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1 INTRODUCTION

The ever increasing proliferation of multi-core processors into the computing systems (ranging from
portable devices to datacenters) facilitate the multi-program execution of multi-threaded applications. This
enables high performance under tight power budgets [Bergamaschi and et. al. 2008; Manoj et al. 2017, 2015;
Pagani and et.al. 2017; Pagani et al. 2018; Tarsa et al. 2014; Wang and Pedram 2016]. The high performance
with multi-core systems coupled with increased power density poses multiple challenges with reliability
being one of the key design parameters to be considered along with power/energy and performance across
a wide range of computing platforms, from miniature embedded systems to massive data centers [Shafique
et al. 2014; Swaminathan et al. 2017]. What is more, the increased power consumption forms a positive loop
with temperature leading to increased temperatures, eventually leading to thermal runaway failures [Wu
et al. 2014; Xu et al. 2015]. To overcome such concerns, reliability-aware power management is critical for
processors embedded in small-scale systems as well as in datacenters. Here, the term ‘reliability’ encompasses
both application reliability and thermal reliability. Application reliability further comprises of two parts: (i)
functional reliability, i.e., for a given input, the correctness of output values of a given function considering
faults such as soft errors in the underlying hardware; and (ii) timing reliability, i.e., the ability to meet
the timing requirements. Though, the thermal reliability is dependent on multiple factors, we consider
the predominant factors oxide-breakdown and the electron-migration [Gnad et al. 2015; Manoj et al. 2013;
Pagani et al. 2014; Srinivasan et al. 2004] in this work.

Towards optimizing and meeting the power budget constraints, Dynamic Voltage and Frequency Scaling
(DVFS) [Esmaeilzadeh and et. al. 2011; Manoj et al. 2015; Pagani and et.al. 2017; Pagani et al. 2018; Tarsa
et al. 2014; Wang and Pedram 2016] has proven to be one of the most effective and widely-used techniques
with adaptivity for power/energy savings. In the former works, DVFS is performed considering different
parameters such as worst-case execution time of the task [Choi et al. 2005], temperature [Lee et al. 2010],
and voltage demand [Choi et al. 2004; Dietrich and et.al. 2010]. Many of the existing works such as [Choi
et al. 2005; Dietrich and et.al. 2010; Wang and Pedram 2016] perform DVFS by predicting one or more
parameters for the next time interval(s). Based on this, the VF settings are applied accordingly towards
meeting the power/energy budgets under the constraints of performance requirements. Advancements
in machine learning (ML) field led to its adoption for prediction and/or on-chip parameter adaptations
required for power management (DVFS) using techniques such as Bayesian learning [Wang and et.al. 2011],
reinforcement learning [Jung and Pedram 2010; Manoj et al. 2016; Shen et al. 2013] and regression analysis
[Bartolini et al. 2013; Bartolini and et al. 2011; Manoj et al. 2018; Yang and et.al. 2015].
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In addition to the power constraints, the on-chip temperature is one of the major concerns in multi-core
processors that can have non-trivial impact on the life time and reliability of the chip [Shafique et al.
2014]. Keeping the chip’s temperature under a certain thermal threshold (or critical value) is of paramount
importance, as otherwise high temperatures may cause permanent failures. In order to achieve this i.e., to
dissipate the heat and reduce the temperature, chips are provided with a cooling solution (e.g., the coupling
of the thermal paste, heat spreader, heat sink, and cooling fan). It needs to be noted that power management
aids to reduce the on-chip hot-spots, as the heat is generated from the consumed power. However, the
power management primarily focuses on optimizing the power, and persistent consumption of power
(even it is low) leads to hot-spots, which might not be mitigated with power/energy saving oriented DVFS
techniques. To provide a better temperature regulation, the multi-core systems are equipped with Dynamic
Thermal Management (DTM) technique. These DTM techniques are commonly reactive (i.e., triggered
once the critical temperature is exceeded) and can power-down cores, reduce their supply voltages and
execution frequencies, gate their clocks, boost-up the fan speed, and so on. In other words, if the chip heats
up above a critical value (identified using thermal sensors distributed across the chip), then the DTM is
triggered to reduce the temperature. Similar to power management, machine learning is widely deployed
for thermal management as well. Techniques for thermal management with machine learning such as DTM
with temperature prediction by regression [Lee et al. 2010], Q-learning [Lu et al. 2015; Shen et al. 2012], and
so on are proposed in the literature.
Many of the existing power management and thermal management works primarily focus on either

optimizing the power and/or temperature of the system. Despite the power/thermal management can
optimize the power and temperature of the chip, it highly degrades the reliability of the system components
such as processor core, application data (cache) and memories, especially in the scaled geometries, resulting
in induction of faults in the data [Makhzan et al. 2007; Sasan et al. 2009]. The state-of-the-art soft-error
reduction techniques mainly exploit software and hardware level techniques [Kapadia and Pasricha 2015;
Mukherjee et al. 2002; Qi et al. 2010; Shye et al. 2007; Xu et al. 2013]. However, these techniques are
computationally expensive due to the continuous redundancy checking happening at software-levels.
Further, reliability-aware techniques with power optimization such as [Dabiri et al. 2007; Wu andMarculescu
2014] require technology node changes such as transistor sizing. Though such techniques can achieve
desired reliability, they demand excessive design and manufacturing efforts, also the reliability is more affine
towards the soft-errors, and not considering the physical reliability. To observe the impact of DVFS i.e., VF
scaling on application and thermal reliability and to determine the need of performing both application and
thermal reliability based power management, a motivational case study is carried-out and presented below.

