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Abstract—The dynamic stability margin of SRAM is largely
suppressed at nanoscale due to not only dynamic noise but also
process variation. This paper introduces an analog verification
for SRAM dynamic stability under threshold-voltage variations.
A zonotope-based reachability analysis by the backward Euler
method is deployed for SRAM dynamic stability in state space
with consideration of SRAM nonlinear dynamics. It can simulta-
neously consider multiple SRAM variation sources without mul-
tiple repeated computations. What is more, sensitivity analysis is
developed for zonotope to optimize SRAM designs departing from
unsafe regions by simultaneously tuning multiple SRAM device
parameters. In addition, compared to the SRAM optimization
by single-parameter small-signal sensitivity, the proposed method
can converge faster with higher accuracy. As shown by numerical
experiments, the proposed optimization method can achieve 600×
speedup on average when compared to the repeated Monte Carlo
simulations under the similar accuracy.

Index Terms—Design for manufacturability, memory, mixed-
mode, performance optimization, simulation, transistor-sizing.

I. Introduction

ROBUSTNESS verification and optimization have become
an emerging need for integrated circuit (IC) designs at

nano-scale such as SRAMs. Static noise margin (SNM) [1], [2]
is traditionally deployed for SRAM stability characterization
because of its simple interpretation and measurement. As it
may overestimate read-failure and underestimate write-failure,
dynamic stability margin [3] is increasingly adopted by de-
ploying critical word-line pulse-width that can produce a better
estimation of failures. However, the verification of SRAM
stability margin becomes even harder at nano-scale. Firstly,
due to the nonlinear dynamics, the SRAM characteristic be-
havior becomes not digital but more analog. Moreover, process
variations such as threshold-voltage variations [4]–[13] can
further significantly suppress the SRAM stability margin, and
hence result in higher failure rate during read/write operations.

The robustness verification and further optimization of
SRAMs have become thereby necessary to provide designers
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a close scrutiny of potential hazards, such as threshold-voltage
variations from all transistors. The primary challenges in
traditional approaches for robustness verification and opti-
mization are the complexity to deal with multiple dimensions
of variation sources and device parameters. No matter the
deterministic corner analysis or the statistical Monte Carlo
analysis, the fundamental problem of complexity is from many
repeated computations performed for each different condition
of variation source and parameter. There is a need to efficiently
report the status of failure with consideration of multiple varia-
tion sources just by one verification simultaneously. Moreover,
a verification-driven optimization is also required, which can
guide designs departing from unsafe region by further tuning
multiple device parameters at the same time.

Many works are performed from statistical perspective
[14], [15]. Based on dc characteristics of inverters, stability
analysis has been performed in [14] by modeling failure
with normal distribution even when failure occurs in tail of
normal distribution. In [15], accurate estimation is achieved
without the assumption of normal distribution of failure
probability but is based on the most probable failure point
searching. Moreover, importance sampling is utilized to avoid
the prohibitive Monte Carlo simulation by only capturing
relevant rare event in. A number of recent works have been
performed from deterministic perspective as well [16]–[20].
For example, Euler–Newton curve-tracing [17] is utilized to
find the boundary between the safe and unsafe regions without
brute-force exploration. The work in [20] further formulates a
dynamic stability margin to characterize the stability boundary,
namely, the separatrix [18]. But, the search for boundary is
limited to two parameters, and the computational cost can
be prohibitive when considering parameter variations from
all transistors. What is more, it is unclear how to perform
parameter adjustment for SRAM robustness optimization that
can help designs depart from unsafe regions.

Reachability analysis has been widely deployed in verifi-
cation of system dynamics by exploring potential trajectories
of operating points in state space. It can conveniently provide
accurately predicted boundary of multiple trajectories under
uncertain inputs and/or interval parameters by one-time com-
putation, in contrast to simulate different trajectories one by
one to explore. The reachability analysis has been deployed
for a number of hard analog circuit verifications [21]–[26].
Starting from a set of uncertain inputs, the set of system
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trajectories in state space can be bounded by zonotope-based
over-approximation [27], [28]. One can perform time-interval
integrated reachability analysis with formed zonotope that can
distinguish safe and unsafe regions at final set. As such, one
can verify failure of system trajectory in state space without
multiple repeated simulations. What is more, one can also
formulate the set when adjusting multiple device parameters
by zonotope approximation, and thereby further optimize the
system trajectory to depart from the unsafe region to the safe
region. However, the limitations of previous zonotope-based
reachability analysis are mainly twofold. First, explicit time-
interval integration is computationally expensive when consid-
ering nonlinearity during SRAM verifications. It is unknown
how to develop a SPICE-like implicit time-interval integration
of zonotope-based reachability analysis with consideration of
linearization error update. Second, the zonotope-based sensi-
tivity analysis is different from the traditional single-parameter
small-signal sensitivity. One need to explore the set based
sensitivity in term of distance to the safe/unsafe region inside
a sequential of verifications based optimization.

In this paper, we introduce a zonotope-based reachability
analysis for both verification and optimization of SRAM
dynamic stability. The formulation of zonotope is based on
over-approximation defined by a hypercube. Alternatively,
sensitivity analysis of zonotope with respect to multiple device
parameters is also derived to guide SRAM optimization that
can depart from unsafe region. As a summary, there are
two primary contributions of this paper. Firstly, to consider
SRAM nonlinear dynamics, a backward Euler method is
developed for the zonotope-based reachability analysis with
linearization error control, which can efficiently consider mul-
tiple variation sources for the SRAM robustness verification.
Secondly, a zonotope-based sensitivity analysis is introduced
for safety distance, which can generate multiparameter large-
signal sensitivity for the SRAM robustness optimization. The
proposed verification and optimization procedures are both
implemented in a SPICE-like simulator with nonlinear device
model of transistors. Moreover, as multiple-parameter large-
signal sensitivity is generated for safety distance, compared to
the traditional single-parameter small-signal based sensitivity
optimization, the proposed method can converge fast with
high accuracy. Compared to Monte Carlo optimization, the
proposed method can achieve speedups up to 600× with
similar accuracy.

The rest of this paper is organized as follows. Section II
reviews the SRAM failure mechanisms with consideration
of threshold-voltage variations. Section III describes the
zonotope-based based nonlinear reachability analysis, which
is further deployed in the robustness optimization with safety
distance sensitivity calculation for SRAM dynamic stability in
Section IV. The proposed method is validated by experiments
in Section V for different SRAM malfunctions including write
and read failures. Conclusions are drawn in Section VI.

