
Self-Aware Power Management for Multi-core Microprocessors
Sai Manoj Pudukotai Dinakarraoa
a4400 University Drive, Fairfax, VA 22030 USA
Email: spudukot@gmu.edu

ART ICLE INFO
Keywords:
Self-awareness
Power management
Dynamic voltage and frequency scal-
ing
Multi-core microprocessors

ABSTRACT
Power management is one of the significant challenges to be addressed in multi-/many-core micro-
processors. Furthermore, the multi-core microprocessors experience unforeseen scenarios such as
performance degradation over time, manufacturing defects, power, and thermal impacts with time.
Traditional power management techniques, though efficient, is not designed to handle such unseen
scenarios. Furthermore, the variation in performance requirements is one of the challenges faced in
the era of machine learning. We propose a self-aware power management scheme for multi-core mi-
croprocessors in this work to address the above-mentioned issues. We perform application-level power
management in this work to overcome the overheads imposed by core-level power management and
system-level power management inefficiency. The power management unit employs a linear predictor
for workload prediction to perform DVFS. On top of the power manager, the self-aware controller is
hierarchically placed to monitor the system components’ health and adapt the power manager’s de-
cision to meet the performance requirements and handle changes in system components’ health. We
evaluate the proposed self-aware power manager under externally provided high performance goals,
and resource contention. A power saving of up to 16% compared to existing power management tech-
niques, and 2.4× speedup with 25% additional power to satisfy high performance compared to power
management without self-awareness for a microprocessor with up to 32-cores is achieved.

1. Introduction
In the era of machine learning and big-data processing,

multi-core processors are one of the basic building blocks
in the commercial as well as consumer electronic systems
ranging from portable mobile phones to data-centers [30,
25]. Multi-core processors facilitate the processing of multi-
threaded applications to enact better performance. Intrinsi-
cally, themulti-core processors encounter difficulties tomeet
the constrained resource demands such as power budget, es-
pecially under unpredictable runtime scenarios of varying
workloads and performance requirements for different con-
currently executing applications. This calls for an efficient
resource management in multi-core microprocessors.

In addition to resource management, with the scaling
down of VLSI technology nodes, multi-core systems face
other challenges such as manufacturing defects, variation in
system components’ health (i.e., functional status due to ag-
ing, wear-out and so on), and variations in performance re-
quirements with time [11, 48, 3, 2]. Here, the term ‘sys-
tem component’ refers to units such as cores, memory units,
voltage-frequency regulators, and sensors. As the compo-
nents’ health (functional status) or performance requirements
often vary over time, design-time information is often not
sufficient or accurate to tackle such unforeseen influences
and adapt [1]. To counteract such unforeseen scenarios, higher-
level of abstraction, learning [1] and awareness [11] are re-
quired.

Though, there exist multiple resources in multi-core pro-
cessors, we consider ‘power’ as one of the pivotal resources
that needs efficient management. The rationale for select-
ing power is that, meeting the power budget is one of the
primary challenges faced in multi-core and many-core sys-

ORCID(s): 0000-0002-4417-2387 (S.M.P. Dinakarrao)

tems [21, 35]. For power management, dynamic voltage
and frequency scaling (DVFS) [33, 41, 32, 52, 44, 49, 14,
29] is one of the proven effective techniques with adaptivity
and power savings. DVFS refers to scaling down of volt-
age and frequency levels for under-utilized cores, thereby
reducing the overall dynamic power. The workload char-
acteristics such as temperature, power consumption, tem-
perature, memory-access, and instructions- per-cycle (IPC)
are considered for DVFS [33, 41, 52, 44]. The workload
characteristic utilized for power management in this work is
the power trace, as it reflects the overall power consump-
tion. Performing DVFS at centralized level (system-level
[10, 40]) is energy inefficient and hinders the power manage-
ment efficiency for future systems with a plethora of cores.
Similarly, DVFS at the lowest granular level (say per-core
level [7, 8]) is highly energy efficient, but adds implementa-
tion overheads and design problems [15]. We perform an
application-level DVFS in this work to overcome the im-
plementation and design overheads of per-core level power
management, and inefficiency by system-level power man-
agement.

The existing power management works though efficient,
often consider the design-time goals, workload characteris-
tics and very few techniques consider the information re-
garding the system components’ health. They ignore the ex-
ternally provided or modified goal information due to the
system state changes. In a many-core multi-tenant systems,
the external factors such as priority of other users or resource
contentions highly influence the system state and needs to be
considered during runtime. As a consequence of the above
mentioned unforeseen challenges, the design-time goals of
the system cannot address runtime modifications in the sys-
tem. This leads to power management without consider-
ing the runtime information on goals or system state, re-

: Preprint submitted to Elsevier Page 1 of 12

sulting in an ineffective power management. As indicated
in [11], the future systems are expected to operate with dy-
namically changing goals. This calls for a power manage-
ment technique which adapts to the dynamically changing
goals. The dynamically changing goals is defined as follows:
A modification in the existing goal (objective) or a selection
among several goals that a power manager has to meet due
to external input (goals) or change in the system’s state dur-
ing runtime. We emphasize that the dynamic goals in this
work does not correspond to the adaptation to the variations
in the internal workload characteristics, as adapting to the
workload variations is already considered by the underlying
(traditional) power manager. Adaptation to dynamic goal is
more towards selecting the most appropriate goal (such as
power savings, high-performance, less utilization of a spe-
cific resource due its unavailability or contention) and adap-
tation to the changes in the system state or externally pro-
vided information during runtime in addition to the work-
load characteristics.

Tomeet the aforementioned demands, we propose a con-
fluence of self-awareness and powermanagement techniques
in this work. Self-awareness is defined as the ability of a
system to be aware of its own state as well as the state of its
surrounding environment to adapt to variations [11, 23]. To
achieve this, we propose integrating a self-aware controller
with a power manager in multi-core system to monitor the
components’ health (state), performance requirements, the
workload characteristics and utilize them to perform power
management and meet the performance goals by adapting to
runtime changes or requirements. Here, the workload char-
acteristics refer to power trace, memory-access, temperature
profile, and so on when executing an application. The in-
formation regarding the components’ health can be derived
based on the models or monitored through sensors.

The proposed self-aware power manager performs per-
application DVFS in a multi-core microprocessor consider-
ing the workload characteristics, system components’ health
and the performance requirements. The workload character-
istics and system components’ health are obtained through
the application log and the sensors, respectively. Further,
to evaluate the role of self-awareness under dynamic condi-
tions, we consider multiple scenarios: a) component’s mal-
function (degraded health) and resource contention and b)
under externally provided dynamic goal(s). It has been ob-
served that based on the health of the components, the self-
aware power manager (SAPM) modifies the power manage-
ment policy predicted by underlying (traditional) powerman-
ager. Similarly, to meet dynamically changing performance
requirements, the power management policy chosen by the
self-aware power manager is also seen to be impacted. The
proposed self-aware controller is placed hierarchically on top
of the (traditional) power manager to modify the policy to
adapt to the unforeseen conditions such as variation in com-
ponents’ health, and the dynamic system goals (performance
requirements).