1.1 Motivational Case Study

A simple case study to understand the impact of VF scaling on the application and thermal reliability is
presented in Figure 1. The model based on which the application and thermal reliability are derived is
presented in Section 2.3, and the experimental settings are described in Section 6. As can be observed
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from Figure 1(a), with scaling down of voltage-frequency levels, the power consumption decreases, but
the fault-rate increases. Also, from Figure 1(b) it can be seen that the reliability for different applications
is different, even under the same VF settings. Thus, an application’s reliability is not a simple function
of VF, rather it is a function of application characteristics such as runtime, and instruction profile. Similar
findings have been reported in [Salehi and et.al. 2015; Salehi et al. 2015]. It needs to be noted that the plotted
functional reliability is under the best settings i.e., minimal failure rate and deadline misses. To address
this problem, in the proposed reinforcement learning based power management, reliability is learned and
considered as a feedback for the DVFS, along with the achieved power saving.
In addition to application reliability, the thermal reliability w.r.t. VF scaling is shown in Figure 1(c) for

different PARSEC benchmark applications. Here, the power and temperature values are obtained from
McPAT [Li et al. 2009], and HotSpot [Huang et al. 2006]. The simulations are run in SniperSim [Carlson
and et.al. 2014] with more details presented in Section 6. As one can observe from Figure 1(c), with the
scaling up of VF levels, thermal reliability decreases i.e., power consumption and temperature increases
leading to reduced thermal reliability. However, the application-reliability increases, and vice-versa. It has
to be noted that the application and thermal reliabilities of different applications are different even under
same VF settings, due to their inherent characteristics. As such, an optimal DVFS that meets the power-
performance budget without degrading the thermal and application reliabilities is needed. As the power
management focused works can lead to degradation of the reliability of the application and system, the
power management under the constraints of reliability is non-trivial. Thus, the objective of this work is
to perform power management under the constraints of performance, application and thermal
reliability i.e., to achieve low power consumption along with meeting the reliability constraints
and desired performance.
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Fig. 1. (a) Fault rate, and power consumption (b) application-reliability and (c) thermal reliability under different VF
settings.

Associated Research Challenges

The associated challenges of paramount importance to perform learning based power management, consid-
ering the application characteristics and reliability can be outlined as follows:
Manuscript submitted to ACM
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Computational Overheads: The power management can be performed at different levels of abstraction
such as at core-level, or system-level. Performing per-core power management introduces computational
and hardware overheads such as VF controller per-core [Jung and Pedram 2010; Manoj et al. 2018, 2015;
Shafique et al. 2016]. On the other hand, system-level power management refers to performing power
management at a granularity of system-level, which is efficient in terms of computational overheads, but
achieves lower power savings and/or energy efficiency [Shen et al. 2013]. Use of VF-island based power
management though efficient, lack flexibility, and scalability [Rangan et al. 2009]. As such, an intermediate
solution is desired.
Application-Reliability Variation with DVFS: In addition to the traditional power management

challenges such as processing overheads, embedding reliability for power management adds the following
challenges: the reliability of an application varies with the VF levels at which the application is being
executed and also the reliability for different applications are different (Figure 1). Additionally, to learn the
reliability of an unseen application for an efficient power management, the supervised learning is not an
effective solution, as the reliability is hard to predict pro-actively or known apriori for unseen applications
[Wang and Pedram 2016].
Thermal Reliability with Power Consumption: As mentioned earlier, the power consumption leads

to heat generation and can lead to thermal hot-spots on-chip eventually causing permanent failures. Power
consumption based reduction or performing DVFS to lower/mitigate the hot-spots lead to reduced perfor-
mance as well as affecting the application-reliability. In addition, thermal reliability is inversely proportional
to the on-chip temperature i.e., higher temperature lower the thermal reliability. Low temperature arises
from lower power consumption, which implies that improving thermal reliability has inverse effects on
application reliability. As such, a trade-off has to be maintained between thermal and application reliability.

Contributions of This Work

To address the above-discussed problems, in this paper we make the following novel contributions.

• To the best of our knowledge, this is the first work that considers both application and thermal reliability
along with performance to perform multi-core power management.
• To achieve desired application and thermal reliabilites along with power/energy savings, a reinforce-
ment learning (RL) based power manager is proposed. Here, the RL agent determines the VF level
based on the predicted power and the achieved reliability.
• The reward is determined based on the power savings, and temperature, and application reliability
which allows the power manager to optimize the power and temperature while maintaining the
application and thermal reliability.

Traditional power management works consider power-performance trade-off and does not emphasis
on the reliability concerns. Similarly, reliability-aware works are limited to either power optimization or
concerned about one kind of reliability enhancement. In Contrast, this work considers both thermal and
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application reliability compared to existing works. Furthermore, as reliability cannot be aforementioned,
this work is one of the first to utilize machine learning to adapt to variations in reliability during runtime.