II. Problem Formulation of SRAM Failure

Verification and Optimization

Similar to [16]–[20], the scope of this paper focuses on the
transistor-level analytical approaches for the SRAM dynamic

stability verification and optimization under threshold-voltage
(Vth) variations. When statistical distribution of Vth variation
is known, one can efficiently generate yield statistics from
the transistor-level verification results. There exists serious
concern of 6T-SRAM with Vth variation [5], [6]. The resulting
mismatch among transistors can lead to SRAM functional
failures during read and write operations. What is more,
though transistor sizing may compensate the negative impact
of Vth variations, it is unknown how to adjust transistor size
for robustness optimization for the sake of SRAM dynamic
stability.

In this section, we introduce the definition to quantitatively
describe the robustness of SRAM dynamic stability.

Definition 1: Safety distance is the Euclidean distance
||psafe − x||2 in the state space between operating point x and
the safe state psafe.

The operating point x or safe state psafe depends on both the
time instant t and input stimulus u. Hence, the safety distance
||psafe − x||2 is a function of both time instant t and input
stimulus u. The input corners of the state space are employed
to ensure the safety for the possible input stimulus. The idea
of zonotope-based reachability verification in the state space is
based on the fact that the instability hazards can be visualized
as unsafe regions and the Euclidean distance to safe region
becomes a measure of system safety. From this perspective, it
is the first time in literature to deploy Euclidean distance to
describe the safety distance for verification and optimization
by this paper.

Note that different from separatrix based approaches [18],
[20], the safety distance provides indication on the optimiza-
tion direction of trajectory. As such, it can be conveniently
leveraged within reachability analysis to consider parameter
and also input variations at the same time by performing one-
time transient simulation.

A. Failure Mechanisms

In the following, we describe physical mechanisms of
SRAM failures, including read and write failures in terms
of safety distance in the state space. In addition, recall that
there exist two convergent regions in the state space of SRAM
[18]. Operating points on either region converge to the nearest
equilibrium state.

1) Write Failure: A write failure refers to the inability
to write data properly into the SRAM cell. During write
operation, both access transistors should be strong enough
to change the voltage level at internal nodes. As shown in
Fig. 1, write operation can be described in the state space as
the procedure of pulling the operating point from initial state
(bottom right corner) to the target state (top left corner). Thus,
the safety distance refers to the distance between one operating
point and the target state at top-left corner. Given enough
time, the operating point will converge to the nearest stable
equilibrium state either at top-left or bottom-right corner. The
write operation is aimed at pulling operating point into the
same region with the target state and thus helping the safety
distance converge to zero, as shown by point B in Fig. 1.

The V th variations, however, may cause write failure. An
increase in V th can reduce the strength of the transistor. For
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Fig. 1. Illustration of write failure by safety distance.

example, increase of V th in M6 along with the decrease of
V th in M4 can make it more difficult to pull up v2. In
the state space, the operating point moves slowly toward the
target state under this condition. If operating point cannot
reach other convergent region before access transistors are
closed, it will move back to the initial state which means
write failure happens. To resolve the failure, tuning width of
M6 can be increased while narrowing M4 can help to reduce
safety distance and hence can mitigate the side effect from
V th variations.

2) Read Failure: A read failure refers to the loss of
previously stored data when SRAM flips to the other state
during read operation. Access transistors need careful sizing
such that their pull-up strengths are not strong enough to pull
digital 0 to 1 or vice-versa during read operation. In the state
space, one operating point of SRAM is inevitably perturbed
and pulled toward the other convergent region. In this situation,
the safety distance is from the operating point to its initial
state. If read operation does not last too long, access transistors
can be shut down before the operating point converges to the
other region. The safety distance will converge to zero as the
operating point returns to the initial state in the end, as shown
by point A in Fig. 2.

The V th variations may also cause read failure. For example,
variations caused by mismatch between M4 and M6 can
result in unbalanced pulling strengths and v2 can be pulled
up more quickly. As a result, the operating point crosses to
the other region before read operation ends with failure, as
shown by point B in Fig. 2. To resolve the read failure, width
of M6 needs to be scaled down to avoid excessive pulling
strength. However, this may lead to write failure as illustrated
in previous subsection. In addition, V th variations in M1–4
affect the locations of converging regions on the state-variable
plane. As the opposite converging region migrates closer to the
initial state, it becomes more likely for read failure to happen.

Therefore, a full and fast verification considering V th vari-
ations from all transistors are needed to include all potential
hazards, which will be done by our reachability-based method.
Another problem addressed in this paper is to find an appro-
priate combination of sizing from all transistors to optimize
the robustness of SRAM dynamic stability by circumventing
potential hazards caused by V th variations. In addition, one
needs to balance both read and write operations during the
optimization for the SRAM dynamic stability.

B. SRAM Dynamics
1) Nonlinearity: One primary challenge for SRAM dy-

namic stability verification and optimization is its nonlin-
ear dynamic behavior. The time-evolution of safety distance

Fig. 2. Illustration of read failure by safety distance.

depends on the nonlinear dynamics of SRAMs, which can be
described by the differential algebraic equation (DAE)

d

dt
q(x(t), t) + f (x(t), t) + u(t) = 0 (1)

in which state variable vector x(t) and input vector u(t) are
deployed. In this DAE equation, taking dynamics of SRAM
as an example, f (x(t), t) includes drain current of transistor;
q(x(t), t) is charge accumulated on the gate or parasitic capac-
itors; u(t) is the input current as well as noise current in (6);
and vector x includes node voltages and branch currents.

After Newton iteration is performed at a selected operating
point (or nominal point) x∗, the SRAM nonlinear dynamics
by f (t) can be linearized as ∂f

∂x

∣∣∣
x=x∗

. Based on the mean-value
theorem, the dynamic equation at any neighbor operating point
x can be expressed by

d

dt
q(x(t), t) + f (x∗, t) + u +

∂f

∂x

∣∣∣∣
x=x∗

(x − x∗)

+
1

2
(x − x∗)T ⊗ ∂2f

∂x2

∣∣∣∣
x=ξ

⊗ (x − x∗) = 0, (2)

ξ ∈ {x∗ + α(x − x∗)|0 ≤ α ≤ 1}
where x∗ is the nominal point and x is one neighbor point near
x∗; and ⊗ represents the tensor multiplication. The 2nd-order
remainder in (2), i.e., the difference between nonlinear f (t)
and its linear approximation, is called as linearization error
denoted by L.