Learning based

prediction

V-F pair

Application MonitorApplication MonitorApplication Monitor

Application MonitorApplication MonitorVoltage-Frequency Regulator

Learning based

prediction

V-F pair

Learning based

prediction

V-F pair

Learning based

prediction

VF Pair

Application 1

Application 2

Application 3

Application 4

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Application 5

Power management monitor

A
p

p
li

ca
ti

o
n

-l
ev

el
 P

o
w

er
 M

a
n

a
g
e
r

Goals (provided

externally)

System state

(a)

Multi-core microprocessor

Application monitor

Power manager

Self-aware controller

(b)

Figure 1: System architecture of multi-core microprocessor
with adaptive power manager

Objectives and Contributions
In this work, we introduce a two-level self-aware adap-

tive power manager (power management monitor and appli-
cation level powermanager) that meets the design-time goals
as well as adapt to the dynamically changing goals, as shown
in Figure 1. At the design-time, power manager is equipped
with per-application dynamic voltage and frequency scal-
ing (DVFS) [41] for power management. A per-application
level power management alleviates the associated overheads
and inaccuracies caused by per-core and system-level power
management schemes [7, 10]. Application-level DVFS is
performed by predicting the workload characteristics (power
consumption) with online learning. The power management
monitor i.e., self-aware controller (highest-level in the pro-
posed adaptive power management technique) triggers the
verification of the system’s state andmodification in the power
management methodology when an externally provided goal
(performance requirement) or change in the system’s state
during runtime is detected. This is explained as follows:
when there is any high-priority goal provided externally or
change in system’s state is detected, the power management
monitor first tries to meet the externally provided high prior-
ity goal or modify the power management policy predicted
by the traditional power manager to ensure that the current
system’s state is suitable to perform the power management
efficientlywith existing resources that are in good state (health).
The major contribution of this work is the design of an adap-

: Preprint submitted to Elsevier Page 2 of 12

tive self-aware power manager that not only performs power
management, but also adapts its goals and power manage-
ment policy depending on the state of the system or any ex-
ternally provided goals. The objective and the contributions
of this work are outlined below.

• Objective: To perform power management and adapt
the power management methodology to the dynam-
ically changing goals arising due to various conse-
quences such as change in system’s state, and exter-
nally provided goals.

• Contribution: A two-level powermanagerwithDVFS
performed at per-application level and the (self-aware)
power management monitor to monitor the system’s
state and externally provided goals. The power man-
agement policy obtained by employing traditional DVFS
is modified by the self-aware power manager in case
of external goals or change in system’s state so as to
adapt to the dynamically changing goals.

• The proposed self-aware power manager is adaptive in
terms of specifying goals and adapting the powerman-
agement policy depending on the components’ health
and the externally provided performance requirements.

At a very high-level, the difference between the existing
power managers and the proposed adaptive power manager
is explained with an example. Consider a scenario where
a multi-core system is running an application and provided
with high-performance requirement during runtime. The tra-
ditional power manager irrespective of externally provided
requirement, performs power management and achieves a
power-performance trade-off. However, the proposed adap-
tive self-aware power manager considers the externally pro-
vided goals and prioritizes the high-performance over the
power saving and adapts the working accordingly. Similar
behavior is expected in the case of change in system com-
ponents’ health i.e., if a component is malfunctioning, the
power management policy is modified to ensure that the de-
fective components are isolated and not allocated a task. An
in-depth distinction between proposed and existing works is
presented in Section 4.3.

The remainder of this paper is structured as follows. Ex-
isting works on power management and self-awareness is
outlined in Section 2. The architecture of the proposed self-
aware power management system is illustrated in Section 3.
Section 4 describes the proposed self-aware power manage-
ment methodology. Section 5 discusses the evaluation of our
approach under different goals such as power management,
switching activity reduction and multi-objective optimiza-
tion. The conclusions are drawn in Section 6.

2. State-of-the-Art
We outline some of the related power management tech-

niques and self-aware frameworks here.
Recent power management techniques utilize learning

and predicting the workloads with a centralized predictor

to perform DVFS. Linear regression [44, 38] is one of the
widely used techniques to predict the workloads, which fits
a polynomial to the measured or observed values and ex-
trapolate the future values. A linear regression is adopted
in [38] to estimate the workload characteristics and perform
DVFS. A gradient descent method based updating frequency
by learning the workload using linear regression considering
the observations from the performance counters, power sen-
sors and measured latencies is proposed in [52]. A space-
time multiplexing (STM) using less number of power con-
verters is proposed for powermanagementwith auto-regressive
moving average (ARIMA) for predicting the workloads and
a singular value decomposition for clustering and voltage-
frequency level assignment is proposed in [32]. In [9], lin-
ear regression is utilized to predict the memory accesses per
cycle and CPU cycles per instruction (CPI). Based on the
ratio of the predicted CPI with on-chip access and overall
CPI, frequency scaling is performed for power management.
It needs to be noted that the complexity and achieved ac-
curacy varies with the applied regression technique and the
application. In addition to the linear regression or simple
predictors [27] and game theory-based solutions [43], ma-
chine learning based predictors such as Bayesian predictors
[46, 20], Q-learning [31, 51, 50] are also employed to pre-
dict the workload characteristics and perform power man-
agement [28, 45]. A Bayesian workload predictor with clas-
sification and policy generation is proposed in [20] to per-
form powermanagement. It uses dynamic programmingwith
cost function as the objective for power management. A
model-free reinforcement learning for dynamic power man-
agement with a Bayesian predictor for workload estimation
is proposed in [46]. Based on the predicted workload and
using reinforcement learning, power management is carried
out. In a similar manner, a Q-learning based approach is
proposed that considers the clock frequency, CPU utiliza-
tion rate for the current task as states, and the tunes the fre-
quency and voltage as actions [19]. Deep learning based
workload prediction in the context of adaptive power scaling
is proposed in [44]. Recent work [27] performs online learn-
ing based power management technique by considering the
workload characteristics. It is clearly evident that regression
or ML technique in one form or other is widely considered
to estimate the workloads to perform power management.

The shortcomings of the existing works can be outlined
as follows. In addition to complexity and performance trade-
offs, often the power management is performed under the
assumption that that the system is deployed under an ideal
environment with no malfunctioning of the system compo-
nents, which is not true in practical scenarios. Additionally,
the objective or goal to achieve in most of the existing works
are determined during design time and is fixed.

To overcome the shortcomings, self-awareness in the con-
text of power and resource management is introduced. Some
of the systematic and notable approaches proposed in projects
are SEEC [17], HAMSoC [13], and CPSoC [39].

SEEC frame work has been applied for power manage-
ment [18], andmanaging ofmultiple objectives [16], inwhich

: Preprint submitted to Elsevier Page 3 of 12

the desired goals and the current system state is mentioned
as heartbeat rate of heartbeat APIs [16]. The monitoring-
deciding-execution loop is thoroughly elaborated in SEEC
while learning, and history mechanisms are not emphasized
or not used at all. Learning and history information aids in
combating unforeseen scenarios.

In HAMSoC [13], a hierarchical agent based monitor-
ing is employed with self-awareness. As a demonstrative
example of self-aware framework, a power management in
a multi-core SoC is carried out in [13]. Here, the perfor-
mance and power attributes are monitored and controlled to
optimize power. The key advantage of this work is that the
framework is fairly general and multiple system properties
could be monitored.

