
Time Markov Chains (CTMC), we offer here a very brief defini-
tion of these stochastic processes. A CTMC is a stochastic process
that has a discrete set of (finite or countable) states and a set of
possible transitions between these states. These transitions can
happen at any time (thus the continuous time) and are typically
associated with events in the system being modeled (e.g., arrival of
a service request, completion of a service request). Each transition
between two states is associated with a transition rate that mea-
sures the rate at which the process moves from one state to another.
These transition rates are measured in transitions/time unit (e.g.,
arrivals/sec). In particular, we will be using here a special case
of CTMCs, called Birth-Death processes, in which the states are
ordered and transitions are only allowed between neighboring
states. The reader is referred to [15] for a comprehensive analysis
of CTMCs.

Generate	reconfigura-on	request	

k	≥	c*	?	

is	the	resource	
idle?	

k	çk	+	1	

k	çk	-	1	

reconfigure	the		
resource	

wait	for	the	resource	
to	become	idle	

YES	

YES	

NO	

NO	

Fig. 5. Flowchart of the reconfiguration cycle under the drop policy

We now use the CTMC of Fig. 6 to compute prk, (k =
0, . . . , c∗), the probability that k resources are being reconfigured.
The state k in the CTMC of Fig. 6 represents the number of
reconfiguration requests in the system, which in the case of the
drop policy is also the number of resources being reconfigured, so
pk = prk, k = 0, . . . , c∗.

0	 1	 2	 k	 c*-1	 c*	.	.	.	 .	.	.	

α	c	 α	(c-1)	 α	(c-k+1)	 α	(c-k)	 α(c-c*+1)		

1/S	 2/S	 k/S	 (k+1)/S	 c*/S	

Markov	Chain	for	the	case	in	which	reconfigura?on	requests	are	dropped	
	when	the	threshold	is	met.	

Fig. 6. State transition diagram of the Markov Chain for the reconfigura-
tion model under the drop policy

An expression for pk (k = 0, . . . , c∗) is obtained by using the
general birth-death equation for CTMCs [15]:

pk = p0 ·
k−1∏
i=0

γi
µi+1

k = 1, . . . , c∗ (7)

p0 =

[
1 +

c∗∑
k=1

Πk−1
i=0

γi
µi+1

]−1
(8)

where γk = α·(c−k), for k = 0, . . . , c∗−1, is the aggregate rate
at which resources are reconfigured when there are k resources
being reconfigured and µk = k/S, for k = 1, . . . , c∗, is the
aggregate rate at which resources complete reconfiguration when
there are k resources being reconfigured. Using the expressions
for γk and µk in Eqs. 7 and 8, we obtain

pk=p0 ·
k−1∏
i=0

α(c− i)
(i+ 1)/S

=p0(α·S)k
(
c
k

)
k = 1, . . . , c∗ (9)

An expression for p0 is obtained by noting that the sum of all
probabilities is equal to 1. Thus,

p0 =

[
1 +

c∗∑
k=1

(α · S)k
(
c
k

)]−1
. (10)

The values of pk can be easily computed because the summa-
tion needed to compute p0 is finite.

In the drop policy, a reconfiguration request is dropped if it
arrives when the number of resources being reconfigured is equal
to c∗. Thus, the drop probability, pd, can be computed as the ratio
of the rate of reconfiguration requests that arrive at state k = c∗

multiplied by the probability of being at that state, to the sum of
the aggregate rates γk = α(c − k) of reconfiguration requests
across all states k = 0, . . . , c∗. Thus,

pd =
pc∗ α (c− c∗)∑c∗

k=0 pk α (c− k)
=

pc∗ (c− c∗)∑c∗

k=0 pk (c− k)
. (11)

We can now compute the average age of a resource, i.e., the
average time it takes for a resource to be reconfigured after its
last reconfiguration. The probability that a reconfiguration request
is dropped exactly j times is pdj · (1 − pd). If a reconfiguration
request is dropped exactly j times, the average age of the resource
will be (j + 1) · 1/α because 1/α is the average time between
successive reconfiguration requests. Thus, the average age of a
resource under the drop policy is

aged =
∞∑
j=0

j + 1

α
· pdj · (1− pd) =

1

α · (1− pd)
. (12)
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5.3 Wait Reconfiguration Requests Policy

The flowchart of the reconfiguration cycle under the wait policy is
depicted in Fig. 7. This flowchart is very similar to that of Fig. 5,
with the difference that when the threshold c∗ has been reached,
the reconfiguration request is not dropped. Instead, it waits until
the the number k of resources being reconfigured drops below c∗.

To analyze the wait policy, we consider the CTMC of Fig. 8
in which the state k (k = 0, . . . , c) represents the number of
reconfiguration requests in the system, either being processed or
waiting to be processed. As before, pk is the probability that there
are k reconfiguration requests in the system.