The SRAM dynamic equation thereby can be depicted in a
simplified form by

d

dt
(q(x∗, t) + C�x) + f (x∗, t) + u∗(t) + G�x + �u + L = 0 (3)

in which

C =
∂q

∂x
|x=x∗ , G =

∂f

∂x
|x=x∗ ;

�x = x − x∗, �u = u − u∗. (4)

Here, u is decomposed into u∗ and �u, in which u∗ is the
noiseless input and �u is the input noise independent of x.
Assume that q(x, t) can be further decomposed into q(x∗) and
C�x. Thus, one can obtain

d

dt
q(x∗, t) + f (x∗, t) + u∗(t) = 0 (5a)

d

dt
C�x + G�x + �u + L = 0 (5b)

in which (5a) is the nonlinear differential equation for nominal
point x∗ and (5b) is the linear equation with Euclidean distance
from nominal point x∗ to the neighbor point x.
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Fig. 3. SRAM with threshold-voltage variations modeled by additional cur-
rent sources for all transistors.

On the basis of (5), reachability analysis can be deployed
for SRAM dynamic stability verification and optimization in
the state space as discussed later. Note that by using L,
nonlinearity is considered and thus reachability analysis can
be performed on nonlinear trajectories with high accuracy.

2) Multiple Variation Sources and Multiple Device Pa-
rameters: Moreover, we discuss how to introduce multiple
variation sources and also multiple device parameters into
the state equation. First, multiple threshold-voltage variation
sources in SRAM can be introduced at the input u as additional
noise current sources, which are added to the drain current of
each transistor in SPICE as shown in Fig. 3.

Based on the first-order Taylor approximation, drain current
for transistor operating in saturation region is presented in (6).
For the simplicity of presentation, we only show the drain
current equation in the saturation mode. In the experiment,
we employ drain current equations that depend on transistor
operation modes. The operation mode of each transistor is
derived after Newton iterations at the present time instance
similar to SPICE. Note that the threshold voltage variation is
modeled as an ad-hoc noise drain current that is computed
afterward based on the operation mode of the transistor.
Operation mode transition can happen in the next time instance
if the noise current value is large enough to cause the change

Id + �Id = β[Vgs − (Vth + �Vth)]2

�Id ≈ −β(Vgs − Vth)�Vth. (6)

The threshold-voltage variation of each transistor �Id can
be included by �u of (5b)

�u = u − u∗ = [0, ...,

node a︷︸︸︷
�Id

j , ...,

node b︷ ︸︸ ︷
−�Id

j , ..., 0]T (7)

as an independent current source. �u represents the jth varia-
tion of current source connected between nodes a and b. The
other process variations can be also conveniently considered
in the similar way.

What is more, perturbations of multiple device parameters
can be considered as well. Suppose that each transistor in
SRAM has width perturbation �W that affects transconduc-
tance gm, namely, �gm. One can have

�gm =
∂gm

∂W
�W. (8)

On basis of �gm, the device parameter perturbations can be
included into conductance matrix by �G as follows:

�G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
∂gm

∂W
−∂gm

∂W

−∂gm

∂W

∂gm

∂W
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

�W. (9)

Based on the above discussions to include multiple variation
sources and multiple device parameters, one can deploy zono-
tope to form a set of region for multiple variation sources and
multiple device parameters. With the further development of
linear multistep based integration for zonotope and its accord-
ing sensitivity, one can develop reachability-based robustness
verification and optimization as discussed in the later part.

C. Problem Formulation

Based on the aforementioned SRAM failure mechanisms
and dynamic analysis, the objective of SRAM dynamic sta-
bility verification is to examine if the safety distance can be
reduced at the final operating point, when considering interval
values of threshold-voltage variations from all transistors.

If the safety distance fails to converge to zero, a robust
optimization of SRAM dynamic stability is proposed in terms
of safety distance with respect to the most adverse combination
of Vth variations. We call this approach as a verification
oriented robustness optimization.

SRAM Robustness Optimization: To ensure SRAM dynamic
stability, one needs to minimize the safety distance measured
at the final state of the system trajectory as follows:

min
w

F (w)

s. t.: Wmin < wi < Wmax, i = 1, 2, ..., m.
(10)

Here, w is the parameter or sizing vector for all transistors
with a defined range [Wmin, Wmax]. Number of process varia-
tions is represented by m. In this paper, the weighted sum of
safety distances for both read and write operations is deployed
as the objective function by

F (w) =

⎧⎪⎨
⎪⎩

Dw(w, tw) + Dr(w, tr), write and read failures

Dw(w, tw), write failure only

Dr(w, tr), read failure only
(11)

where D(w, t) is the safety distance and t is the pulse-width
for read or write operation. Due to the symmetrical structure,
three transistor pairs are used to represent the 6T-SRAM. Thus,
the robustness optimization task to be performed reduces to
a three-dimensioned parameter space, where a parameter-state
point is denoted by w ∈ R3×1.

In the following, we will introduce a solution for the above
problem by a zonotope-based reachability analysis. After the
reachability analysis is performed for verification of safety
distance, sensitivity of safety distance is also obtained to guide
the optimization routine, which can eventually mitigate or
even eliminate failures caused by Vth variations with improved
SRAM dynamic stability.
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TABLE I

Parameters Used in Reachability-Based Verification

Fig. 4. System trajectory and safety distance with zonotopes.

III. Zonotope-Based Reachability Analysis for

Verification

In this section, we show how to deploy zonotope-based
reachability analysis for SRAM dynamic stability verification
in terms of safety distance, and also discuss how to consider
nonlinearity during SRAM dynamic stability verification.

Reachability analysis [23], [24], [27], [28] can efficiently
determine a reachable region that one dynamic system evolves
with a range of states. As such, one can perform one-time
reachability analysis for all potential system trajectories that
form the safe region with the safe distance determined from
the final state set as shown in Fig. 4. The complete flow
of reachability analysis for SRAM verification is shown in
Algorithm 1. The notations used in this section and their
definitions are listed in Table I. Here, X0 is the initial reachable
set in zonotope form, and XN is final reachable set used for
calculation of safety distance and its sensitivity. With the linear
multistep implementation for integration, the runtime cost or
complexity of zonotope-based reachability analysis is similar
with the transient analysis in SPICE. In the following, the
details at each step are illustrated.

A. Reachable Set and Zonotope

Interval-value has been applied to model the uncertainties
of state variables in [4], such as variation sources and device
parameters. For example, if �x1, �x2 model uncertainties in
two different dimensions of state variable x with c as interval
center, the neighboring point including these variations can
be modeled as: x = c + [−1, 1]�x1 + [−1, 1]�x2. However,
there is no formal and efficient verification method developed
to deal with multidimensional interval-value problem.

In this paper, we show that the multidimensional interval-
value problem can be modeled by zonotope, which is a convex
polytope to model multiple variation sources and multiple

Fig. 5. Construction of zonotope. (a) c + g(1). (b) c + g(1) + g(2).
(c) c + g(1) + g(2) + g(3).

device parameters. Before defining zonotope, one important
concept for reachability analysis is the reachable set.