Similarly, a cyber-physical SoC (CPSoC) equipped with
sensors for monitoring the system state, self-awareness with
the features of communication between different layers of
system stack is proposed in [39]. The adaptation in CPSoC
happens within or across the layers. The cooperative and hi-
erarchical loops are used to translate user goals into system
goals i.e., combination of traditional and virtual sensing en-
abled self-aware adaptation loops. The self-awareness mod-
els in CPSoC did not consider malicious attacks, functional
design errors and non-functional aberrations, and show a lot
of room for growth in its self-awareness capabilities.

The existing frameworks are undoubtedly efficient and
considers the system state to perform the power manage-
ment. However, if one can observe the existing frameworks,
they are built in a hierarchical manner with complex control
loops throughout the stack, leading to solving an NP-hard
problem. Despite of its own merits, it nearly requires mod-
ification or redesign of the whole system stack, additional
communication links and protocols. However, neither goal
management, nor history or learning mechanisms have been
explored.

The primary similarities and differences compared to the
existing self-aware frameworks are:

• Similar to the existing self-aware frameworks, proposed
self-aware controller considers andmonitors the health
of the system components to perform power manage-
ment, DVFS and meet the system requirements.

• Compared to the existing self-aware frameworks, the
proposed self-aware power manager does not need any
special APIs, and performs learning of the workload
characteristics (power trace) to process.

• The proposed self-aware power manager makes use of
lightweight predictor tomitigate additional overheads.

• In comparison to other power management works, the
proposed work utilizes self-awareness to combat and
adapt to unforeseen physical faults or failures.

In this work, we propose a self-aware power manager where
the self-aware controller is separated and placed on top of the
power management block to provide the similar functional
features as proposed in other self-aware frameworks. The

advantages can be listed as follows: modular design makes
it less complex, no need to modify the system stack, tested
and debug well, self-aware block could be embedded with
existing architectures with little or no modifications.

3. System Architecture
3.1. System Architecture

The architecture of the proposed self-aware power man-
ager for a multi-core microprocessor is depicted in Figure
1. The system can run single- or multi-threaded applica-
tions with each thread on one core. The proposed self-aware
powermanager has two-levels: application-level powerman-
ager and power management monitor (also referred as self-
aware monitor). The application-level power manager com-
prises of an application monitor unit, learning-based appli-
cation workload predictor followed by a voltage-frequency
pair (VF pair) recommending unit. The Application monitor
unit observes the workload characteristics at per-application
granularity. Per-application granularity circumvents the over-
head concerns. The learning-based predictor learns and pre-
dicts the workload characteristics. Based on the predicted
workload characteristics, the VF pair recommender decides
the appropriate VF levels. The workload indicates the char-
acteristics of the application running on a core. As afore-
mentioned, we consider power trace as the workload char-
acteristic for an application. The implementation of the pro-
posed self-aware power manager on top of traditional power
manager is depicted in Figure 1(b).

The power management monitor i.e., self-aware monitor
is placed hierarchically on top of the application-level power
manager. The power management monitormonitors the sys-
tem status, and the goals added externally during runtime. In
the event of provision of external goals, the power manage-
ment monitor prioritizes the goals and alters the power man-
agement policy in order to meet the new goals. Similarly,
when the state of the system components change, the goals
aremodified and provided to the application-level powerman-
ager. As such, in case of change in the goals, the adaptive
power manager reformulates the objectives, constraints and
performs the power management accordingly. The system
components are the components in the hardware layer such
as sensors, voltage-frequency regulators (in this case), and
PLLs. The following assumption is made regarding the sys-
tem: for the sake of experimentation, we assign a binary
value for the system components’ health i.e., working ormal-
functioning. However, one can utilize mathematical models
and replace the utilized binary health model, depending on
the requirement.
3.2. System Model
3.2.1. Application Model

We denote the application set as A = {a1, a2,⋯ , am}.Here ai represents i-th application. Figure 1(a) represents a
snapshot of multi-core systemwith multiple applications de-
ployed. An application can be single- or multi-threaded, and
each core executes one thread at a time. From the applica-

: Preprint submitted to Elsevier Page 4 of 12

tion perspective, we assume that the applications are multi-
threaded without data dependencies i.e., can be executed in
parallel, similar to [33, 36, 37]. Also, at any given time, the
total number of executed threads are smaller or equivalent to
number of cores. In Figure 1, different shades on processor
cores represent different applications running on them. The
distribution of applications is not uniform i.e., different ap-
plications can run on different number of cores, depending
on the number of threads.
3.2.2. Hardware and Power Model

We focus on the components of the system in the con-
text of self-awareness. The components we are concerned
in this work are the components in the hardware layer such
as sensors, actuators (Phase-Locked Loops (PLLs) and volt-
age regulators). Each of these components can be internal or
external components of a given computing core, with only
cores shown in Figure 1 for the purpose of conciseness. The
components are represented as C = {c1, c2, ..., cn}. In this
work, the health of component ci is represented by ℎi ∈
{0, 1} with 0 representing malfunction or not functioning
and 1 represents functioning well. The set of components
used for power management is ,  ⊆ C . Design time goals
(such as standby mode when no application is running) are
denoted as D and runtime goals as . The runtime goals
(such as providing best performance depending on the appli-
cation type) can have higher priority than design time goals.
It needs to be noted that the health of the components can
also be represented as a function of time, provided exact
model exists, which is out of scope of this work.
3.2.3. Power Model

The total power consumption of a core comprises of static
and dynamic power. The dynamic power consumption of an
application running at a frequency f is modeled as 1

2CV
2f .

The static power is dominantly due to leakage power and
varies exponentially with threshold voltage. The dynamic
power consumption is due to the application dependent switch-
ing activities in the core. The total power consumption [5,
12] when operating at voltage V and frequency f is modeled
as below:

P (V , f) = Pstatic +PDynamic = I0e
−Vtℎ
�VT V +�CV 2f (1)

Here I0 and � are technology parameters; VT is the thermal
voltage; Vtℎ is the threshold voltage; � represents the switch-ing activity factors and C is the average capacitance. To ob-
tain per-application power or energy trace, we sum the power
traces of the cores on which the application is executing.
3.3. Problem Statement

In the multi-core and many-core systems, the resource
constrained embedded systems have to be intelligent enough
to monitor their functionality and utilization, and service the
goals to ensure efficient processing and resource utilization.
Furthermore, as the systems have also goals provided during
runtime or change of system state (health) is quite feasible,
adapting to the goals at runtime is needed for an efficient

power utilization and system performance. Thus, the prob-
lem is formulated as follows.

Problem Statement: For an effective powermanagement,
the power manager has to consider the runtime system state,
workload characteristics and external goals (if any), and adapt
itself to the runtime conditions and dynamically changing
goals such as high-performance requirements or resource con-
tention.