An expression for pk (k = 0, . . . , c) is obtained by using the
general birth-death equation for Markov Chains given by Eqs 7
and 8, where γk = α(c−k), for k = 0, . . . , c−1, is the aggregate
rate at which reconfiguration requests are generated when there
are k reconfiguration requests in the system and the aggregate
reconfiguration completion rate µk for k = 1, . . . , c is given by

µk =

{
k/S k = 1, . . . , c∗

c∗/S k = c∗ + 1, . . . , c
(13)

Using the expressions for γk and µk in Eqs. 7 and 8 we obtain

pk=p0·
k−1∏
i=0

α(c− i)
(i+ 1)/S

= p0(α ·S)k
(
c
k

)
k = 1, . . . , c∗ (14)

and

pk = p0 ·
c∗−1∏
i=0

α(c− i)
(i+ 1)/S

k−1∏
i=c∗

α(c− i)
c∗/S

= p0(α·S)k
c!

c∗!c∗k−c
∗
(c− k)!

k = c∗+1, . . . , c (15)

An expression for p0 is obtained by noting that the sum of all
probabilities is equal to 1. Thus,

p0 = (1 + S1 + S2)−1 (16)

Generate	reconfigura-on	request	

k	≥	c*	?	

is	the	resource	
idle?	

k	çk	+	1	

k	çk	-	1	

reconfigure	the		
resource	

wait	for	the	resource	
to	become	idle	

YES	

YES	

NO	

NO	

wait	for	k	<	c*		

Fig. 7. Flowchart of the reconfiguration cycle under the wait policy

.	.	.	 .	.	.	 .	.	.	0	 1	 2	 k	 c*	 c*+1	 c-1	 c	

α	c	 α	(c-1)	 α	(c-k+1)	 α	(c-k)	 α	(c-c*+1)	 α	(c-c*)	 2α		 α		

1/S	 2/S	 k/S	 (k+1)/S	 c*/S	 c*/S	 c*/S	 c*/S	

Markov	Chain	for	the	case	in	which	reconfigura?on	requests	are	queued		
when	the	threshold	is	met.	

Fig. 8. State transition diagram of the Markov Chain for the reconfigura-
tion model under the wait policy

where

S1 =
c∗∑
k=1

(α · S)k
(
c
k

)
(17)

and

S2 =
c!

c∗!

c∑
k=c∗+1

(α · S)k
1

c∗k−c
∗
(c− k)!

. (18)

The values of pk can be easily computed because the sum-
mations needed to compute p0 are finite. The values of prk,
the probability that k resources are being reconfigured, can be
computed as a function of pk as prk = pk for k = 0, . . . , c∗ − 1
and prc∗ =

∑c
k=c∗ pk. In fact, when the number of reconfiguration

requests in the system is smaller than c∗, all reconfiguration re-
quests cause a resource to be reconfigured. When a reconfiguration
request finds the number of resources being reconfigured equal to
the threshold, and this happens with probability

∑c
k=c∗ pk, the

request has to wait.
One can compute the throughput Xr of reconfiguration re-

quests as a function of prk as

Xr =
1

S

c∗∑
k=1

k · prk (19)

and the average number Nr of reconfiguration requests in the
system as

Nr =
c∑

k=1

k · pk. (20)

Using Little’s law, we can the determine the average time in
the system for reconfiguration requests as Rr = Nr/Xr . This
corresponds to the sum of the average reconfiguration time S and
the average reconfiguration delay d. Thus,

d =
Nr
Xr
− S. (21)

We can now determine the average age of each resource
under the wait policy as follows. After a reconfiguration request
completes, it takes 1/α time units on average for the next recon-
figuration request to arrive. But, the next request may have to wait.
The arrival of a reconfiguration request can occur anytime within
the reconfiguration delay d. On average, that arrival will have to
wait d/2 time units. Thus, the average age of a resource agew is
given by

agew = 1/α+ d/2. (22)

6 RESPONSE TIME MODEL

For the performance model, we use the CTMC of Fig. 9 with an
infinite number of states where a state k = 0, 1, 2, . . . represents
the number of service requests in the system, either using one of
the available resources or waiting for one. Service requests are
assumed to come from a Poisson process at an average rate λ
and complete at a rate µδk, where µ = 1/T (the request com-
pletion rate at a resource) and δk is derived from the probability
distribution obtained from the reconfiguration model. Note that
the queue of Fig. 2 is similar to an M/M/c queuing system with
an important difference. In an M/M/c model, the rate at which
transactions complete is kµ for k = 1, . . . , c and cµ for k > c.
In our case we need to adapt the transaction completion rate to
take into account the resources that may be in the process of
being reconfigured. Thus, we follow an approach similar to the
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derivation of the M/M/c queue results [15], with a modification in
the average transaction completion rate.