Paper Organization

The remainder of the paper is structured as follows. The models for the system, reliability, and applications
employed in this work are presented in Section 2. The system architecture is discussed in Section 3. An
introduction to reinforcement learning is presented in Section 4. Section 5 describes the proposed reliability
aware power management scheme. Section 6 presents experimental evaluation and comparison of proposed
reliability aware power management with other state-of-the-art techniques. Conclusions are drawn in
Section 7.

2 SYSTEMMODEL

2.1 Hardware Architecture Model

We consider a homogeneous multi-core processor comprising of N cores, C = {C1,C2, ...,CN }. Due to
varying workloads, different cores execute at different frequencies in order to ensure proper execution. There
exists a maximum operating frequency level fmax for every possible operating voltage V . The frequencies
of a core can be varied between fmin to fmax , and the corresponding voltages between vmin and vmax . The
cores operating at higher VF levels consume more power when executing the application. Furthermore,
similar to [Salehi and et.al. 2015], we assume that performance of the processor core is higher when running
at a higher VF level.

2.2 Application Model

We consider a mixture of single-threaded and multi-threaded applications in this work, and each core
executes one thread. Figure 2 represents a snapshot of multi-core systemwith multiple applications deployed.
In Figure 2, different shades on processor cores represent different applications running on them. The
distribution of applications is not uniform i.e., different applications can run on different number of cores,
depending on the number of threads. Each of the application comprises of multiple-tasks. A task τ requires
w clock-cycles for execution. Also, at any given time, the total number of executed threads are smaller or
equivalent to number of cores, similar to [Pagani and et.al. 2017].

2.3 Reliability Models

Here, we present the employed application and thermal reliability models, followed by the power model for
the applications running on a multi-core system.

2.3.1 Application Reliability Model. To determine the application reliability model, we consider transient
faults, and the timing reliability model. Transient fault occurrences are assumed to follow a Poisson process
with a rate of λ [Ejlali et al. 2012]. The fault rate varies exponentially with the operating voltage [Zhu et al.
Manuscript submitted to ACM
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2004]. As such, the transient fault rate, depending on the operating voltage V is

λ(V ) = λ010
Vmax −V

∆ (1)

where, λ0 (= 10−6)indicates the fault rate when operating at maximum possible voltageVmax ; and ∆ (= 1V ) is
a parameter that indicates increase in fault rate when the voltage is decreased by one level. As the transient
faults in the underlying hardware results in software faults, the Functional Vulnerability Index (FV I ), as in
[Salehi and et.al. 2015], is considered, set to 1. The Functional Reliability (FR) model due to transient fault
(λ) and software failure rate λ(V ) × FV I is modeled as below:

FR(FV I ,w,V , f ) = e−λ(V )×FV I×wf (2)

where w indicates the number of clock-cycles needed to execute the application, and f represents the
operating frequency. The employed reliability model is based on single task execution model as in [Ejlali
et al. 2012]. One of the main reasons to consider this model is that the adopted reliability models are shown
to be accurate and robust for reliability estimation in [Salehi and et.al. 2015] with <2.5% deviation in terms
of reliability efficiency. On the other hand, it needs to be noted that the proposed power management
scheme is independent of the fault model used, as the reward function requires the reliability variation
rather than absolute reliability values. However, other application reliability models can be employed, as
the proposed technique requires information regarding the reliability rather than the model information.

2.3.2 Thermal Reliability Model. The thermal reliability of the system depends on multiple factors and
Oxide-breakdown, Electron-Migration (EM) are the predominant factors [Srinivasan et al. 2004]. As such
the thermal reliability of the system is given by

R(t) = exp(−C · t β · e−
Ea β
kT ) (3)

where R(t) indicates the reliability at time instant t , C = ( 1
Γ(1+1/β )·J −n )

β with n is material based constant
(1.1 for copper [Srinivasan et al. 2005]), J being the energy consumption, β is the Weibull slope parameter
(=2, [Wu et al. 2002]), k is the Boltzman constant, Ea is the activation energy (0.9eV for copper).

Based on eq. (3), the reliability of a dual core system having power consumption P1 and P2 leading to
temperatures T1 and T2 is given as

R2(t) = exp(−C · t β · (e
−
Ea β
kT1 + e

−
Ea β
kT2 )) (4)

In this work, the temperature (T1,T2) is obtained from HotSpot [Huang et al. 2006] and power of the cores
are obtained from the McPAT [Li et al. 2009] directly.

2.4 Power Model

The total power consumption of a core comprises of static and dynamic power. The static power is dominantly
due to leakage power and varies exponentially with threshold voltage. The dynamic power consumption is
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due to the application dependent switching activities in the core. The total power consumption [Brooks
et al. 2007; Ejlali et al. 2012] when operating at voltage V and frequency f is modeled as below:

P(V , f ) = Pstatic + PDynamic = I0e
−Vth
ηVT V + αCV 2 f (5)

Here I0 and η are technology parameters;VT is the thermal voltage;Vth is the threshold voltage; α represents
the switching activity factors and C is the average capacitance. To obtain per-application power or energy
trace, we sum the power traces of the cores on which the application is executing.