Definition 2: Reachable Set is the collection of all possible
operating points or states in the state space that a system may
visit, which can be approximated by an enclosing polytope.

One simple and symmetrical type of polytope, called zono-
tope [27] and is defined as follows.

Definition 3: Zonotope X is defined by

X = {x ∈ Rn×1 : x = c +
q∑

i=1

[−1, 1]g(i)};

= (c, g(1), g(2), ...) (12)

where c ∈ Rn×1 is the zonotope center; and g(i) ∈ Rn×1 is
called as zonotope generator.

As shown in (12), the so called zonotope is essentially a
multidimensional interval in affine form or a hypercube with
each generator as a variation in a different direction. Note
that ellipsoid-modeled uncertainties are not considered in the
reachability analysis in this paper, which will be addressed in
future work.

Mathematically, the summation in zonotope needs to be
interpreted as the Minkowski summation [28] of two finite sets
such that the merged set can preserve convex property. Given
two sets of zonotopes P and Q, Minkowski summation is
performed by adding their zonotope centers and concatenating
their generators as

P ⊕ Q = {p + q|p ∈ P, q ∈ Q}
= (c1 + c2, g

(1)
1 , ..., g

(e)
1 , g

(1)
2 , ..., g

(u)
2 ). (13)

Here, c1 and c2 are the centers of zonotopes P , Q, re-
spectively. Generators of P and Q are represented by g

(i)
1 ,

g
(i)
2 , respectively. A tight zonotope enclosing the convex hulls

of two zonotopes CH(P, Q) can be found by CH(P, Q) as
follows:

CH(P, Q) =
1

2
(c1 + c2, g

(1)
1 + g

(1)
2 , ..., g

(e)
1 + g

(e)
2 ,

c1 − c2, g
(1)
1 − g

(1)
2 , ..., g

(e)
1 − g

(e)
2 ). (14)

As all the generators are enclosed within in the zonotope,
this forms a convex set. Note that the above property is
applicable to the summations in (13) and (12).

One example of construction of zonotope with the addition
of generator vectors is shown in Fig. 5. Here, c is the center
of zonotope and generator vectors are represented as g(1), g(2)

and g(3). We perform addition of zonotope vectors to preserve
the convexity. In Fig. 5, initially a zonotope with a center c

and generator g(1) is presented. Further to perform Minkowski
summation, g(2) and its negative vector is added to g(1), which
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Fig. 6. Nonlinear SRAM dynamics and zonotope.

Fig. 7. Bidirectional zonotope and unidirectional zonotope.

results g(2) in two directions to form a convex zonotope. The
same procedure is followed to perform Minkowski summation
for additional generators.

Physically, a zonotope spans a polytope in the state space
that covers all kinds of trajectories caused by uncertain initial
sets as shown in Fig. 4. A zonotope indicating its center c and
the generator vector g(i) is shown in Fig. 6, which indicates that
the nominal point x∗ can be relevant to the center of zonotope
c; and the the deviation distance (x − x∗) of the state variable
x can be relevant to the generator g.

Note that scaling factors of generators are allowed to range
from −1 to 1. Thus, the difference vector from the nominal
point to other points within a reachable set varies in two
directions. One can use bidirectional zonotopes to include
all possible threshold variations during SRAM verification.
However, for the calculation of sensitivity during robustness
optimization, the scaling factor is defined within [0, 1] to
obtain a single-direction difference vector from the nominal
point to any other neighbor point in the reachable set. We call
the modified zonotope as the unidirectional zonotope (Fig. 7),
which is determined by

X uni = {x ∈ Rn×1 : x = x∗ +
q∑

i=1

[0, 1]g(i)}. (15)

What is more, similar to zonotope for state variable vector,
one can model the interval values for state matrices by
zonotope as well [28]. As such, the matrix zonotope is derived
as

M = {M ∈ Rn×n : M ∈ M(0) +
q∑

i=1

[0, 1]M(i)}. (16)

Similar to zonotope of state variable vector, the matrix M(0)

is the center matrix and the matrix M(i) is called the matrix
generator, which contains the variation ranges of perturbed
device parameters. Addition and multiplication rules for matrix
zonotopes are similarly defined as vector zonotopes [28].

B. Reachability Analysis by Backward Euler Method

On the basis of nonlinear dynamics of SRAM discussed in
(5), the zonotope-based reachability analysis is performed as
follows. The detailed explanation of explicit integration can be
found in [28], which is much more sophisticated and expensive
than the proposed numerical integration method developed in
this paper. In this paper, a SPICE-like zonotope evolution is
developed based on backward Euler method [29].

First, note that (5) can be solved with discretized time-step
h at kth-iteration by

�x
(i)
k = A−1(

C

h
�x

(i)
k−1 − �u

(j)
k − Lk);

k = 1, ..., N; i = 1, ..., q; j = 1, ..., m (17)

where A = C
h

+ G is the Jacobian matrix, N represents the
number of time steps, m represents the number of process
variations and q is the number of zonotope generators.

Let the zonotope center be a nominal operating point x∗
k .

Meanwhile, the zonotope generators �x
(i)
k are the Euclidean

distances (4) from the nominal point x∗
k to neighbor points xk.

As such, one can have a zonotope of state variable vector by

Xk =

{
xk ∈ Rn×1 : xk = x∗

k +
q∑

i=1

[−1, 1]�x
(i)
k

}
.

What is more, multiple threshold-voltage variation sources
are included in form of zonotope generators based on (7) as

Uk =

⎧⎨
⎩uk ∈ Rn×1 : uk = u∗

k +
m∑

j=1

[−1, 1]�u
(j)
k

⎫⎬
⎭ .

The according iteration equation for zonotope-based ver-
ification is thereby built after substituting generator �x

(i)
k

by generator matrix X
g

k = [�x
(1)
k , ..., �x

(q)
k ], �u

(i)
k by U

g

k =
[�u

(1)
k , ..., �u

(m)
k ], Jacobian matrix A by matrix zonotope A,

and capacitance matrix C by matrix zonotope C. As such

X
g

k = A−1

(C
h

X
g

k−1 − U
g

k − Lk

)
, k = 1, ..., N. (18)

What is more for robustness optimization, matrix zonotopes
A and C can be built to consider perturbations from multiple
device parameters, such as transistor width sizings in the case
of SRAMs. In A, interval conductance matrix �G can be
computed using the interval values of transistor widths similar
to (9). As such, the zonotope matrix can be further interpreted
in terms of interval-valued matrices by

A ∈
[
A(0) −

∑
i

|A(i)|, A(0) +
∑

i

|A(i)|
]

. (19)

The matrix generator can be formed as follows:

A(i) =
∂A(0)

∂W
· �W (i) = �G(i). (20)

Here, A(0) is the nominal state matrix without variations, and
A(i) is the variation of state matrix caused by perturbation due
to ith transistor width �W (i).