4. Self-aware Power Management
In this section, we describe the functionality of self-aware

powermanager. First, we present the application-level power
manager, followed by the power management monitor us-
ing two different scenarios: a) in case of externally provided
goals, and b) when the state of components’ change.
4.1. Application-level Power Manager

Algorithm 1Utilized Application-level Power Management
(PM())
Require: Workloads (W = {W1,W2, ...}), goals , con-

straints , Components (Voltage-Frequency (VF) lev-
els) (C = {c1, c2, ..., cq})

Ensure: Power management policy (Rpolicy) and used com-
ponents (Cused)

1: Workload for application i: Wi =
{xi(1), xi(2), ...xi(n)};

2: for j = p to n do ⊳ Perform prediction

3: x̂i(j) =
∑p
k=1 bk ∗ xi(j − k);

4: ∑p
i biR(j − i) = −R(j); ⊳ Find ai

5: for k = 1 to q do
6: d(x̂i(j), sk) = (x̂i(j) − sk)2; ⊳ sk corresponds

to power provided with component ck
7: if d(x̂i(j), sk) = min then
8: Wi(j) ← ck;
9: else
10: k = k + 1;
11: end if
12: end for
13: end for

The powermanagement policy generation by the application-
level powermanager (i.e., functionPM()) is as follows. Here,
the power management policy (Rpolicy) refers to the DVFS
settings. For power management, we employ learning based
DVFS. The DVFS in this work is performed with the predic-
tor, followed by mapping the predicted power values to the
voltage and frequency. It needs to be noted that the application-
level power management technique is utilized to overcome
the overhead concerns. However, this power management
technique can be replaced with other techniques as well [34].
The application-level power manager is programmed at OS-
level and is an independent module compared to the power
management monitor unit. As such, the employed power
management technique is replaceable with other variants.

: Preprint submitted to Elsevier Page 5 of 12

The prediction of workload is performed with linear re-
gression, whose weights are updated based on the prediction
error. This is performed in the application-level power man-
ager (Figure 1).

x̂i(n) =
p
∑

j=1
bjxi(n − j) +

p
∑

i=1
biR(j − i) = − R(j)

(2)

Here, bj , j = 1, 2, ..., p are the coefficients, p representing the
order of prediction i.e., number of previous samples consid-
ered for the prediction; xi(n) represents the workload (powertrace) at the time-instant n for application i;
 is the predic-
tion error; and the predicted value is indicated as x̂i(n). The
R(j) is the autocorrelation for the signal. The application-
level power trace is obtained by summing up the power con-
sumption by individual threads of the application, if running
on multiple cores.

Further, based on the demanded power, and the power
that can be provided with the existing VF settings of the volt-
age frequency regulator. The mapping of predicted power
and VF levels is performed based on the closest distance
to the formed clusters (center of each cluster represent the
amount of power that could be provided when using the VF
settings with which cluster is associated), as in Line 5-11 of
Algorithm 1. In Algorithm 1, the sk denotes the power pro-vided the component ck whose voltage and frequency levelsare (vk, fk). If the performance requirements are notmet, the
frequency is scaled up accordingly, though not presented in
Algorithm 1.
4.2. Self-aware Power Management

The proposed self-aware power manager follows the ba-
sic principle of observe-decide-act. However, during the de-
cide phase, it also performs the analysis of observed data.
We explain the principle using two different scenarios.
4.2.1. Case 1: Externally Provided Runtime Goals

The working principle of the proposed adaptive power man-
ager that adapts to the dynamically changing runtime goals
is described in two phases.
Observe: Monitor Dynamically Changing Goals

The power management monitor keeps track of (exter-
nally) provided runtime goals. For instance, in this work,
the runtime goals are provided into the system through a
C program. Initially, the system is provided with a header
file where the primary requirements such as performance are
provided, and the newly provided file overwrites the values,
leading to a change in performance requirement during run-
time. In similar manner, other goals are introduced into the
system. In addition, the power management monitor also
looks for the changes in the system state (as in Line 1 of Al-
gorithm 2). As the systems (microprocessors) are deployed

in large networks or data centers, the resources are shared be-
tween different systems [26]. As such, in this work, the sys-
tem state information considered is the resource contention.
Whenever a resource is contended, the power management
monitor unit levies the constraint of not or minimally em-
ploying the contended resource for power management or to
the existing goal. The availability of i-th component is in-
dicated by variable ℎi, ℎi ∈ {0, 1}, where 1 indicates that
the component is available. The state of components is indi-
cated byH = {ℎ1, ℎ2, ..., ℎk}, where k indicates the compo-
nents available for the current system. However, this work
is not limited for resource contention and can be extended
with other state information changes such as malfunctioning
of a component, and aging with time, which will also result
in similar modifications in the goal and constraints of the
power manager. For this case study, we assume that all the
components are in working state.

The per-application power manager has the application
monitor unit that tracks the applications’ workload character-
isticsW , (W = {W1,W2, ...}whereWi represents thework-load characteristics for application i) such as power trace,
memory access and so forth (as in Line 1 of Algorithm 2).
In this work, power trace of an application is the workload
characteristic considered for power management.
Algorithm 2 Self-aware Power Management in a Multi-core
Microprocessor under Runtime Provided Goals
Require: Design-time goals, design-time constraints ,modified design- or runtime goals , modified con-

straints , Applications (W = {W1,W2, ...}), systemcomponents C = {c1, c2, ..., ck}
Ensure: Meet system goals (design-time and runtime) even

under dynamically changing goals
1: ObtainH = {ℎ1, ℎ2, ..., ℎk} for C ⊳ Monitor the

status of system components

2: Monitor characteristics for application i: Wi =
{xi(1), xi(2), ...xi(n)};

3: if  == {∅} then ⊳ When there is no modification in

goals or change in system state

4: [Rpolicy, Cused] ← PM(W ,,, C) ⊳ Generate

power management policy, as in Algorithm 1

5: else if  ≠ {∅}&&Pr() > Pr() then ⊳
If externally specified runtime goals have higher

priority

6: [Rpolicy, Cused] ← PM(W ,,, C) ⊳ Generate

the policy to meet the runtime goals

7: else if  ≠ {∅}&&Pr() ≤ Pr() then ⊳ If runtime

goals are externally specified

8: [Rpolicy, Cused] ← PM(W , ∪, ∪ , C) ⊳
Merge the two goals and generate the corresponding

policy that meets the goals

9: end if
10: enforce(Rpolicy) ⊳ Enforce the recommended policy

: Preprint submitted to Elsevier Page 6 of 12

Decide-and-Act: Adaptation to Changing Goals
The adaptation to dynamically changing goals and sys-

tem state with the proposed adaptive power manager is as
follows. If there exists no change in system state or no goals
externally i.e., power management monitor unit does not ob-
serve any changes, the system performs the application-level
power management described in Algorithm 1 (as in Line
3-4 of Algorithm 2). In case of externally provided goals
with higher priority, the application monitor unit replaces
the design-time goal with the external goal and performs the
power management according to the new goal. In case of
equal priority, the externally provided goals are integrated
with the existing design-time goals and power management
is carried out by the application-level power manager (as in
Line 5-8 of Algorithm 2). For lower priority, the execu-
tion could be delayed (though not performed in this work).
In case of change in system state, the constraints and goals
are modified by the power management monitor unit as de-
scribed previously and the application-level power manage-
ment is carried out. In case of orthogonal goals that conflict
each other such as high performance and low battery uti-
lization (say), techniques like multi-objective optimization
is employed, though not presented here for brevity.