3 SYSTEM ARCHITECTURE

Figure 2 illustrates the system architecture with the proposed reliability-aware power management for a
multi-core microprocessor. The microprocessor is composed of multiple cores running different applications
on it. Each of the cores is equipped with private L1, and L2 caches. Characteristics such as per-application
power trace (in mW), and the reliability are obtained or derived for the purpose of power management.
The obtained application power trace and the derived reliability is fed to the RL-based power manager for
generating the power management policy and to provide the optimal DVFS configuration.

The power management settings i.e., VF levels are determined in the OS layer. The power and reliability
data obtained from the application logs are collected iteratively over a time-window of length n (10 µs in this
work) is fed to the power manager, to learn the power profile and derived reliability for different applications.
The power manager determines the optimal power management policy based on the sensed data (power
trace) and its reliability. The key advantage of employing a reinforcement technique is that the decision
is learnt based on its experience rather than using labels that might prove to be less effective, especially
considering reliability which is different for different applications. Moreover, the decision made by the RL
changes if the achieved reward is decreasing (or going in negative direction), which facilitates to improve
the quality of power management. To overcome the convergence constraints of the RL, the threshold on
number of loops to be run is enforced, as use of deep RL might increase latency and operational costs.
Furthermore, the power management is carried out at regular intervals (n) to facilitate sufficient time for
switching activities and the decision making. More details on the simulation settings are provided in Section
6. It needs to be noted that the power and reliability data presented in Figure 2 are vectors and is a function
of time. The application-level power trace is represented as a matrix X , where each column represents the
power trace for different applications at one time instant. Similarly, the reliability is represented as vector R.

4 REINFORCEMENT LEARNING (RL)

Reinforcement learning (RL) is a ML technique that mimics one of the most common learning styles in
natural life, i.e., to learn to achieve a goal by trial-and-error interaction with a dynamic or uncertain
environment [Liu et al. 2010; Tan et al. 2009]. In RL, interactions between the learning agent and the
environment are generally modeled using a finite state space S (corresponding to environment inputs), a
set of available actions A (corresponding to control/optimization knobs used by the agent), and a reward
Manuscript submitted to ACM
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Fig. 2. Multi-coremicroprocessor equippedwith the proposed application-and thermal-reliability aware powermanager.

function R : S × A→ R (used to decide which action to take for a given state). The ultimate goal of RL is
to figure out a policy π (s) = a, which chooses action a ∈ A in each state s ∈ S (i.e., a mapping between
the states and the actions), to optimize a reward function (i.e., to maximize the cumulative rewards over a
potentially infinite time span).
Q-learning: Q-learning is one of the most popular algorithms used to perform RL [Liu et al. 2010; Tan

et al. 2009]. In Q-learning, a Q-value is associated to every state-action pair (s,a), denoted as Q(s,a). The
value of Q(s,a) approximates the expected long-term cumulative reward of taking action a starting from
state s . In this way, the agent decides which action has to be performed in the current state so as to achieve
the maximum long-term rewards based on the value functionQ(s,a). Namely, at decision epoch tk when the
system has just transitioned to state sk ∈ S, the action ak with the highest Q-value will be chosen. During
the first few iterations, the RL chooses an action randomly and based on the obtained reward, the actions
are learnt. The Q-learning has the benefit as it is a model-free learning algorithm, it is not necessary for
the Q-learning agent to have any prior system information, such as the transition probability from one
state to another. Therefore, it is a highly adaptive and flexible technique, which is one of the reasons to be
considered in this work.
The fundamental aspect of Q-learning algorithm is the value iteration update of the Q-value function.

Particularly, the Q-value for each state-action pair is initially pre-defined (or set random). However, these
values are updated every time an action is issued and a reward is received. That is, at decision epoch tk+1,
the Q-value Q ′ (sk ,ak ) is updated according to the received reward as:
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Q ′(sk ,ak ) ← Q(sk ,ak )︸    ︷︷    ︸
old value

+ βk︸︷︷︸
learning rate

·


expected discounted reward︷                                         ︸︸                                         ︷

rk+1︸︷︷︸
reward

+ γ︸︷︷︸
discount factor

·max
a∈A

Q(sk+1,a)︸            ︷︷            ︸
max future value

−

old value︷    ︸︸    ︷
Q(sk ,ak )


(6)

where rk+1 is the expected reward at time tk+1 after taking action ak at time tk ; γ ∈ (0, 1) is the discount
factor; and βk ∈ (0, 1) is the learning rate at time tk . The next time state s is visited, the action with the
maximum Q-value will be chosen, i.e., π (s) = maxa∈AQ(s,a), given that the Q-value was updated, it might
lead to a different action than the one taken last time state s was visited. In this work, we set the discount
factor as 0.28 and learning rate as 0.72. These factors are determined based on a wide range of experiments
and set the values that yield the best performance.

5 RELIABILITY AWARE POWER MANAGEMENT

In this section, we present the proposed Application- and Thermal-reliability aware Power management by
employing the previously discussed RL technique. One of the key challenges to perform power management
considering the reliabilities is that application and thermal reliabilities have different units. For instance
time-dependent dielectric breakdown are presented as parts per million (ppm) defective, whereas soft
errors are quantified as failure in time (FIT) [Seifert et al. 2012; Swaminathan et al. 2017]. As such, a direct
combination of them is invalid.
As mentioned in the previous Section, a RL agent performs near-optimal actions based on the current

state, and the corresponding immediate reward it gets. First we define the state space, and the action space
followed by the way the reward is calculated in this work.