In addition, note that in (18), the reciprocal of the matrix
zonotope A = (A(0), ..., A(m)) can be evaluated in two steps
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without explicit inversion. The first step is to calculate (A(0))−1

by LU decomposition

(A(0))−1 = U−1L−1PT I (21)

where I is the identity matrix and P is the permutation matrix.
The second step is the approximated expansion of A−1 by

A−1 = ((A(0))−1, ..., (A(0))−1A(m)(A(0))−1). (22)

Recall that m represents the number of process variations.
This approach enables an implementation of reachability anal-
ysis inside a SPICE-like simulator. However, such an approx-
imated inversion may introduce additional source of error.

C. New Set Formulation by Minkowski Summation
Superposition principle allows to separate the solution of

(18) into two parts: homogeneous solution X
g

h with respect
to the initial state X

g

k when there is no input U
g

k ; and
inhomogeneous solution X

g
i accounting for the system input

U
g

k supposed that the initial state X
g

k is the origin. Note that
linearization error is also considered at the input during the
update at each time step.

As such, the inhomogeneous solution can be further divided
into the one due to input vector (Xg

i ) and the other one for
linearization error (Xg

e )

X
g

h = A−1 C
h

X
g

k−1

X
g
i = −A−1U

g

k (23)

Xg
e = −A−1Lk.

Given an initial set Xk at current time step, there are
three sets of solutions computed. Multiplication of matrix
zonotopes [28] can be used for solving (23). The number of
generators may grow after zonotope multiplications. As such,
an upper bound has to be set on the number of generators
and generators with smallest magnitudes can be discarded in
this process. The concatenation of these sets with convexity
is performed by the aforementioned Minkowski summation
[28] to form a convex zonotope.

Therefore, a new reachable set Xk is obtained by combining
zonotope center x∗

k and generator X
g

k as
X

g

k = X
g

h ⊕ X
g
i ⊕ Xg

e

Xk = (x∗
k, X

g

k) (24)

where ⊕ represents the Minkowski summation.

D. Linearization Error Control
Approximation of linearization error Lk in line 6 of

Algorithm 1 is a critical step in each iteration cycle. Lk is
a vector with interval values. It can be viewed as a zonotope
with 0 as the center and the interval ranges as generators. Lin-
earization error accounts for nonlinearity of SRAM dynamics.
Here, nominal point x∗

k is the zonotope center for the current
iteration xk; and xk varies within zonotope Xk. As such, Lk

cannot be exactly calculated but approximated for xk ∈ Xk.
Detailed approximation for Lk can be found in [28] by

Lk =
1

2
(xk − x∗

k)T ⊗ ∂2f

∂x2
k

∣∣∣∣
xk=ξ

⊗ (xk − x∗
k),

ξ ∈ {x∗
k + α(xk − x∗

k)|0 ≤ α ≤ 1}. (25)

Fig. 8. Reachable sets with or without splitting.

By dynamic updating the approximated Lk, the convergence
of zonotope-based reachability analysis can be guaranteed.
What is more, one can further develop local-truncation-error
control scheme similar to SPICE.

Next, the nonlinearity of SRAM is rather prominent in
the transition area between two convergent regions where
linearization error expands rapidly. Over-expanded reachable
sets in Fig. 8 may be too rough to be meaningful. Based on
(25), if the deviations (xk − x∗

k) between states are small, the
second order derivatives are appropriate enough to approxi-
mate the linearization error. However, for strong nonlinearity,
set-splitting needs to be performed to limit the deviations
(xk−x∗

k) by cutting it into half and creating two nominal points,
x∗

k + |xk − x∗
k |/2 and x∗

k − |xk − x∗
k |/2. After self-splitting, new

zonotopes are formed but usually with overlap of each other.
Avoiding the overlap can reduce unnecessary computations.
One possible solution is to cancel the reachable sets that have
already been reached, which can be performed by difference
operation between x∗

k + |xk − x∗
k |/2 and x∗

k − |xk − x∗
k |/2.

A judgement condition for set splitting is shown as follows:

IH(Lk) ⊆ [−ε, ε] (26)

in which IH() is the interval hull operation that converts a
zonotope to a multidimensional interval; and ε is an user-
defined limit vector. After the current reachable set is divided
into two subsets, along with a new trajectory being created, the
zonotope-based reachability analysis is repeated at the current
time point for the new subsets.

IV. Sensitivity of Safety Distance for

Optimization

In this section, we first introduce the definition of safety
distance under zonotope, and further discuss the according
sensitivity calculation of safety distance, which is applied
for SRAM dynamic stability optimization by tuning multiple
SRAM device parameters simultaneously. Different notations
and their definitions used in this section are listed in Table II.

A. Safety Distance

With the use of zonotope, safety distance in the state space
can be obtained as follows. Assume that one safe state is
located at psafe in the state space. As for any zonotope in
the form of (12), the safety distance for the reachable set can
be expressed as

D = {d ∈ Rn×1 : d = psafe − c −
q∑

i=1

[0, 1]g(i)}. (27)
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Algorithm 1: Reachability Analysis
Input: System equation, input vector I1,2,...N , initial set X0,

simulation interval h, and the maximum number of time
steps N.

Output: XN

1: for (k = 1; k < N + 1; k + +) do
2: Xk−1 → (x∗

k−1, X
g

k−1)
3: compute xk and linearized matrices Ck, Gk

4: compute system matrix zonotopes A and C
5: approximate linearization error Lk

6: if IH(Lk) ⊆ [−ε, ε] then
7: X

g

h = A−1 C
h
X

g

k−1
8: X

g
i = −A−1Uk

9: Xg
e = −A−1Lk

10: X
g

k = X
g

h ⊕ X
g
i ⊕ Xg

e

11: Xk = (x∗
k, X

g

k)
12: else
13: Xk−1 = split(Xk−1)
14: continue
15: end if
16: end for

As shown in Fig. 9, for one specific point inside the reachable
set, one certain safety distance can be determined as

D = ||psafe − c −
q∑

i=1

ε(i)g(i)||2, 0 ≤ ε(i) ≤ 1 (28)

where ε(i), i = 1, ...q is the coefficient of generators to deter-
mine the relative position of the point within the zonotope.
Note that safety distance reduces to zero if zonotope settles
in the safe region. As such, one can utilize it to verify the
dynamic stability of SRAM.