Consider the following additional notation: (i) Pk, the proba-
bility that there are k requests in the system, either being processed
or waiting for an available resource; (ii) µ = 1/T , the average
service rate of each resource; and (iii) ρ = λ/(µ c̄), the average
utilization of the resources. We now provide and explain an
expression for δk, the multiplier of the resource service rate µ
in the CTMC of Fig. 9. Before providing a general expression, we
discuss a numerical example. Let c = 10 and c∗ = 4. Therefore,
there are ca = c − c∗ = 6 resources always available for service
requests because at most 4 resources can be reconfigured at the
same time. Thus, when the number of service requests in the
system is at most ca, the average aggregate departure rate is
equal to the number of requests multiplied by µ (i.e., δk = k
for k = 1, . . . , 6). Consider, for example, that there are 8 service
requests in the system, thus ca < k < c. If 0, 1, or 2 resources are
being reconfigured, and this happens with probability pr0+pr1+pr2,
there are enough resources for all service requests in the system,
and the aggregate departure rate is 8µ. If three resources are being
reconfigured, and this happens with probability pr3, there is only
one resource, beyond the six, that can be used for service requests.
So, the aggregate departure rate is (6 + 1)µ = 7µ. For the same
reason, if four resources are being reconfigured, there are only 6
available resources and the aggregate departure rate is 6µ. Table 2
shows the departure rates for all states in the example considered
here.

The expression for δk can be generalized as shown below.
Note that δk = δc for k = c + 1, . . ., and that δc is the average
number of resources that are not being reconfigured (e.g., see the
expression for state 10 in Table 2), and can be used to serve service
requests. The ratio (ρ · c̄/δc) = λ/(µ · δc) can be interpreted as
the average utilization of the resources.

δk=


k k = 1, . . . , ca
ca+

∑k−ca−1
j=1 j · prc∗−j+

(k − ca)
∑c−k
j=0 p

r
j k = ca + 1, . . . , c

ca+
∑c∗

j=1 j.p
r
c∗−j k = c+ 1, . . .

(23)

As Fig. 9 shows, the transition rate from state k to k + 1 is λ,
the average arrival rate of requests to the system, and the transition

0	 1	 2	 c	 k+1	k	.	.	.	 .	.	.	

λ	 λ	 λ	 λ	 λ		

µδ1	

.	.	.	

µδ2	 µδc	 µδc	 µδc	

Fig. 9. State transition diagram for the response time model

TABLE 2
Example of the aggregate departure rate for c = 10 and c∗ = 4

State Departure rate
k, k = 1, . . . , 6 kµ
7 6µ+ µ(pr0 + pr1 + pr2 + pr3)
8 6µ+ µpr3 + 2µ(pr0 + pr1 + pr2)
9 6 + µpr3 + 2µpr2 + 3µ(pr0 + pr1)
10 6µ+ µpr3 + 2µpr2 + 3µpr1 + 4µpr0
k, k = 11, . . . 6µ+ µpr3 + 2µpr2 + 3µpr1 + 4µpr0

rate βk from a state k to state k − 1 is given by

βk =

{
µ δk k < c
µ δc k ≥ c (24)

We can now use the generalized birth-death equations (see
Eqs. 7 and 8) to solve for Pk and P0. We have to break down the
expression for Pk into two parts (for k = 1, . . . , c and k > c)
because βk has two expressions. Hence, for k = 1, . . . , c

Pk=P0 Πk−1
i=0

λ

µ δi+1
=P0

(λ/µ)
k

Πk−1
i=0 δi+1

=P0
(ρ.c̄)k

Πk−1
i=0 δi+1

(25)

and, for k = c+ 1, . . .

Pk = P0 Πc−1
i=0

λ

µ δi+1
Πk−1
i=c

λ

µ δc
=P0

(ρ · c̄)k

δk−cc Πc−1
i=0 δi+1

= P0
ρk · δcc

Πc−1
i=0 δi+1

(26)

P0 can now be computed as

P0 =

[
1 +

c∑
k=1

(ρ · c̄)k

Πk−1
i=0 δi+1

+
∞∑

k=c+1

δccρ
k

Πc−1
i=0 δi+1

]−1
(27)

If we move δcc/Π
c−1
i=0 δi+1 out of the infinite summation in the

above expression, we are left with the following geometric series,
which converges for ρ < 1:

∞∑
k=c+1

ρk =
ρc+1

1− ρ
(28)

Hence, P0 can be easily computed as follows:

P0 =

[
1 +

c∑
k=1

(ρ · c̄)k

Πk−1
i=0 δi+1

+
δcc

Πc−1
i=0 δi+1

ρc+1

1− ρ

]−1
(29)

Note that Eqs. 25, 26, and 29 simplify to the well-known
equations for the M/M/c queue [15] when c∗ = 0. The average
number Ns of requests in the system can be computed as

Ns =
∞∑
k=1

k · Pk =
c∑

k=1

k · Pk +
∞∑

k=c+1

k · Pk. (30)

The first summation in the expression above is an easy-to-compute
finite summation:

P0

c∑
k=1

k
(ρ · c̄)k

Πk−1
i=0 δi+1

. (31)