5.1 State Space

There exist various metrics such as power or energy trace, memory access characteristics, priority of the
application, CPU utilization rate, Cycles-Per-Instruction (CPI), temperature and that serves as a factor to
perform multi-core power management and represent the current state of the system. As processing or
employing all the metrics lead to computational overheads and can lead to convergence issues, a subset of
them depending on the applied constraints are considered for power management. The power trace is a
direct representation of the power/energy consumption and aids in performing efficient DVFS. As the state
variables such as power consumption or reliability values are continuous in nature and can take any value,
considering every value to represent a state might incur large computational complexity and hinder the
convergence. To alleviate this, a set of discretized values are considered, and the original values are mapped
to these discrete values of a state depending on how close the original value is to the discrete value. For
instance, an original power consumption of 345mW will be mapped to a state having state value of 350mW.
Here, the example is provided with just one variable in state, but in the simulations the state tuple has three
values, as mentioned later. Furthermore, in contrast to other power management works, as this work also
Manuscript submitted to ACM
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aims to meet the application- and thermal-reliability constraints, they are also considered to represent the
state of the system here. It is non-trivial to consider these variables as the state of the system to ensure the
overall reliability of the system.
Thus, the state of the system for the reinforcement learner (agent) are the per-application power trace

and the corresponding reliability derived based on Equations (2) and (4). As such, each application has k
states denoted by s1, s2, ..., sk , where s1 < s2 < ...< sk i.e., arranged in terms of ascending order of power
consumption. Each state here represents the power consumption of the running application and it’s reliability
i.e., si = {pi , ri , tri }, where power in the i-th state are represented by pi with corresponding application and
thermal reliability as ri , and tri , respectively.

5.2 Action Space

Each RL agent conducts a search into finite discrete space of possible target VF transitions as the action
space, denoted by A = {a1,a2, ...,an}, where action ai indicates assigning i-th voltage and frequency levels
(vi , fi ) to the application. To avoid the convergence and complexity issues arising from the RL, we limit the
number of feasible actions by having only 4 VF levels in this work.

5.3 Reward

The reward function has to be defined based on the state and the action taken by the RL agent. Thus, the
reward has to comprise of the power consumption, reliability (thermal and application). As mentioned
earlier, it is not straight forward to combine different reliabilities due to differences in their behaviors and
cardinality. To over come these concerns works such as [Swaminathan et al. 2017] proposed use of principal
component analysis. Though effective, this is limited by few factors such as non-linear or orthogonal
relationship between application and thermal reliabilities, and the involved complexity to run in the utilized
scenario. As such, we consider the variation in the reliabilities w.r.t. the desired reliability. The reward is
calculated as a function of the reliability and energy savings. The reward associated with transitioning from
state s to s ′ is given by

rk+1 |(s,a,s ′) = α1(∆FR/FRk ) + α2(∆TR/TRk ) + α3(∆E/Ek ) (7)

where s ′ indicates all the possible states from state s when action a is performed; ∆FR/FRk and ∆TR/TRk

are the change in functional and thermal reliability w.r.t existing reliability when transitioned from state s
to s ′ with action a; similarly the different in power consumption due to transition is given in second term
(∆E/Ek ). The α1, α2, and α3 are the constants, set to 0.33 in this work. The functional and thermal reliability
are derived based on Equations (2) and (3), respectively.

5.4 Power Management Policy Generation

We describe the power management policy generation by the RL agent here based on the described state,
action, and the reward.
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For an effective power management, the power management has to be proactive, as reactive power
management is inefficient due to computational delays, we first predict the power trace based on the previous
traces and generate the power management policy as follows. The input for the power management policy
generator is the power trace of the system at application-level granularity. To facilitate a proactive runtime
power management with less overhead, a linear predictor based power trace prediction is performed first,
as in (8).

p(t + 1) =
z∑

k=0
wkp(t − k) + ϵ (8)

where, p(t + 1) represents the power at time-instant t ,wi represents the coefficient for regression; and
the error is denoted by ϵ . In this work the order is represented by z, set to 8 in experiments. The order
is determined based on experiments to achieve lower error without overheads. With the chosen order,
an average root mean square (RMSE) of 0.53 is achieved. Once the power is predicted, the corresponding
reliability is derived, as given in Section 2.3. As the power trace is continuous in distribution, assigning
each value to a state increases the computational complexity for the reinforcement learner. To avoid this
computational complexity, the predicted power trace and the reliability is quantized and a state which has
the closest power and reliability values to the fed predicted power and reliability is chosen as current state.
The state comprises of power and reliability i.e., state si = {pi , ri , tri } where pi denotes the power for state
i , and corresponding reliabilities by ri and tri , as described previously. As each application has k states
denoted by S = {s1, s2, ..., sk }, based on the predicted power and reliability, one of the states is assigned.