As the externally provided goal (requirement) could be
anything such as high-performance, we denote with a more
generic term . In this work, a demonstration with high-
performance is performance as external goal is provided,
as such PM(W ,,, C) corresponds to maximizing the
throughput through frequency scaling. As provided in the
comments of Line 11, enforce() represents running the de-
termined policy (Rpolicy) i.e., execute the application with
the determined VF levels. The utilized per-application level
power management (PM()) is detailed in Algorithm 1.
4.2.2. Case 2: Self-awareness when a Component

Fails
The proposed self-aware powermanager follows an observe-

decide-act cycle for resource management even when a com-
ponent fails, as described below.
Observe the Health of System

In a traditional system with a power manager, the basis
to perform the power management is the application’s work-
load characteristics W , (W = {W1,W2, ...} where Wi rep-resents the workload characteristics for application i) such
as power trace, memory access and so forth. Whereas, the
self-aware system with power manager monitors the health
of the system components H along with the applications’
workload characteristicsW . The health of the system com-
ponents (H = {ℎ1, ℎ2, ..., ℎk} for k components) is useful to
asses the system condition (self-assessment) and to adapt the
variations in the component’s health. This lays the basis for
self-awareness, given in Line 1-2 of Algorithm 3. The health
of the voltage regulators and the PLLs are considered in this
work. The self-aware controller observes the policy recom-
mended by the power management unit. The policy (Rpolicy)denotes the DVFS settings in our demonstrative case study.

Algorithm 3 Self-Aware Power Management
Require: Design time goals, design time constraints ,explicit runtime goals , runtime constraints , Ap-plications (W = {W1,W2, ...}), system components

C = {c1, c2, ..., ck}
Ensure: Meet system goals (design time and runtime) even

under unforeseen scenarios
1: ObtainH = {ℎ1, ℎ2, ..., ℎk} for C ⊳ Monitor the

health of system components

2: Monitor application i characteristics: Wi =
{xi(1), xi(2), ...xi(n)};

3: if  == {∅} then ⊳ When there is no runtime goals

4: [Rpolicy, Cused] ← PM(W ,,, C) ⊳ Generate

power management policy

5: else if  ≠ {∅}&&Pr() > Pr() then ⊳ Runtime

specified goals have higher priority

6: [Rpolicy, Cused] ← PM(W ,,, C) ⊳ Generate

the policy to meet the runtime goals

7: else if  ≠ {∅}&&Pr() ≤ Pr() then ⊳ If runtime

and design time goals have same priority

8: [Rpolicy, Cused] ← PM(W , ∪, ∪ , C) ⊳
Merge the two goals and generate the corresponding

policy

9: end if
10: if ℎi == 1 ∀ ci ∈ Cused then ⊳ If all the utilized

components are healthy

11: enforce(Rpolicy) ⊳ Enforce the recommended policy

12: else
13: C = C − {ca}, wℎere ℎa = 0 for ca ⊳ When the

needed components are faulty

14: Go to Step 1 ⊳ Regenerate the policy without

considering the faulty components

15: end if

The policy generation is performed in the OS layer and en-
forced in hardware layer, in this work.
Decide and Act: Adapt to changed System’s State

In the self-aware system the ‘decide’ has been used for
two different purposes, as explained below. The self-aware
unit monitors for the explicitly specified runtime goals, re-
ferred as runtime goals. If there are no runtime goals, the
power manager (here) generates the power management pol-
icy (described in Line 3-4 of Algorithm 3). When the run-
time goals are specified, the self-aware manager looks for
the priority of meeting the runtime goals and follows Al-
gorithm 2. If no external goals are provided, the system
generates the power management policy, as defined in Al-
gorithm 1. Once the policies are generated (Rpolicy) alongwith the required components (Cused), the self-aware con-
troller validates the health of components required (Cused).If the components required are in functional state (healthy),
the self-aware controller enforces the decision and executes
it, Line 10-11 of Algorithm 3. If the required components
are faulty or not available, the self-aware controller lets the

: Preprint submitted to Elsevier Page 7 of 12

(a)

(b)

(c) Time (ms)

Time (ms)

Time (ms)

P
o

w
e
r

(W
)

P
o

w
e
r

(W
)

P
o

w
e
r

(W
)

Traditional PM Proposed self-aware PM

Figure 2: Behavior of traditional power manager (Traditional
PM) and proposed self-aware power manager (Proposed self-
aware PM) under: (a) normal conditions; (b) high performance
requirements; (c) state of component changes

power manager to regenerate the policy without considering
the unhealthy components, Line 13-14 of Algorithm 3. As
aforementioned, the component’s health can be multi-level
rather than binary.
4.3. Differences w.r.t. Existing works

The differences compared to some of the existing power
management works [33, 41, 52, 32, 44, 11] are:

• The proposed adaptive power manager considers the
application workload characteristics and runtime sys-
tem state information, whereas most of the existing
works use the applicationworkload characteristics and
few works also use the design-time system state infor-
mation or estimated models for system state. How-
ever, this does not reflect the real system state infor-
mation at runtime.

• Unlike existingworks, the dynamic goals (in this work)
are the goals that are externally provided to the sys-
tem externally or design-time goals adapted due to the
change in the system state.

• In contrast to the existing power management works
that considers solelyworkload characteristics for power
management, the proposed work considers the exter-
nal goals as well as internal changes (workload char-
acteristics and system state information).

Figure 2 illustrates the difference between the policies
generated by the traditional and proposed self-aware power
manager in different situations. When there exist no ex-
ternally provided goals and state of all the components are
functional, the policy from the traditional and proposed self-
aware power manager are same, as shown in Figure 2(a).
Consider a scenario where a high performance is provided

Table 1
Overview of System Configuration

Item Description Value

Microprocessor core

Frequency (Max) 2.66GHz
Voltage (Max.) 1.2V
Technology node 22nm

L1-I cache 32KB
L1-D cache 32KB
L2 cache 256KB

L3-Cache 8MB

externally (higher than performance constraint provided dur-
ing design time), than the self-aware power manager over-
writes the policy provided by the traditional power manager
to meet the performance constraints. In Figure 2(b), if one
can observe closely, the lowest VF level is not chosen by
the self-aware power manager, instead a higher VF level is
chosen in order to meet the performance constraints. In sim-
ilar fashion, Figure 2(c) depicts the policy from the tradi-
tional and self-aware power manager when the state of one
of the voltage regulator changes. In this example, the voltage
regulator that provides lowest VF settings is either malfunc-
tioning or not available, hence the self-aware power manager
chooses second voltage regulator whenever the lowest level
is predicted by the traditional power manager, rather the the
third regulator which provides lowest voltage-level. It needs
to be noted that in this example we consider three voltage
levels exist.