The infinite summation in Eq. 30 can be written as

P0
δcc

Πc−1
i=0 δi+1

∞∑
k=c+1

k · ρk (32)

which can be computed as

P0
δcc

Πc−1
i=0 δi+1

[
ρ
∂

∂ρ

∞∑
k=c+1

ρk
]

(33)

and is equal to

P0
δcc

Πc−1
i=0 δi+1

.
ρc+1

1− ρ

[
ρ

1− ρ
+ 1 + c

]
. (34)

Thus, Eqs. 31 and 34 allow us to compute Ns. Finally, using
Little’s Law we can compute the average response time R as R =
Ns/λ.
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7 COMBINED MODEL

We now consider the fact that when a reconfiguration request
arrives to a resource, it may be busy serving a service request.
In this case, the reconfiguration has to wait until the resource
becomes idle. This affects the rate at which reconfigurations occur.
Let α′ be the effective reconfiguration rate, i.e., the rate at which
reconfigurations occur. This effective reconfiguration rate should
be used to compute the reconfiguration probabilities prk. The
reconfiguration rate is equal to the inverse of the average time
between reconfigurations. Thus,

1/ α′ = (1/ α) ·Pr[idle]+(1/ α+Tres) · (1−Pr[idle]) (35)

where Pr[idle] is the probability that a resource is idle when it is
time to reconfigure and Tres is the average residual service time
when the resource is busy. From renewal theory,

Tres = E[T̃ 2]/2E[T̃ ] (36)

where T̃ is the random variable that represents the service
time [15]. If that variable is exponentially distributed, Tres =
E[T̃ ] = T due to the memoryless property of the exponential
distribution. Let p = 1 − Pr[idle]. We can then compute p as a
function of the probabilities Pk using the law of total probability
as indicated by the equation below that shows values of p and their
corresponding probabilities.

p =


0 P0

k/c Pk, k = 1, . . . , c− 1

1 1−
∑c−1
k=0 Pk.

(37)

The explanation behind Eq. 37 is the following. When there
are no service requests in the system, and this happens with
probability P0, the probability that a reconfiguration request finds
the resource busy is zero. When all resources are busy, and this
happens with probability 1 −

∑c−1
k=0 Pk, the probability that a

reconfiguration request for a specific resource finds the resource
busy is 1. When k (k = 1, . . . , c − 1) resources are busy, the
probability that a reconfiguration request finds a specific resource
busy is equal to 1 minus the probability that it finds the resource
idle. Thus, the probability that the resource is busy is equal to

1−
(
c− 1
k

)
/

(
c
k

)
=
k

c
(38)

because the the probability that the resource is idle is equal to the
number of ways one can choose k resources to be busy out of the
remaining c−1 resources divided by the total number of ways one
can select k resources to be busy out of c resources. Thus, using
the Law of Total Probability we get,

p = 0× P0 +

[
1

c

c−1∑
k=1

k · Pk

]
+ 1× (1−

c−1∑
k=0

Pk)

=
1

c

c−1∑
k=1

k · Pk + (1−
c−1∑
k=0

Pk) (39)

We can now rewrite Eq. 35 as

α′ =
α

1 + αpT
(40)

Because p is a function of {Pk} (see Eq. 39), and {Pk} is
a function of {prk} (see Section 6), and {prk} is a function of
α′ (see Sections 5.A-C) and α′ is a function of p (see Eq 35),
it follows that p = f(p) for some function f . Thus, p is a

fixed point of f . We can solve for p using the iterative algorithm
described next. Let S({prk}, c, c∗, λ, T ) be the service response
time model (see Section 6) that computes the probabilities Pk and
letR(c, c∗, α, S) be the reconfiguration model (see Section 5) that
computes the probabilities prk. The following iterative algorithm
can be used to solve this fixed point problem. The busy probability
p is initially set to zero and it is recomputed at Step 5. The
difference between the values of p in successive iterations is
checked at Step 6 against a given tolerance ξ.

• Step 1. Initialize: i← 0; pi ← 0;
• Step 2. Compute α′: α′ ← α/(1 + αpiT );
• Step 3. Compute the reconfiguration probabilities prk:
{prk} ← R(c, c∗, α′, S);

• Step 4. Compute the service request probabilities Pk:
{Pk} ← S({prk}, c, c∗, λ, T );

• Step 5. Increment iteration count and compute new value
of the busy probability:
i← i+ 1; pi ← 1

c

∑c−1
k=1 k · Pk + (1−

∑c−1
k=0 Pk);

• Step 6. Check tolerance: if | p
i−pi−1

pi |> ξ go to Step 2;
• Step 7. Compute the average response timeR as a function

of the probabilities Pk.