Based on the Bellman’s principle of optimality [Bellman 2003], given the states, and reward function, the
optimal policy can be derived as

π ∗(s) = arдmax
a
(Q ′(s,a)) (9)

the Q ′(s,a) is presented in (6). This π ∗(s) denotes the optimal policy for the system, given the system is in
state s . As such, we generate the optimal state-action pairs based on the inputs. As the power management
policy generation is performed offline and deployed online, the associated computational overheads does
not impact power management. The proposed reliability aware power management policy is not restricted
any specific type of reliability model or architecture, rather can be employed on different systems and with
different reliability models.

An example of proposed Q-learning based application- and thermal-reliability aware power management
is shown in the Figure 3. Based on the predicted power consumption, as given in (8), and the derived
application and thermal reliability for the given application, one of the states is mapped. For mapping,
we consider the state with closest power consumption value. For instance, as shown in Figure 3, if the
predicted power is 1.56W, then the closest state is s4, as such the current state is considered as state s4.
Further, depending on the current state and the chosen policy based on (9), one of the policies is chosen.
The chosen policy and transitions are shown with a dotted line in Figure 3. Based on the chosen action and
the power consumption and reliability variations, the new reward is calculated and fed to the policy maker.
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State s1 
1W

State s2 
1.2W

State s3 
1.4W

State s4 
1.6W

Predicted 
power – 1.56W  
(corresponding 

thermal and 
application 
reliability) 

State s1 
1W

State s2 
1.2W

State s3 
1.4W

State s4 
1.6W

Policy
{a1 s4

a2 s3

a3 s4

 a4 s2}

Minimum Q 
value

 Q(s2, a4) 

Power 
consumption

Action 
definition:

a1(2) : sisi+1(i-1)

a3(4) : sisi+2(i-2)

a5 : sisi

Based on predicted power, it 
is mapped to State s4 

Function Selection(): action based 
on policy

Change VF 
settings 

corresponding 
to state S2

Output DVFS settings from 
reinforcement learning

Achieved 
reliability

Policy based 
action

Available Flow 
Path

Fig. 3. An example describing the proposed application- and thermal-reliability aware reinforcement learning based
power management.

This process is repeated multiple times for convergence during the training phase. At the time of testing, as
the policies are already pre-defined, the assignment happens in one iteration, leading to lower overhead.
For the purpose of brevity, the reliabilities are not shown in Figure 3.

Summary

The whole process of RL-based application- and thermal- reliability-aware power management is outlined
in Algorithm 1.

Algorithm 1 Reliability-aware Power Management for multi-core system
Input: Power trace monitored at application-level granularity for all applications running (P ), and runtime
Output: Voltage-Frequency (VF) settings
1: Predict power trace as P(t + 1) =

∑z
k=0wkP(t − k) + ϵ

2: Estimate corresponding application reliability, as in (2)
3: Estimate corresponding thermal reliability, as in (3)
4: Assign state for predicted power trace, and reliability i.e., {p(t + 1), r } → si , si ∈ S
5: Calculate reward rk+1 as in (7)
6: Obtain the Q-values, as in (6)
7: Based on Bellman’s principle, an action with optimal policy is derived as in (9)
8: The optimal policy provides the action to be taken i.e., VF settings will be fed to DVFS controller for

application-reliability aware power management
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In the first step, based on the obtained power trace of an application, the power trace for future time-
instants are predicted as in Line 1 of Algorithm 1. The corresponding reliability is derived for the application,
as in Line 2-3. Based on the predicted voltage and reliability, one of the states are assigned, and the reward
for the next time step based on all the possible actions for the given state is calculated and the corresponding
Q-values are obtained, as given in Lines 4-6. Lastly, based on the Bellman’s optimality principle action with
maximum Q-value is considered as optimal and fed to the DVFS controller to perform power management,
as given in Line 7-8 of Algorithm 1. In the simulations, we impose the constraints on the number of iterations
performed for improved convergence.

6 SIMULATION RESULTS

Here, we present the simulation settings, followed by the experimental analysis and comparison with the
existing traditional power management techniques.

6.1 System Settings

The proposed power management is implemented in Snipersim simulator [Carlson and et.al. 2014], which
is parallel, interval-accurate, high-speed and accurate x86 simulator. Standard Intel Xeon microprocessor
microachitecture based 22 nm core models are used in the simulations. The maximum voltage and frequency
levels are 1.0 V and 2.0 GHz, respectively. In simulations, we use four voltage-frequency levels for power
management, that are supported by standard Xeon processor cores: (1 V, 2.0 GHz), (0.9 V, 1.8 GHz), (0.8 V, 1.5
GHz) and (0.7 V, 1.0 GHz). However, this could be modified depending on the simulation environment and
the utilized cores, and the proposed power management is independent of the underlying core architecture.
To facilitate enough time for switching of VF levels and reduce the processing overheads of the monitored
data, the application power traces are sampled at 10 µs, though the time required for switching is in the
range of few µs, as reported in [Singhal 2008]. Additional details on the configuration of microprocessor core
and other components are presented in Table 1. In order to validate the power management, simulations are
run with PARSEC (blackscholes, x264, bodytrack, swaptions, streamcluster, canneal, dedup, and fluidanimate
applications are executed on the multi-core system) benchmark [Bienia and et.al. 2008]. The number of
cores are varied from 2 to 32 for simulations.