B. Sensitivity of Safety Distance

With the use of reachability analysis by zonotope, trajectory
of SRAM is obtained and the sensitivity of the safety distance
D at the final reachable set

xfinal = cfinal +
q∑

i=1

[0, 1]g(i)
final

can be calculated afterward. Note that the safety distance D

for a reachable set can vary within a certain range as the
perturbation of device parameters (20) can result in different
operating points close-by.

The perturbation range of device parameters [0, �W] is
in form of interval entries of the matrix zonotope (16) and
is included in A in (23). By zonotope multiplication, the
perturbation is transferred to generator �xk (namely, gk) in
X

g

k . After running reachability iterations, the generator of the
final state (gfinal) is used to derive the perturbation of the
safety distance as follows:

�D =
q∑

i=1

(psafe − cfinal)T

||psafe − cfinal||2 g
(i)
final. (29)

As shown in Fig. 9, the perturbation of the safety distance
D at the final reachable set xfinal is obtained by projecting

TABLE II

Parameters Used in Robustness Optimization

Fig. 9. Safety distance and its sensitivity in reachability analysis.

zonotope generators g
(i)
final to the normal vector (psafe−cfinal)T

||psafe−cfinal||2 ,
which is formed from the zonotope center cfinal to the safe
region psafe.

As such, one can calculate the large-signal sensitivity
S(D, w) of the safety distance D with respect to device
parameter w by

S(D, w) :=
�D

�w
(30)

which becomes the ratio between their increment values �D

and �w for multiple device parameters simultaneously.
Note that different from the single-parameter small-signal

sensitivity of state variable obtained by differentiating (2) with

s =
∂xk

∂w
= −(

C

h
+ G)−1 ∂G

∂w
(
C

h
+ G)−1(

C

h
xk−1 − uk) (31)

in which the linearization error Lk of (2) is omitted and state
variable xk−1 for the last time-step is assumed as constant.
(For the simplicity of presentation, derivatives of capacitance
matrices are omitted.) As such, one can observe that though
the single-parameter small-signal sensitivity is easy to obtain,
compared to the large-signal sensitivity S(D, w) calculated
from reachability analysis in (30), s may fail to measure the
accumulated variation from the previous states by multiple
parameters. What is more, without considering nonlinearity,
the small-signal sensitivity may fail to provide accurate di-
rection during the global optimization of system trajectory. In
contrast, the proposed multiparameter large-signal sensitivity
by safety distance in reachability analysis can be effectively
utilized for SRAM dynamic stability optimization, which has
faster convergence with higher accuracy as demonstrated by
numerical experiment results.
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Fig. 10. Flow-chart of robust stability optimization of SRAMs.

C. Safety Distance Optimization by Sensitivity

The sensitivity of safety distance derived from the reacha-
bility analysis can guide the optimization direction that departs
from unsafe region. It can effectively shorten the safety
distance by tuning multiple device parameters. As such, one
can embed it within any gradient-based optimization algorithm
to achieve a robust SRAM design under process variations.
Note that a dynamic stability optimization by sensitivity of
safety distance is convenient and general; and hence can
be applied for any circuits when safety distance is properly
defined because there is no specific knowledge of circuit
types required. In the case of robust stability optimization
for SRAMs, transistor widths can be automatically sized to
improve the dynamic stability. The complete flow of SRAM
optimization is shown in Fig. 10 with following detailed steps.

First, in each searching step, the increment �wk of one pa-
rameter vector wk is in the same direction with the sensitivity
of the safety distance by

�wk = βkρk (32)

where βk > 0 is a scaling factor and ρk is the gradient of
objective function, i.e., Sk(F (w, t), w).

The parameter increment �wk for the next step is estimated
by

F (wk, t) + �wT
k ρk = 0. (33)

As such, one can obtain

βk = −F (wk, t)

ρT
k ρk

(34)

after combining (32) with (33). Increment of parameter vector
�w (32) is obtained afterward.

Note that the objective function F (w, t) changes nonlinearly
in the parameter space but its gradient ∂F (w,t)

∂w
becomes small

in magnitude around the safe region. As such, an empirical
scaling factor γ < 1 can be utilized to resize the estimated
increment of parameter vector

βk = −γ
F (wk, t)

ρT
k ρk

, 0 < γ < 1 (35)

such that the convergence of optimization can be improved.
What is more, to further improve the convergence, the initial
value stepping can be used when the searching is stuck in
the deadlock or out of the feasible range of device parameters
(Wmin < w1,2,3 < Wmax).

V. Experimental Results

With the use of zonotope-based reachability analysis, the
robustness verification and optimization for SRAM dynamic
stability are implemented inside a SPICE-like simulator by
MATLAB. Manipulations of zonotopes are performed by a
MATLAB toolbox named Multiparametric Toolbox (MPT)
[30]. BSIM3 is used as the MOSFET transistor model. Thresh-
old voltage variation in each transistor is introduced as a noise
current source in (6). Its center value is 0 and variation is
|k W

L
(Vgs−Vth)δVth|, where δ is the variation range. Experiment

data is collected on a desktop with Intel Core i5 3.2 GHz
processor and 8 GB memory.

We first demonstrate zonotope-based reachability analysis
upon SRAM dynamic stability verification under threshold-
voltage variations. Then, we show robustness optimization
on basis of zonotope-based sensitivity calculation. Further,
we compare with Monte Carlo-based verification and also
single-parameter small-signal sensitivity based optimization.
For SRAM stability verification, we used 1000/2000 samples
in order to show a comparison in reasonable runtime. For
SRAM stability optimization, we used 100 000 samples when
measuring the yield rate before and after optimization as
shown in Fig. 16. But we cannot show 100 000 curves in
one figure. What is more, for both of the verification and
optimization, we set threshold voltage variation up to 30%.
In addition note that during read operation, two charged
external capacitors are connected to the outputs of SRAM.
Data in SRAM is read after one of the external capacitors
is discharged through SRAM. By comparison, during write
operation, internal capacitors in SRAM are pulled down/up.
Since internal capacitors are much smaller than the external
capacitors for read operation. As such, write operation is
observed faster than read operation in experiment results.

A. Dynamic Stability Verification Results

40 nm node is used in our experiment and 1V is chosen
as the supply voltage. Moreover, the equilibrium state of
SRAM usually does not settle at the exact vdd or 0. Thus
we start reachability analysis with an initial state set of
v1 ∈ [0.98, 1.00] and v2 ∈ [0, 0.02].

1) Verification of Write Operation: The write operation
is first verified by reachability analysis with consideration
of threshold voltage variations. For comparison, Monte Carlo
verification is performed to demonstrate the accuracy of reach-
ability analysis. The duration of write signal is varied to exam
SRAM behaviors under different conditions.