8 SIMULATION AND EXPERIMENTAL TESTBED

Our analytical results were validated by simulation and by ex-
periments that implemented a shuffling MTD. We implemented
the simulation using SimPy1, a process-based discrete-event sim-
ulation framework based on standard Python. SimPy supports
multiple processes that contend for access to a resource and
automatically handles queuing of events if a resource is busy,
making it ideal for our purposes. Additionally, we used SimPy
as a real-time event generator to control VM reconfigurations and
implement a fully operational MTD. For our VM environment,
we used Citrix’s open-source XenServer platform2, which offers
pooling of resources, the ability to quickly clone VMs for recon-
figuration, and a command-line interface that is compatible with
our simulation framework.

Our MTD controller runs on a separate server and starts an
independent process for each VM – either a simulated VM or an
actual VM in the XenServer pool – that generates a reconfiguration
request. The simulator lets us choose how each of our random
values are generated. For the analytical model and the simula-
tions used to validate it, we used an exponentially distributed
reconfiguration duration S with average value of 120 sec. In our
experiments, it turns out that S can vary based on the values of
c and α and is normally distributed, so we instead used a normal
distribution for S with the same mean and standard deviation as
was observed in the experiment for the corresponding value of α.

Reconfigurations can consist of a number of possible actions,
including changing the IP address or software. In our experiments,
we remove the instance of a VM from the virtual network and
replace it with a fresh copy, similar to how SCIT operates [16].
The fresh copy also has a new IP address obtained from DHCP,
enabling a basic IP-hopping scheme. Our reconfiguration process
also collects statistics such as percentage of requests dropped and
all possible delays.

The MTD controller also serves as a traffic generator that
creates service requests to our VMs. Each service request is

1. Available at https://simpy.readthedocs.io/en/3.0/.
2. Available at https://xenserver.org/
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an independent process with exponentially distributed interarrival
times with an average arrival rate equal to λ and average service
time T in the simulations. For the experiments, an HTTP request
is sent to an idle VM, which has a scripted delay on the HTTP
response with average time T to simulate the time to process a
generic service request. Each process records the time at which
it was generated, began service, and completed according to the
environment’s internal clock. These records are used to compute
queue time, service time, and response time and are maintained
for each request.

We also collected statistics from a separate monitor process
that operates at set intervals to collect information about the
number of resources idle, in use, and being reconfigured, as well as
the current queue length. An overview of the system and processes
is shown in Fig. 10.

. . .

VM1

VMc

VM2
MTD Controller /

Traffic Generator

a)

b)

c)

Fig. 10. Experimental setup: a) c independent processes to generate
reconfiguration requests (arrival rate α), b) 1 process to generate inde-
pendent service requests (arrival rate λ), c) Monitor process (every 0.01
sec)

The pool of VMs is tracked using 3 separate states for the
VMs: idle, in use (i.e., serving a request), or being reconfigured.
All requests for a VM must first acquire a shared resource that
gives them access to the pool of idle VMs. A priority queue is
used, giving priority to reconfiguration requests so that recon-
figuration is not unnecessarily delayed; however, reconfiguration
requests for a specific VM will not preempt a request currently
being served. Instead, the reconfiguration request flags that VM
for reconfiguration and then releases its lock on the idle pool
before waiting for that resource to appear in the pool of VMs to
reconfigure. When service requests receive access to the idle pool,
they remove a random VM from the pool and place it in the pool
of VMs in use. Once completing the request, if that VM is flagged
for reconfiguration, it is placed in the reconfiguration pool where
the reconfiguration request will pick it up for reconfiguration,
otherwise it is placed back in the idle pool. In the event that a
service request finds no VMs in the idle pool, it waits for one to
appear. This additional wait is included in the overall queue time.
The overall flow of control and VM state transitions is shown in
Fig. 11.

Each iteration of the simulation lasted 6,000 seconds, with no
statistics recorded in the first 1,000 seconds to allow the system
to achieve steady-state. Thirty runs were performed for values of
α from 0.001 to 0.050 to obtain the mean, standard deviation,
and 95% confidence intervals for the mean for each statistic. For
the experiments, each run is limited to 600 seconds with statistics
recorded after the first 60 seconds for select values of α. The
values of the other input parameters used in the simulations and

experiments are given in Table 3.

TABLE 3
Values of variables used in the simulation and experiments

Variable Description
c 20
c∗ 14
α from 0.001 to 0.050 req/sec
S 120 sec
λ 10 requests/sec
T 0.5 sec
Ts 300 sec

9 NUMERICAL RESULTS AND VALIDATION

This section presents several numerical results starting with results
obtained with the analytic model. Then, simulation is used to
validate the analytic results. In what follows, simulation and exper-
imental results are compared. Finally, we show how the analytic
model can be used to find an optimal value of the reconfiguration
rate that considers tradeoffs between response time and security.

9.1 Analytic Model Results
There are some important tradeoffs illustrated by the equations
derived in Sections 5 and 6. First, as the reconfiguration rate
α increases, less time is given for an attacker to succeed, but
the resource availability decreases and both the probability that a
request for a resource has to queue and the response time increase.
We illustrate these tradeoffs by using the equations above in a
variety of numerical examples.