6.2 Performance Analysis

Here we present the energy savings, runtime, and application reliability improvement with the proposed
power manager and some other existing power management techniques.

6.2.1 Power Management at Different Abstraction levels . The proposed technique focuses on power
management at application-level. However, it is also possible to perform power management at lower
abstraction level (core-level) and higher abstraction level (system-level or per-chip level). As a case study, we
present the impact of power management at different abstraction levels for a 4-core processor. For analysis,
Manuscript submitted to ACM
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Table 1. Overview of Core Configuration.

Item Description Value

Microprocessor core

Frequency (Max) 2.0 GHz
Voltage (Max.) 1.0 V

Technology node 22 nm
L1-I cache 32 KB
L1-D cache 32 KB
L2 cache 256 KB

L3-Cache 8 MB

Uncorrelated
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Fig. 4. Average power savings with proposed power management at different abstraction levels.

multi-threaded applications are chosen based on the manner the workloads are distributed among cores.
Two workloads categories are chosen: a) tightly coupled; and b) loosely coupled workloads. Here, tightly
coupled workload indicates that the workloads of an application are evenly distributed among multiple
cores, and loosely coupled workload indicates that the workload of an application is unevenly distributed
among multiple cores.
The normalized average power consumption at three different granularity levels for a microprocessor

running multi-threaded application(s) is shown in Figure 4. Following are the observations:

• For loosely coupled multi-threaded applications, application level power management has better
power savings compared to system level, if the applications are uncorrelated i.e., applications are
dissimilar.
• If theworkloads are loosely coupled and correlated i.e., similar workloads, system-level and application-
level power management achieve similar power savings.
• In case of single multi-threaded application (shown as single application in Figure 4) distributed
among all the cores, irrespective of granularity, the power management achieves similar performance,
if the application is tightly coupled.
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• For a loosely coupled application, system-level and application level power management has similar
performance.

As seen, per-core power management has better power savings, however this adds additional overheads
such as monitoring, power regulators for each of the core. System level power management has smaller
overhead, and reduced power saving compared to per-core power management. Per-application level power
management has performance in-between per-core and system-level power management. As running
multiple applications which are dissimilar in nature is much realistic on multi-core systems, per-application
based power management is considered as a better choice for power management here. Some of the recent
works have also shown that application-level is optimal for future multi-core power management and has
smaller overheads compared to per-core power management [Rahmani and et.al. 2017; Shafique et al. 2016],
despite power saving with per-core being higher.

6.2.2 Energy Savings. In order to consider the power savings as well as performance (timing), we
evaluate the effectiveness of proposed power management technique in terms of energy savings, compare
the achieved energy savings of proposed technique with other prior techniques. There are many prior
techniques for power/energy management. We implemented few prior techniques such as [Manoj et al.
2015; Rountree and et.al. 2011; Yang and et.al. 2015; Zaman and et.al. 2015] (with minor adaptations such
as power management at application-level) for a fair comparison. The rationale for choosing these are as
follows: In [Manoj et al. 2015], prediction of workload using Auto-Regressive Moving Average (ARMA) and
a Singular Value Decomposition (SVD) based VF level assignment is carried out, which has shown better
scalability for future multi-core systems. Machine learning equipped power management is proposed in
[Zaman and et.al. 2015], where SVM based regression for predicting workloads and SVM classifier based VF
level assignment is employed. The sparse encoding is not implemented, as the data is not as large as that in
the original work. A linear regression with offline learning or modeling based workload prediction and
VF level assignment is utilized in [Rountree and et.al. 2011; Yang and et.al. 2015], which is light-weight in
nature. Similar resemblances can be observed from other existing works.

Figure 5 presents the normalized energy consumption for multi-core system with 2, 4, 8, 16, and 32 cores.
In Figure 5, X-axis represents the number of cores on which the benchmark applications are run and the
Y-axis represents the normalized energy. In the legend of Figure 5, ’Proposed’, ‘Linear’, ‘SVM’, and ‘STM’
represents the energy consumptions with proposed technique, linear regression based power management
[Rountree and et.al. 2011; Yang and et.al. 2015], SVM [Zaman and et.al. 2015] and space-time multiplexing
[Manoj et al. 2015] based power management techniques, respectively. For the experimental evaluation of
proposed and other power management works, the benchmark applications are randomly assigned to cores.

The following observations can be made. For a system with small number of cores (2 cores), use of light
weight techniques (such as linear regression based power management) is beneficial. However, for large
number of cores, proposed power manager has higher performance compared to other techniques. The
rationale for these differences can be mentioned as follows.
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• For miniature systems with 2 cores or less, the Q-learning adds higher computational overheads i.e.,
the computations required to perform power management can incur more computations or overheads
compared to execution of workloads without power management.
• For larger systems the achieved energy savings are higher compared to the additional overheads.

These observations clearly indicate that the proposed technique is scalable and beneficial for modern day
and future multi-core and many-core systems. On an average, energy savings of 20.0% is achieved with
proposed technique compared to linear regression based power management [Rountree and et.al. 2011;
Yang and et.al. 2015] for system with up to 32 cores. Similarly, an average energy saving of 11.0%, and 7.7%
are achieved with proposed power management technique compared to SVM [Zaman and et.al. 2015] based
and space-time multiplexing [Manoj et al. 2015] based power management techniques.
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Fig. 5. Average energy consumption with proposed power management for microprocessor with different number of
cores.