5. Simulation Results
5.1. Simulation Settings

The proposed self-aware power management scheme is
implemented in SniperSimmulti-core simulator [6]. Nehlam
microachitecture based (22nm) core models are used for the
simulations. In simulations, we use four voltage-frequency
levels for power management, that are supported by standard
Nehlammicroachitecture based cores: (1.2V, 2.66GHz), (1.1V,
1.8GHz), (1.0V, 1.5GHz) and (0.9V, 1.0GHz). A switching
time for the voltage-frequency regulator (10�s) is considered
in the simulations [42]. The reported power and timing over-
head includes switching power and time. In order to evaluate
the self-aware power manager, simulations are run with Par-
sec [4] and SPLASH-2 [47] benchmarks. The predictor is of
order 4, chosen based on accuracy vs complexity analysis.
5.2. Tool Flow

The tool flow to perform self-aware power management
in Snipersim multi-core simulator is presented in Figure 3.
The Snipersim simulator is initialized with the configura-
tions such as number of cores, microarchitecture, technol-
ogy node, VF levels and so on. For an unbiased and bet-
ter evaluation of self-aware powermanagement, applications
are assigned to the cores in a random manner. Next, the
workload statistics at application level granularity are moni-
tored from the simulator and provided to the machine learn-
ing based predictor. Based on the predicted workload(s), the
corresponding voltage and frequency levels are assigned to
the core(s) that are running the corresponding applications.

: Preprint submitted to Elsevier Page 8 of 12

Power Traces for

application

Snipersim

Learn and predict

power traces

Map predicted power

to VF level

Power Traces for

application
Power Traces for

application

McPAT
Assign VF level(s) to

core(s) running application

Self-aware controller

Performance

requirements Health of system

Figure 3: Experimental tool flow to perform self-aware power
management in SniperSim

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

2 cores 4 cores 8 cores 16 cores 32 cores

Proposed RM STM SVM Trad. Lin

N
o

rm
a

li
ze

d
 p

o
w

er

Figure 4: Power savings with the proposed application-level
power manager under performance constraints

Lastly, McPAT [24] is used to obtain the power consumption
statistics of the microprocessor. To perform non-DVFS, the
workloads can be run on similar settings without invoking
the DVFS.

To implement the proposed technique in real-world sys-
tems, the existing power manager needs to be enhanced and
an interface to communicate with the external interrupt sig-
nals need to be provisioned. The external goals will be pro-
vided to the system in the form of interrupts. The priority of
the requests (maskable or unmaskable) depends on the initi-
ating device.
5.3. Evaluation of Self-Aware Controller

In this work, the components’ health and performance
requirements are provided manually. However, in the real
environment, this can be provided with the aid of the sen-
sors and requirements from user. The performance of the
self-aware power manager is evaluated under different con-
ditions.
5.3.1. Power Management

For evaluating the effectiveness of application-level power
management (in Section 4.1), the system is provided with no
external goals and the system state is kept unchanged during
runtime. The proposed application-level powermanagement
is compared against some of the recent works such as [32, 53,
52]. The power savings is shown in Figure 4. The X-axis
represents the number of cores and Y-axis represents nor-
malized power consumption. The application-level power
management (denoted as ‘ProposedRM’) is compared against

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0

0.2

0.4

0.6

0.8

1

1.2

2 core 4 core 8 core 16 core 32 core

HP PM Proposed RM vs PM vs HPC

N
o
rm

a
li

ze
d

 p
o

w
er

N
o
rm

a
lized

 tim
e

Figure 5: Power savings and runtime with adaptive power man-
ager under externally provided goal (high-performance)

works similar toDVFSwithworkload prediction (‘Trad. Lin’)
[52], space-time multiplexing based DVFS (‘STM’) [32],
and SVMbasedworkload prediction, and classificationDVFS
(‘SVM’) [53].

The rationale for comparing with [32, 53, 52] is as fol-
lows. In [32], ARMA based workload prediction and singu-
lar value decomposition (SVD) based VF level assignment
with space-time multiplexing (STM) is performed, which is
similar to the utilized power management. A linear regres-
sion with offline learning based workload prediction and VF
level assignment is proposed in [52]. In works like [39], lin-
ear regression is employed for power management. These
works are reproduced with minor modifications for fair com-
parison.

Traditional linear regression based power management
(similar to [52]) performs similar to the utilized application-
level power management for small number of cores. How-
ever, for the system with large number of cores (such as 16
or 32), the proposed power management outperforms. This
is observed due to the variation in the granularity of mon-
itoring.Furthermore, the complexity increases with the in-
crease in number of cores and the accuracy of the model
as well decreases. For small cores, the system-level and
application-level traces are similar, but has variations with
increase in the number of cores. For a 32-core micropro-
cessor, the difference between proposed power management
and the linear regression based power management is around
12%. The application-level power manager achieves 16%
and 14%higher power savings on average compared to space-
time multiplexing and SVM based power management re-
spectively for a microprocessor up to 32-cores. In terms
of overhead, the proposed application-level power manage-
ment has nearly 0.97× runtime compared to the linear re-
gression based power management; and 1.05× runtime com-
pared to STM based implementation with up to 32 cores (not
represented in Figure 4).
5.3.2. High-Performance as Externally Provided Goal

To evaluate the adaptation to dynamically changing goals,
the system is externally provided during runtime with the
requirement to achieve high-performance. The power man-
agement monitor unit detects the externally provided goal
and modifies the goals and constraints of the power manage-
ment (which application-level power manager is using) to

: Preprint submitted to Elsevier Page 9 of 12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PC1 PC2 PC3 PC4

2 cores 4 cores 8 cores 16 cores 32 cores

Figure 6: Allocation of tasks to Voltage Frequency regulators

the high-performance, as in algorithm 2. This high-performance
achievement can be seen in terms of overall runtime of ap-
plications.

Figure 5 compares the proposed adaptive power man-
ager, traditional power manager and a system design with
objective of high-performance. The performance of systems
(power and runtime) with high-performance and low power
are represented by ‘HP’ and ‘PM’, respectively. The pro-
posed work is denoted by ‘Proposed RM’. The bar graph
represent the power consumption (normalized) and the lines
represent the runtime (normalized). The comparison of run-
time of the proposedworkwith low power and high-performance
systems are denoted by ‘vs PM’ (black line) and ‘vs HP’ (red
line), respectively.

The proposed adaptive manager performs similar to a
high-performance system for small number of cores, and tries
to optimize the power. For large number of cores (32 cores or
so), the system trades the power to performance, and more-
over the goal is provided during runtime so part of execu-
tion is already performed. Compared to a system with high-
performance as design-time goal, the proposed power man-
ager has nearly 9% power saving and 1.07× runtime. Com-
pared to a system with optimization of power as design-time
objective, the proposed system has 25% higher power con-
sumption on average, but 2.4× faster on average.
5.3.3. Resource Contention

In large scale systems such as data centers, though the
number of hardware resources are abundant, reusability and
sharing of the resources is widely employed to efficiently uti-
lize the existing resources. In such scenarios, it is highly pos-
sible that the resources demanded by one system could be in
use by other systems, resulting in resource contention. This
kind of resource contention is often bottlenecks in large pro-
cessing units such as datacenters [22]. To verify the adapta-
tion to dynamically changing goals with respect to the change
in system state, the VF regulator 2 (VF 2) is set under con-
tention. As such, the power management monitor unit modi-
fies the constraints to not utilize the VF 2 for the application-
level power management. We demonstrate the adaptability
with VF regulator as one of the resources, but could be ex-
tended to other resources. Figure 6 shows the allocation of