Figs. 12 and 13 show the response time and average age of
the resources for both policies. For very low reconfiguration rates
(α → 0) all c resources are available and the two policies exhibit
a similar behavior. As α increases, the wait policy ensures that a
reconfiguration request is honored as soon as k < c∗, whereas
the drop policy drops requests generated when k ≥ c∗. Therefore,
the wait policy reconfigures more often than the drop policy and,
as a consequence, its response time is higher (see Fig. 12) and
the average age of resources is lower compared to the drop policy
(see Fig. 13). For example, for α = 0.05 rec/sec, the average
response time of service requests for the wait policy is 17.5%
higher and the average age of a resource for the drop policy is

d)

e)

b)

a)
VM Pools

c)

VM Movement

Requests

f)

Fig. 11. Control Flow and VM Movement: a) incoming requests, b)
priority queue, c) resource lock on idle pool, d) idle VM pool, e) VMs
in use, f) reconfiguration VMs
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57% higher than the corresponding values for the wait policy.
This illustrates the tradeoff we discussed above in the sense that
the wait policy always exhibits a worse response time than the
drop policy but it exhibits a lower resource age, which reduces the
probability of an attacker’s success. Note that, with a policy that
limits the maximum number of resources reconfiguring at a time,
the response time and resource age are also limited as a function
of the average reconfiguration rate α.
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Fig. 12. Average response time for drop and wait policies
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Fig. 13. Average resource age for drop and wait policies

Figs. 14 and 15 show average response times for other values
of c∗. When c∗ > 14, we observe that for values of α above
a certain threshold, the system becomes unable to handle all
incoming service requests because of the scarcity of resources,
causing the queue to grow indefinitely. Therefore, we must choose
a value of c∗ such that c − c∗ > λ · T , leading to our choice of
c∗ = 14 for λ = 10, T = 0.5.

Fig. 16 shows the distribution of the number k of resources
being reconfigured – out of a total of 20 resources – for several
values of the reconfiguration rate α, using the drop policy and for
c∗ = 14. The graphs show that the distribution is bell-shaped for
low values of α. But, as α increases from 0.02 up to 0.04 rec/sec,
the probability distribution shifts to the right. The average number
of resources being reconfigured is 7.49 for α = 0.005 rec/sec and
13.47 for α = 0.04 rec/sec. When α = 0.04 rec/sec, the system
spends 62.2% of the time with the maximum number of resources
being reconfigured.

Similarly, Fig. 17 shows the same trend for the wait policy.
Because, as explained above, with the wait policy, all reconfig-
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Fig. 15. Average response time for varying levels of c∗ (Wait Policy)

uration requests will eventually be served, on average there are
more active such requests in the system. The average number of
resources being reconfigured is 7.50 for α = 0.005 rec/sec but
rises to 13.96 for α = 0.04 rec/sec. When α = 0.04 rec/sec, the
system spends 97.2% of the time with the maximum number of
resources being reconfigured.

9.2 Validation with Simulation Results
This section presents results validating the analytic model using
the simulation described in Section 8. All simulation curves show
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95% confidence intervals, and show that the analytic model results
match the simulations very closely. Fig. 18 shows simulation and
analytic results for the average response time of requests under
the drop policy for a range of values of α. The maximum absolute
percent relative error is 8.65% and occurs for α = 0.21 rec/sec.
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Fig. 18. Response time: simulation vs. analytical model (drop policy)

Similarly, Fig. 19 compares results for the average age of a
resource. The maximum absolute percent relative error is below
10% for all values of α. Finally, Fig. 20 compares the percentage
of dropped reconfiguration requests. For most values of α, the
maximum absolute percent relative error is below 5%.

A similar analysis was conducted to validate the wait policy,
and confirmed that simulation an analytical results closely match.
A detailed discussion is omitted for reasons of space and we only
show a comparison between simulation and analytical results for
the average waiting time to start a reconfiguration. As shown in
Fig. 21, the results match closely across the entire range of α
values.

9.3 Validation of the Simulation with Experimental Re-
sults

We now describe the validation of the simulation model with
experimental results obtained using the setup described in Sec-
tion 8. Tables 4 and 5 compare simulation and experimental
results for availability and response time for the drop and wait
policies respectively, for values of α ranging from 0.005 to 0.050
rec/sec. The average values and corresponding 95% confidence
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intervals are shown in the tables. The third column of each set
of results shows the absolute percent relative error computed as
100 × (simulation − experiment)/simulation. As we can see
from the tables, errors are low and are below 5% in all cases
except for one case in which the error is 7.8%. These results,
along with the findings in the previous subsection, validate the
analytical results.

9.4 Determining the Optimal Reconfiguration Rate
The analytic model presented in Sections 3-7 allows one to predict
the response time and the average age of each resource in the
system. We can then use these results to answer questions such as
“Given objective values for response time and level of protection,
what is the reconfiguration rate that maximizes overall utility?”