6.3 Application-Reliability

The employed reinforcement learning based power manager not only considers power or energy savings
as feedback (reward), but also considers the reliability of the application. Similar to energy savings, we
compare the achieved application reliability with existing power management schemes.
Figure 6 presents the achieved application reliability with proposed RL based power management and

other power management works. One can observe that existing power-centric or performance-centric
power management techniques have an impact on reliability as the energy savings improve.

• In contrast to the power-saving oriented works, with the proposed power management, the reliability
is also enhanced together with energy savings.
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Fig. 6. Average application-reliability with proposed power management and other power management works.

In this work, the ∆ of equation (1) is set to 1, and λ0 is set to 10−6, similar to [Salehi and et.al. 2015].
Even under optimal settings of having low functional vulnerability index (FV I = 1), the proposed RL based
power management achieves higher reliability compared to other prior techniques. In comparison with
prior techniques that consider reliability for power management, the proposed technique has an advantage
of learning the reliability variations with VF settings, and also learning characteristics makes proposed
application- and thermal-reliability aware power management achieve higher reliability. In comparison to
linear regression, SVM, and STM based power management, proposed power management has 1.8×, 1.99×,
and 2.08× lower variance in terms of reliability, respectively on an average for a microprocessor with up to
32-cores executing PARSEC applications. This is shown in Figure 6, lower variance indicates better stability.

6.4 Thermal Reliability

In addition to power savings and improvement in the application reliability, the proposed powermanagement
scheme as well considers the thermal reliability into consideration. This leads to improvement in the thermal
reliability of the multi-core system. The thermal map at chip-level is obtained through McPAT tool. For the
purpose of obtaining the thermal reliability at an application-level granularity, we consider the worst-case
temperature for each application i.e., for an application running on (say) cores 1, 2 and 4 with core 4 having
maximum temperature among the three, we consider core 4’s temperature for obtaining thermal reliability
to account for worst-case scenario. The temperature reduction and thermal reliability improvements are
shown in Figure 7. Figure 7(a) shows the thermal map of a 16-core processor. One can observe reduction in
temperature with the proposed power management. A temperature reduction of up to 4.926 ◦C is observed.
For the performed experiments with up to 32 cores, on an average a 2.193 ◦C reduction across cores is
achieved. As most of the power management works are power saving and application reliability focused,
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for fairness we did not compare the thermal savings with existing power management works. On the other
hand, thermal management works are temperature focused rather than power saving focused, hence a
comparison will be unfair.
In addition to reduction temperature, improvement in thermal reliability is also observed, as shown in

Figure 7(b). On an average 99.73% thermal reliability is achieved with the proposed power management,
which is nearly 5% higher on an average compared to the multi-core system without any power management.
Though the numbers might look small in terms of difference, this difference can become higher when the
system is run for longer periods of time, due to accumulated heat.

• Thus, in addition to the energy savings and reliability enhancement, the proposed power management
scheme can also result in lower on-chip temperatures leading to higher efficiency.
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Fig. 7. (a) Reduction in temperature with the proposed power management; (b) improvement in thermal reliability of
system.

6.5 Overhead Analysis

As the proposed power management technique involves switching and computations, it adds overheads to
the system, which we discuss here. The incurred switching activities and computation (needed to predict
the VF levels) involve overheads, we measure the execution time of the application without any power
management technique and under different power management techniques. The additional execution time
can be considered as the overhead caused due to involved computations and VF switching. The average
runtime for all the executed benchmark applications on multi-core systems with 2 to 32 cores under different
power management techniques is outlined in Table 2, obtained from McPAT of SniperSim. Compared to
system which has no power management, proposed power management adds nearly 24% overhead in terms
of runtime. However, compared to power management techniques like linear regression, SVM, and STM,
proposed technique has 22.3%, -6%, and 5.4% reduced runtime, respectively. In the experiments, the linear
regression based power management has to be performed with a large order to achieve similar power
savings, leading to larger runtime. The reduced runtime with proposed technique is because of embedded
learning in proposed power management of application characteristics and reliability. We anticipate that
the runtime for SVM is lower than proposed technique due to the involved complexity.Manuscript submitted to ACM
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Table 2. Average runtime (in seconds) for applications running on multi-core system.

No DVFS Linear SVM STM Proposed
0.101 0.149 0.118 0.130 0.124

7 CONCLUSION

Existing power management techniques perform power management under the constraints of power
or performance budget. However, application-reliability is impacted by lowering voltage-frequency, and
thermal reliability is exacerbated with increase in voltage-frequency levels. In response, we proposed
application- and thermal-reliability aware reinforcement learning based multi-core power management
technique. In the proposed power management technique, the power trace monitored at application-level
granularity is fed to the reinforcement learner (Q-learner) along with the application and thermal reliability.
The Q-learner optimizes the VF settings for the next time period for the application, considering both
reliability and power consumption (defined in reward function). With the proposed technique, an energy
saving of up to 20% on average, no degradation in application reliability (up to 2.08× lower variation in
application reliability), up to 4.926 ◦C temperature reduction and lower runtime is achieved when compared
with existing power management techniques.
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