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0

0.2

0.4

0.6

0.8

1

1.2

2 core 4 core 8 core 16 core 32 core

N
o
rm

a
li

ze
d

 s
w

it
ch

in
g
 a

ct
iv

it
y

N
o
rm

a
li

ze
d

 p
o
w

er

Non-DVFS PM SAPM Switching Activity

SAPM – 0.67
SAPM – 0.35

Figure 7: Power savings and switching activity with self-aware
power manager (SAPM) under optimized switching activity,
high performance and power constraints

the tasks/applications to the VF regulators. Compared to a
power manager with power minimization as the objective,
the assignment of tasks to VF2 is reduced by nearly 68%
with the proposed adaptive power manager. Contrarily, the
distribution of tasks on other VF regulators lead to an in-
crease of 3% power consumption. As the goal is introduced
during runtime, the resource manager after adaptation shows
some utilization of VF 2 in Figure 6.
5.3.4. Power saving under Reduced Switching Activity

and High Performance Constraints
Lastly, we evaluate the proposed self-aware resourceman-

agement (represented as SAPM) system under the constraints
of lower power consumptionwith reducedVF regulator switch-
ing activity and high performance requirements, which is
one of the commonly encountered bottlenecks in the multi-
core microprocessors. The performance in terms of power
savings and switching activity is shown in Figure 7. A power
saving of 33% is achieved on average compared to non-DVFS
(non-DVFS) and is 1% lower power saving (saves power by
reduced switching, but allocation ofDVFS levels is improper)
than traditional powermanagement (denoted as PM)without
self-awareness on average. However, the system has 65%
lower switching activity and 4% lower runtime compared to
power manager without self-awareness.

6. Conclusions
A self-aware power manager which monitors the health

of the system components as well the workloads to perform
power management is proposed in this work. The self-aware
controller is placed hierarchically on top of the power man-
ager and is independent to other components of the system.
This hierarchically built system has the advantages of real-
time powermanagement and adaption to system goals at run-
time and variations in the components’ health. The utilized
application-level power manager employs a linear regres-
sion based workload prediction for DVFS. The self-aware
unit monitors and validates the decision made by the un-
derlying traditional power manager and modifies the deci-
sion (power management policy) in order to meet the ex-
ternally provided goals and/or change in system state. The

: Preprint submitted to Elsevier Page 10 of 12

proposed self-aware power manager is evaluated under vari-
ous scenarios such as externally provided high performance
requirement, change in system state (resource contention of
voltage-frequency regulators), and both the previously men-
tioned objectives. The proposed self-aware power manager
achieves up to 16% compared to existing power management
techniques; and 2.4× faster to achieve high performancewith
additional 25% power consumption; and 65% lower switch-
ing activity and 4% lower runtime under both resource con-
tention and high performance requirements on average com-
pared to power management without self-awareness for mi-
croprocessor up to 32 cores.

References
[1] Bartolini, A., et.al., 2010. A virtual platform environment for explor-

ing power, thermal and reliability management control strategies in
high-performance multicores, in: Great Lakes Symp. on VLSI.

[2] Baumann, R.C., 2005. Radiation-induced soft errors in advanced
semiconductor technologies. IEEE Transactions on Device and Ma-
terials Reliability 5, 305–316.

[3] Bernstein, J.B., et.al., 2006. Electronic circuit reliability modeling.
Microelectronics Reliability 46, 1957 – 1979.

[4] Bienia, C., et.al., 2008. The PARSEC benchmark suite: Characteri-
zation and architectural implications, in: Int. Conf. on Parallel Archi-
tectures and Compilation Techniques.

[5] Brooks, D., Dick, R.P., Joseph, R., Shang, L., 2007. Power, thermal,
and reliability modeling in nanometer-scale microprocessors. IEEE
Micro 27, 49–62.

[6] Carlson, T.E., et.al., 2014. An evaluation of high-level mechanistic
core models. ACM Trans. Archit. Code Optim. 11, 28:1–28:25.

[7] Chen, G., Huang, K., Knoll, A., 2014. Energy optimization for real-
time multiprocessor system-on-chip with optimal DVFS and DPM
combination. ACM Trans. Embed. Comput. Syst. 13, 111:1–111:21.

[8] Chen, J.J., Thiele, L., 2010. Energy-efficient scheduling on homoge-
neous multiprocessor platforms, in: ACM Symp. on Applied Com-
puting.

[9] Choi, K., Soma, R., Pedram, M., 2005. Fine-grained dynamic voltage
and frequency scaling for precise energy and performance tradeoff
based on the ratio of off-chip access to on-chip computation times.
IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems 24, 18–28.

[10] Devadas, V., Aydin, H., 2010. Coordinated power management of pe-
riodic real-time tasks on chip multiprocessors, in: Int. Conf. on Green
Computing.

[11] Dutt, N., Jantsch, A., Sarma, S., 2016. Toward smart embedded sys-
tems: A self-aware system-on-chip (SoC) perspective. ACM Trans.
Embed. Comput. Syst. 15, 22:1–22:27.

[12] Ejlali, A., Al-Hashimi, B.M., Eles, P., 2012. Low-energy standby-
sparing for hard real-time systems. IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems 31, 329–342.

[13] Guang, L., et.al., 2011. HAMSoC: A monitoring-centric design ap-
proach for adaptive parallel computing, in: Autonomic Networking-
on-Chip : Bio-inspired Specification, Development and Verification.

[14] Hantao, H., Manoj, P.D.S., Xu, D., Yu, H., Hao, Z., 2014. Reinforce-
ment learning based self-adaptive voltage-swing adjustment of 2.5D
I/Os for many-core microprocessor and memory communication, in:
IEEE/ACM Int. Conf. on Computer-Aided Design (ICCAD).

[15] Herbert, S., Marculescu, D., 2007. Analysis of dynamic volt-
age/frequency scaling in chip-multiprocessors, in: Int. Symp. on Low
Power Electronics and Design.

[16] Hoffmann, H., 2014. CoAdapt: Predictable behavior for accuracy-
aware applications running on power-aware systems, in: Euromicro
Conf. on Real-Time Systems.

[17] Hoffmann, H., et.al., 2010. Seec: A framework for self-aware com-

puting. Online.
[18] Hoffmann, H., et.al., 2013. A generalized software framework for

accurate and efficient management of performance goals, in: ACM
Int. Conf. on Embedded Software.

[19] Islam, F., Lin, M., 2015. A framework for learning based dvfs tech-
nique selection and frequency scaling for multi-core real-time sys-
tems, in: IEEE Int. Conf. on Embedded Software and Systems.

[20] Jung, H., Pedram, M., 2010. Supervised learning based power man-
agement for multicore processors. IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems 29, 1395–1408.

[21] Khdr, H., Pagani, S., Sousa, E., Lari, V., Pathania, A., Hannig, F.,
Shafique, M., Teich, J., Henkel, J., 2017. Power density-aware re-
source management for heterogeneous tiled multicores. IEEE Trans-
actions on Computers 66, 488–501.