We can solve this by estimating the attacker’s likelihood of
success using the method described in Section 7. For instance, we
can use the linear method, with Ts = 300, and Ps(t) = 1 when
t ≥ Ts. Next, we can assign utility values to the response time
and attacker’s likelihood of success using the following sigmoid
functions:

UR(tr) =
eσ(−tr+βR)

1 + eσ(−tr+βR)
(41)

US(ps) =
eσ(−ps+βS)

1 + eσ(−ps+βS)
(42)

where tr is the response time, βR is the response time objective,
ps is the attacker’s success probability computed as Ps(age)
where age — the resource’s average age — is either given by
Eq. (12) or (22) for the drop or wait policies, βS is the attacker’s
success probability objective, and σ is a steepness parameter for
the sigmoid. Sigmoids are commonly used as utility functions
in autonomic computing because they are smooth, differentiable
at all points, and can be easily adjusted to react more or less
aggressively to violations of service level agreements through the
steepness parameter [19]. We can now compute a global utility
function Ug as:

Ug = wR · UR(tr) + wS · US(ps) (43)

where wR and wS are weight factors chosen such that wR +
wS = 1. Different values of wR and wS influence the optimal
reconfiguration rate. For example, Fig. 22 shows the overall utility
values for the drop policy when TS = 300 sec, βR = 55 sec, βS =
0.2, and σ = 10. When wR = wS , the optimal value is found at
α = 0.018 rec/sec. When wR = 0.75, denoting an emphasis on
response times at the cost of protection, the optimal value can be
found at α = 0.018 rec/sec, and when wS = 0.75, denoting an
emphasis on protection at the cost of response times, the optimal
value is 0.041 rec/sec.

10 RELATED WORK

A vast array of different MTD techniques have been proposed
in recent years, with the majority of such techniques designed to
protect systems against a very narrow set of attack vectors such as
SQL injection [8] and data exfiltration [7]. A rich line of research
has focused on MTD techniques to mitigate distributed DoS
attacks [5], [6] by deploying proxies between clients and servers,
and periodically reconfiguring – either proactively or in response
to detected threats – the associations between clients and proxies
in order to disrupt knowledge accumulated by adversaries. In [14],
the authors indicate that in order to support analysis, a theory
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of MTDs “should include an analytic model that can be used
by designers to determine how different parameter settings will
impact security.” This is precisely what our paper achieves, i.e., it
allows designers to select reconfiguration rates and reconfiguration
techniques according to their reconfiguration time in order to
balance security and performance tradeoffs. The authors of [17]
presented a theory of cyber attacks, which they used to formalize
several attack types including a Web-based planner with several
backend databases and Address Space Layout Randomization.
Xu et al. attempt to bridge the gap between low-level attack-
based experiments focusing on specific programs and higher-level
probabilistic models and simulations by proposing a method using
three layers of state machines to capture interactions between
programs [20].

Duan et al. [21] present a proactive Random Route Mutation
technique to randomly change the route of network flows to defend
against eavesdropping and DoS attacks. Jafarian et al. [22] use
an IP virtualization scheme based on virtual DNS entries and
Software Defined Networks. Their goal is to hide network assets
from scanners. Using OpenFlow, each host is associated with a
range of virtual IP addresses and mutates its IP address within
its pool. In Chapter 8 of [2], an approach based on diverse
virtual servers is presented. Each server is configured with a
set of software stacks, and a rotational scheme is employed for
substituting different software stacks for any given request.

Deception-based approaches aim at misleading reconnaissance
tools, such as nmap or Xprobe2. Such tools can identify a
service or an operating system by analyzing packets that can
reveal implementation specific details about the host [23], [24].
Reconnaissance tools store known system’s features and compare
them against the scan responses in order to match a fingerprint.
Watson et al. [24] adopted protocol scrubbers in order to avoid
revealing implementation-specific information and restrict an at-
tacker’s ability to determine the operating system of a protected
host.

With respect to quantification of MTD techniques, several
different metrics have been proposed in the literature to measure
their effectiveness. Some authors assess the performance of their
techniques in terms of the attacker’s success rate [25], while others
introduce deception, deterrence, and detectability metrics [26].
Still others utilize a total of 8 metrics (Productivity, Success,
Confidentiality, and Integrity) for the attacker and defender [27],
leading to confusion over the multiple dimensions.