Verification results of write operation are shown in Fig. 11
with threshold-voltage variation range set to 10%. Larger
variation range can be considered for verification when high-
order noise model is available. The curves simulated by Monte
Carlo verification are plotted in light purple and trajectories
of reachability analysis are drawn in dark blue. Three differ-
ent durations of write signal are tested, including 0.025 ns,
0.029 ns, and 0.050 ns.

In Fig. 11(a), write signal lasts for 0.025 ns. At the begin-
ning, trajectories move toward the other corner of variable
plane as data is being written into SRAM. Later, the turning
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Fig. 11. Verification of write operation with threshold variation range of
10%. (a) Write operation fails with 0.025 ns writing pulse. (b) Write operation
fails with 0.029 ns writing pulse. (c) Write operation succeeds with 0.050 ns
writing pulse.

point of trajectories is generated when the write signal flips
to 0. Afterward, trajectories return to initial states. As such,
the data fails to be written into the SRAM, which means that
write failure happens.

When the write pulse increases to 0.029 ns in Fig. 11(b),
trajectories of reachable sets split around the center of the
state space. This happens when the write signal shuts down.
Some of the new trajectories move back to initial states,
which means that some states still fail in the write operation.
To limit the computational cost, the number of trajectories
needs to be constrained. For the simplicity of presentation,
we show two trajectories in Fig. 11(b). Note that at the end
of the trajectory departing from the failure region, the Monte
Carlo curves do not settle with in reachable sets, which means
the mismatch between Monte Carlo curves and reachable sets
happens. This is because after some trajectories reachable
sets are truncated, the rest trajectories may not cover all
possible curves of Monte Carlo verification. Thus, the number
of trajectories is a tradeoff between time and accuracy. An
ideal set-splitting strategy can make the overlap between new

Fig. 12. Verification of read operation with threshold variation range of 30%.
(a) Read operation succeeds with 6 ns pulse. (b) Read operation fails with
11 ns pulse.

reachable sets the smallest and thus the new trajectories can
cover the most Monte Carlo curves.

Finally, when the duration increases to 0.050 ns in
Fig. 11(c), all possible states finish write operation without
failure. As shown in Fig. 11, curves of Monte Carlo verifica-
tion remain within the reachable sets by reachability analysis
under the similar accuracy. It indicates that reachability anal-
ysis can succeed in approximating the trajectories of SRAM
for failure verification.

2) Verification of Read Operation: Next, the read operation
can be also verified by reachability analysis. The verification
result of read operation is compared with different durations of
input signal while the V th variations are set as 30%. Duration
of read signal is set to 6 ns and 11 ns.

As shown in Fig. 12, the Monte Carlo curves are plotted
in light purple and the enclosing trajectories drawn by reach-
ability analysis are in dark blue. When signal duration is 6 ns
[Fig. 12(a)], all reachable sets recover back to the initial state
after read operation finishes. But when the signal duration
rises to 11 ns, most reachable sets head for the opposite state
which means that read failure happens [Fig. 12(b)]. Due to
the limited accuracy of the first-order noise current model in
(6), the difference between Monte Carlo and the reachability
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analysis can be observed. Yet reachability analysis is still able
to catch most of the possible trajectories obtained by Monte
Carlo simulations. Note that in the optimization experiment,
the threshold voltage variation is predefined with no use of
noise current equation in (6).

B. Stability Optimization Results

The setup of SRAM circuit in optimization is as follows.
40 nm CMOS is used as the technology node for our opti-
mization experiment. Supply voltage of SRAM vdd is set to
1V . Initial states for SRAM are set as v1 = 1V and v2 = 0,
respectively. The transistors widths can change in the range of
[100 nm, 600 nm] with step of 1 nm. Threshold variations of
30% are considered by verification and optimization. Note that
interval values of threshold-voltage variations are considered
by reachability analysis as input sources. For the robustness
optimization, the interval values of transistor widths are further
considered in zonotope matrix to derive sensitivity.

As mentioned in Section II-C, the dynamic stability of
SRAM can be improved by shortening the safety distance and
converging to the safe region. Although yield rate cannot be
calculated based on safety distance, it can be optimized by
improving the stability or reducing the failure rate of SRAMs.
In this way, the safety distances of a number of SRAMs with
different V th deviations can be shortened as a whole. As
such, less SRAMs end up outside safety region with yield rate
Y := 1 − Nfailure

Ntotal
, which is increased as Nfailure reduces. As for

write operation, strong pulling strength of M1, M4 and weak
strength of the other transistors lead to high probability of
write failure. Thus, the negative threshold-voltage variations
are assumed for M1, M4, while positive threshold-voltage
variations are assumed for the other transistors. For the same
reason, negative threshold-voltage variations in M2, M3, M6,
and positive threshold-voltage variations in M1, M4, M5 are
used for read operation. The threshold-voltage variations are
set as constant during optimization as the standard deviations.

1) Optimization of Read or Write Failure: To start
with, we perform dynamic stability optimization for read
operation only. Initial widths of three transistor pairs are
[W1, W3, W5] =[200 nm, 300 nm, 300 nm] and pulse width is
9 ns. The process of stability optimization is shown in Fig. 13,
in which trajectories are plotted in light purple; and reachable
sets (i.e., zonotopes) due to parameter changes are drawn
in dark blue. Unlike the situation in the previous section,
zonotopes for SRAM optimization are quite small. This is
because transistor widths are varied by step of 1 nm and thus
the resulting variation range of trajectory is limited. Note that
the sensitivity calculated here is multiparameter large-signal
sensitivity with respect to one zonotope set, which is different
from the classic single-parameter small-signal sensitivity in
(31). As demonstrated later, the multiparameter large-signal
sensitivity is more stable and accurate.

Three reachable sets are generated at each nominal point
with different transistor widths. The final sets are used to
derive large-signal sensitivities (Fig. 9) by sensitivity-based
reachability analysis. The initial trajectory fails to converge to
the safe region. After three iterations, the optimized trajectory

Fig. 13. Optimization of read operation only.

recovers from read failure. The optimized widths are [148 nm,
343 nm ,217 nm].

Then, we perform stability optimization for write operation
only. We set the initial pair widths as [W1, W3, W5] =[400 nm,
500 nm, 350 nm] and reduce the pulse width to 0.050 ns.
The stability optimization by large-signal sensitivity calculated
from reachability analysis can certainly help guide the system
trajectory to converge to the safe region within four iterations
(Fig. 14). The optimized widths are [381 nm, 440 nm, 497 nm].