[22] Kim, Y., Sylvester, D., Blaauw, D., 2011. LC2: Limited contention
level converter for robust wide-range voltage conversion, in: Symp.
on VLSI Circuits.

[23] Lewis, P.R., et.al., 2011. A survey of self-awareness and its appli-
cation in computing systems, in: IEEE Conf. on Self-Adaptive and
Self-Organizing Systems Workshops.

[24] Li, S., et.al, 2009. McPAT: An integrated power, area, and timing
modeling framework for multicore and manycore architectures, in:
IEEE/ACM Int. Symp. on Microarchitecture.

[25] Lin, J., Zhu, S., Yu, Z., Xu, D., Manoj, P.D.S., Yu, H., 2015. A
scalable and reconfigurable 2.5D integrated multicore processor on
silicon interposer, in: IEEE Custom Integrated Circuits Conf.

[26] Liu, H., 2011. A measurement study of server utilization in public
clouds, in: IEEE Int. Conf. on Dependable, Autonomic and Secure
Computing.

[27] Manoj, P.D.S., Jantsch, A., Shafique, M., 2018. SmartDPM: Dynamic
power management using machine learning for multi-core micropro-
cessors. Journal of Low-Power Electronics 14.

[28] Manoj, P.D.S., Lin, J., Zhu, S., Yin, Y., Liu, X., Huang, X., Song, C.,
Zhang, W., Yan, M., Yu, Z., Yu, H., 2017. A scalable network-on-chip
microprocessor with 2.5D integrated memory and accelerator. IEEE
Transactions on Circuits and Systems I: Regular Papers 64, 1432–
1443.

[29] Manoj, P.D.S., Wang, K., Yu, H., 2013. Peak power reduc-
tion and workload balancing by space-time multiplexing based
demand-supply matching for 3D thousand-core microprocessor, in:
ACM/EDAC/IEEE Design Automation Conf.

[30] Manoj, P.D.S., Yu, H., 2013. Cyber-physical management for hetero-
geneously integrated 3D thousand-core on-chip microprocessor, in:
IEEE International Symposium on Circuits and Systems (ISCAS).

[31] Manoj, P.D.S., Yu, H., Huang, H., Xu, D., 2016. A Q-Learning based
self-adaptive I/O communication for 2.5D integrated many-core mi-
croprocessor and memory. IEEE Trans. on Computers 65, 1185–
1196.

[32] Manoj, P.D.S., Yu, H., Wang, K., 2015. 3D many-core microproces-
sor power management by space-time multiplexing based demand-
supply matching. IEEE Trans. Computers 64, 3022–3036.

[33] Pagani, S., et.al., 2017. Energy efficiency for clustered heteroge-
neous multicores. IEEE Trans. on Parallel and Distributed Systems
28, 1315–1330.

[34] Pagani, S., Manoj, P.D.S., Jantsch, A., Henkel, J., 2018. Machine
learning for power, energy, and thermal management on multi-core
processors: A survey. IEEE Transactions on Computer Aided Sys-
tems of Integrated Circuits and Systems .

[35] Pathania, A., Pagani, S., Shafique, M., Henkel, J., 2015. Power
management for mobile games on asymmetric multi-cores, in:
IEEE/ACM International Symposium on Low Power Electronics and
Design (ISLPED).

[36] Pathania, A., Venkataramani, V., Shafique, M., Mitra, T., Henkel, J.,
2017. Defragmentation of tasks in many-core architecture. ACM
Trans. Archit. Code Optim. 14.

[37] Rapp, M., Sagi, M., Pathania, A., Herkersdorf, A., Henkel, J., 2020.
Power- and cache-aware task mapping with dynamic power budgeting
for many-cores. IEEE Transactions on Computers 69, 1–13.

: Preprint submitted to Elsevier Page 11 of 12

[38] Rountree, B., et.al., 2011. Practical performance prediction under
dynamic voltage frequency scaling, in: Int. Green Computing Con-
ference and Workshops.

[39] Sarma, S., et.al., 2014. On-chip self-awareness using cyberphysical-
systems-on-chip (CPSoC), in: Int. Conf. on Hardware/Software
Codesign and System Synthesis.

[40] Seo, E., Jeong, J., Park, S., Lee, J., 2008. Energy efficient scheduling
of real-time tasks on multicore processors. IEEE Trans. on Parallel
and Distributed Systems 19, 1540–1552.

[41] Shafique, M., Ivanov, A., Vogel, B., Henkel, J., 2016. Scalable power
management for on-chip systems with malleable applications. IEEE
Trans. on Computers 65, 3398–3412.

[42] Singhal, R., 2008. Inside Intel® core microarchitecture (nehalem), in:
IEEE Hot Chips Symp.

[43] SomuMuthukaruppan, T., Pathania, A., Mitra, T., 2014. Price theory
based power management for heterogeneous multi-cores, in: Inter-
national Conference on Architectural Support for Programming Lan-
guages and Operating Systems.

[44] Tarsa, S.J., Kumar, A.P., Kung, H.T., 2014. Workload prediction for
adaptive power scaling using deep learning, in: IEEE Int. Conf. on IC
Design Technology.

[45] Tesauro, G., et.al., 2007. Managing power consumption and perfor-
mance of computing systems using reinforcement learning, in: Int.
Conf. on Neural Information Processing Systems.

[46] Wang, Y., Pedram, M., 2016. Model-free reinforcement learning

and bayesian classification in system-level power management. IEEE
Trans. on Computers 65, 3713–3726.

[47] Woo, S.C., et.al., 1995. The SPLASH-2 programs: Characteriza-
tion and methodological considerations. SIGARCH Comput. Archit.
News 23, 24–36.

[48] Wu, S.S., Wang, K., Manoj, P.D.S., Ho, T.Y., Yu, M., Yu, H., 2014. A
thermal resilient integration of many-core microprocessors and main
memory by 2.5D TSI I/Os, in: Design, Automation Test in Europe
Conference Exhibition (DATE).

[49] Xu, D., Manoj, P.D.S., Huang, H., Yu, N., Yu, H., 2014. An energy-
efficient 2.5D through-silicon interposer I/Owith self-adaptive adjust-
ment of output-voltage swing, in: IEEE/ACM International Sympo-
sium on Low Power Electronics and Design (ISLPED).

[50] Xu, D., Yu, N., Huang, H., Manoj, P.D.S., Yu, H., 2018. Q-learning
based voltage-swing tuning and compensation for 2.5Dmemory-logic
integration. IEEE Design and Test 35, 91–99.

[51] Xu, D., Yu, N., Manoj, P.D.S., Wang, K., Yu, H., Yu, M., 2015.
A 2.5-D memory-logic integration with data-pattern-aware memory
controller. IEEE Design Test 32, 1–10.

[52] Yang, S., et.al., 2015. Adaptive energy minimization of embedded
heterogeneous systems using regression-based learning, in: Int. W.
on Power and Timing Modeling, Optimization and Simulation.

[53] Zaman, M., et.al., 2015. Workload characterization and prediction: A
pathway to reliable multi-core systems, in: IEEE Int. On-Line Testing
Symp.

: Preprint submitted to Elsevier Page 12 of 12