Markov models have been used for years in a wide variety
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TABLE 4
Simulation vs. experimental results for availability

Drop Policy Wait Policy
α Simulation Experimental Error Simulation Experimental Error
0.005 0.706 ± 0.013 0.701 ± 0.013 0.71% 0.703 ± 0.014 0.701 ± 0.015 0.28%
0.010 0.487 ± 0.012 0.495 ± 0.02 1.64% 0.470 ± 0.015 0.473 ± 0.018 0.64%
0.015 0.391 ± 0.006 0.381 ± 0.007 2.56% 0.357 ± 0.009 0.359 ± 0.011 0.56%
0.020 0.360 ± 0.003 0.350 ± 0.004 2.78% 0.319 ± 0.005 0.311 ± 0.003 2.51%
0.025 0.342 ± 0.003 0.335 ± 0.002 2.05% 0.308 ± 0.002 0.305 ± 0.002 0.97%
0.030 0.335 ± 0.003 0.331 ± 0.003 1.19% 0.303 ± 0.001 0.301 ± 0.000 0.66%
0.040 0.322 ± 0.001 0.321 ± 0.001 0.31% 0.301 ± 0.001 0.300 ± 0.000 0.33%
0.050 0.317 ± 0.001 0.316 ± 0.001 0.32% 0.301 ± 0.000 0.300 ± 0.000 0.33%

TABLE 5
Simulation vs. experimental results for response time

Drop Policy Wait Policy
α Simulation Experimental Error Simulation Experimental Error
0.005 0.503 ± 0.002 0.506 ± 0.003 0.60% 0.507 ± 0.004 0.508 ± 0.002 0.20%
0.010 0.533 ± 0.008 0.532 ± 0.010 0.19% 0.544 ± 0.010 0.558 ± 0.017 2.57%
0.015 0.605 ± 0.014 0.594 ± 0.014 1.82% 0.664 ± 0.025 0.673 ± 0.029 1.36%
0.020 0.636 ± 0.013 0.651 ± 0.017 2.36% 0.731 ± 0.023 0.788 ± 0.030 7.80%
0.025 0.667 ± 0.016 0.683 ± 0.017 2.40% 0.801 ± 0.027 0.793 ± 0.024 1.00%
0.030 0.679 ± 0.012 0.687 ± 0.021 1.18% 0.791 ± 0.025 0.805 ± 0.020 1.77%
0.040 0.718 ± 0.019 0.713 ± 0.021 0.70% 0.806 ± 0.022 0.816 ± 0.029 1.24%
0.050 0.725 ± 0.019 0.758 ± 0.025 4.55% 0.798 ± 0.029 0.819 ± 0.031 2.63%

of applications; however their application in security domains
has been limited. The model presented in [28] is the closest
to our work and introduces a discrete-time Markov-model-based
framework for MTD analysis. The framework allows modeling
of a broad range of MTD strategies, and presents results on
how the probability of an adversary defeating an MTD strategy
is related to the time/cost spent by the adversary. They also
show how their approach can be used to analyze a composition
of MTDs. However, differently from our model, the approach
proposed in [28] cannot predict the performance of deployed MTD
techniques, which the authors list as future work.

While several metrics have been offered, they do not attempt
to evaluate more than a few select MTDs chosen for a specific
study. One expert survey provides a thorough assessment of the
effectiveness and cost of many techniques across the spectrum of
existing MTDs [29]. However, the survey is qualitative in nature
and potentially subject to reviewer bias.

Our work is also inspired by research in the field of au-
tonomous systems, particularly self-protecting systems [30][31].
These systems change their settings in response to their environ-
ment. This concept can be seen as a form of moving target defense.
To change their settings effectively, self-protecting systems must
be able to quantify both their effectiveness and their cost or
overhead in order to provide an accurate measure of their utility.

11 CONCLUSIONS AND FUTURE WORK

Moving Target Defense (MTD) has recently emerged as one of
the potentially game-changing themes in cyber security. While
the typical asymmetry of the security landscape tends to favor
the attacker, MTD holds promise to change the game in favor of
the defender. Thus, MTD has received significant attention in the
last decade, prompting researchers and practitioners to develop
a myriad of different MTD techniques. Unfortunately, most such
techniques are designed to address a very narrow set of attack
vectors. Additionally, despite the significant progress made in

this area, the problem of studying and quantifying the cost and
benefits associated with the deployment of MTD techniques has
not received sufficient attention, and shared metrics to assess the
performance of MTD techniques are still lacking.

Our preliminary work [10] provided a first important step to-
ward addressing some of these limitations. This paper significantly
extended that work by introducing analytic models to analyze
MTDs that allow for limits to be placed on the number c∗ of
resources being reconfigured at the same time. We also presented
and modeled two policies (drop and wait) that deal, in different
ways, with reconfiguration requests that arrive when the limit on
the number of resources being reconfigured is reached.

Our analytic models allow us to compute resource availability,
response time, and attacker’s success probability as well as trade-
offs between these metrics as a function of a variety of parameters.
Our models also allow us to determine the optimal reconfiguration
rate that maximizes a utility function, which is a function of both
response time and attacker’s success probability. We are currently
investigating the design of autonomic controllers that dynamically
vary the threshold c∗ to maximize this utility function. As part
of work-in-progress, we are looking at how to relax some of
our assumptions, for example that all resources are homogeneous
(e.g., they have the same average reconfiguration rate and the same
average processing time).
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[9] D. A. Menascé, “Security performance,” IEEE Internet Computing,
vol. 7, no. 3, pp. 84–87, May/June 2003.
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