2) Optimization of Read and Write Failure: To optimize
read and write failure simultaneously, initial transistor pair
widths are randomly chosen as W1 = 200 nm, W3 = 400 nm
and W5 = 400 nm. Pulse width is 9 ns for read operation
and is 0.024 ns for write operation. The process of stability
optimization is shown in Fig. 15.

The optimization direction of trajectory for read opera-
tion and write operation are shown in Fig. 15(a) and (b),
respectively. The trajectory after performing optimization to
initial set of transistor widths is represented as initial. From
Fig. 15(b), one can observe that at the beginning, write failure
happens as the trajectory converges to the initial state. With
the use of the proposed sensitivity-based reachability analysis
for the dynamic stability optimization, the trajectory of read
operation moves away from the wrongly converged region
and finally moves to the target state after six iterations when
tuning transistor pair sizes. Meanwhile, the read operation in
Fig. 15(a) is considered, where read failure did not happen at
the beginning. As the write operation is optimized, the trajec-
tory for read operation deviates upward too. As such, the safety
distance to the top-left corner (in this case) is decreased. In
other words, the write operation is optimized at the expense of
read operation to achieve a lower rate of failure for both cases.

The optimized transistor widths obtained by our approach
are finally achieved as W1 = 192 nm, W3 = 330 nm and
W5 = 586 nm, respectively. Yield rate (Y := 1 − Nfailure

Ntotal
)

considering both read and write functions is improved from
6.8% to 99.957%. Further improvement of yield rate can be
achieved by introducing larger threshold variations during the
optimization.

C. Comparisons

1) SRAM Dynamic Stability Verification: A detailed com-
parison between zonotope-based reachability analysis and
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Fig. 14. Optimization of write operation only.

Fig. 15. Optimization procedure for SRAM dynamic stability. (a) Optimization of read operation. (b) Optimization of write operation.

Monte Carlo method is made upon the write operation. For the
concern of huge time consumption by Monte Carlo method,
we use 1000 samples that usually takes more than one hour
for a single round of verification according to our experi-
ment. Different durations of write signal are considered as
well as different threshold-voltage variations in all transistors.
Detailed experimental results are listed in Table III in which
pulse refers to the duration of input signal; and acceleration
is the ratio of time consumption of Monte Carlo to that of
reachability analysis.

As shown in Table III, compared with Monte Carlo, reacha-
bility analysis can achieve speedup up to more than 800× for
1000 samples. When write signal duration is set to 0.025 ns
[Fig. 11(a)] or 0.050 ns [Fig. 11(c)], only one trajectory is
generated by reachability analysis. Linearization is performed
around one nominal trajectory which takes up most of the
simulation time. Thus the time consumption of reachability
analysis is slightly higher than the simulation of one sample of
Monte Carlo verification. As signal duration is set to 0.029 ns,
reachable sets are split into different parts and two trajectories

TABLE III

Time Consumption of SRAM Verification

are generated. Therefore the runtime of reachability verifica-
tion doubles and the speedup ratio reduces by half when the
signal lasts 0.029 ns and 10% V th variations are introduced
[Fig. 11(b)]. For all experiment cases listed in the Table III,
the reachability analysis can achieve the similar accuracy as
Monte Carlo method to report the failure region.

2) SRAM Dynamic Stability Optimization: The runtime of
optimization at each iteration is listed in Table IV, where more
than 600× runtime speedup can be achieved by our approach.
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Fig. 16. Statistical yield calculation (a) before and (b) after optimization.

TABLE IV

Runtime Comparison of SRAM Stability Optimization

The optimized transistor widths i.e. [W1, W3, W5] for read and
write stability optimization are also represented in Table IV.
Iteration number for optimization is represented as Iter and the
time taken for optimization by using our proposed reachability
based sensitivity analysis is listed under sensitivity-based RA
column with its units in seconds, similarly time consumption
for optimization by traditional Monte Carlo-based method is
listed under MC column with time consumption in seconds and
the corresponding speedup achieved by our proposed method
is listed under speedup column. For example, for the first
optimization step, the proposed optimization takes about 9 s
while Monte Carlo-based method needs nearly 2 h. The time
consumption of reachability analysis is roughly the same with
one transient simulation, since most computation is used on
the simulation of the nominal trajectory. Similarly, one can
observe the variation in transistor widths at each iteration.
As discussed previously the initial transistor widths are set to
[200 nm, 400 nm, 400 nm], but the optimized set of transistor
widths by our approach is [192 nm, 330 nm, 586 nm]. In our
case, to derive large-signal sensitivity with respect to the
three transistor pairs, reachability analysis is performed for
three times.

Furthermore, we compare the our approach with another op-
timization routine by single-parameter small-signal sensitivity
(31). For the same aforementioned test-case, the optimization
result by small-signal sensitivity in shown in Fig. 17. Unlike in
Fig. 15(b), the optimization routine by single-parameter small-
signal sensitivity fails to find a feasible solution and results in
negative width after three iterations. Transistor pair widths,
i.e. [W1, W3, W5] are shown in Fig. 17. Note that W5 fails to
be tuned during optimization, because small-signal sensitivity
with respect to W5 is much smaller than the rest. Since the
single-parameter small-signal sensitivity only depends on the
location of the final state, the resulted gradient merely has

Fig. 17. Optimization of write operation by small-signal sensitivity.

local accuracy and changes irregularly as the trajectory moves.
As a result the small-signal sensitivity does not lead to the
convergence. The proposed large-signal sensitivity calculation
in reachability analysis can achieve much higher accuracy for
a faster converged SRAM optimization.

VI. Conclusion

In this paper, we are the first to develop the reachability
analysis for the robustness verification and optimization of
SRAM dynamic stability in the presence of multiple variation
sources and device parameters from all transistors. By quan-
titatively describing SRAM robustness with a defined safety
distance, our approach can efficiently provide not only stability
verification but also optimization during the zonotope-based
reachability analysis. By modeling variations as uncertain
input currents added to the input range, the zonotope-based
reachability analysis is deployed to provide the system perfor-
mance boundary for the estimation of SRAM dynamic stability
region. We are the first to develop the backward Euler-based
zonotope evolution with linearization error update and con-
trol. Furthermore, the multiparameter large-signal sensitivity
calculation is invented in term of zonotope, which is applied
for the robustness optimization for SRAM dynamic stability.
By simultaneously tuning multiple SRAM transistor widths,
the resulted sensitivity of safety distance during reachability
analysis can be deployed during the sequential optimizations to
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guide SRAM design with operations departing from unsafe re-
gion and converge in safe region. In addition, compared to the
traditional single-parameter small-signal based sensitivity opti-
mization, our method can converge faster with higher accuracy.
Compared to the Monte Carlo-based optimization, our method
can achieve speedups up to 600× with similar accuracy.
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