
Smart I/Os: A Data-pattern Aware 2.5D Interconnect with
Space-Time Multiplexing

Sai Manoj P. D., Kanwen Wang, Hantao Huang and Hao Yu
School of Electrical and Electronic Engineering

Nanyang Technological University, Singapore 639798
Email: haoyu@ntu.edu.sg

ABSTRACT
A data-pattern aware smart I/O is introduced in this
paper for 2.5D through-silicon interposer (TSI)
interconnect based memory-logic integration. To match
huge many-core bandwidth demand with limited supply of
2.5D I/O channels when accessing one shared memory, a
space-time multiplexing based channel utilisation is
developed inside the memory controller to reuse 2.5D I/O
channels. Many cores are adaptively classified into clusters
based on the bandwidth demand by space multiplexing to
access the shared memory. Time multiplexing is then
performed to schedule the cores in one cluster to occupy
the supplied 2.5D I/O channels at different time-slots upon
priority. The proposed smart 2.5D TSI I/O is verified by
the system-level simulator with benchmarked workloads,
which shows up to 58.85% bandwidth balancing and
11.90% QoS improvement.

1. INTRODUCTION
The existing many-core microprocessors with shared

main memory integration [1] has limited bandwidth that is
non-scalable for exa-scale computing. The 3D integration
by through-silicon via (TSV) [2, 3, 4, 5] can significantly
improve the memory-logic communication bandwidth but
has severe thermal reliability concerns due to poor heat
removal [6]. Recent development of 2.5D integration by
through-silicon interposer (TSI) [7] is one promising
solution by integrating multiple dies on one common
substrate. It has good thermal dissipation as well as high
bandwidth and low power when realized as the
transmission line (T-line) deployed underneath. Compared
to 2D PCB trace for memory-logic integration, 2.5D TSI
I/O can provide better communication bandwidth. In
contrast to 3D TSV I/O for memory-logic integration, the
2.5D TSI I/O has much better thermal reliability [8, 9].
The use of many-core microprocessor with shared

memory for data-oriented commutation involves huge
communication bandwidth demand. As there are limited
number of TSI I/O channels to access the shared memory,
this calls for a channel reutilization under quality-of-service
(QoS) [10] constraint. Memory controller [11, 5] is
commonly employed as the bridge between cores and
shared memory. State-of-the-art memory controller [12] is
mainly designed as off-chip interface with a large number
of I/O pins for memory-logic integration to be managed. A
better QoS can be achieved by the matching of
memory-access demands by dynamic allocation of I/O
channels and scheduling of requests [13]. A copious

memory-access scheduling techniques are available in
literature [13, 14, 15, 16, 17, 18]. Reordering of
memory-access requests requires a considerable amount of
modifications in the memory controller design. From the
I/O perspective, memory channel partitioning (MCP)
scheme for conventional memory is proposed [17], where
the channels connecting memory and logic blocks are
grouped based on the number of memory-access requests
(MPKI) and the number of channels are determined based
on the number of applications in the group. The utilization
of bandwidth is not efficient because low memory
applications have less memory-access demands and
bandwidth of the assigned channels are under utilized. A
batch scheduling technique is proposed in [14]. A limited
number of requests are grouped as batches based on their
arrival times and priorities are assigned based on the
arrival times. What is more, in each batch, the requests
are allowed to access the memory in parallel manner. This
method provides fair allocation of channels, but the
allocated bandwidth for parallel access may be wasted in
case of low memory intensive applications. In [18],
network-latency sensitive applications are mapped to the
network (cores) running less bandwidth intensive
applications such that the memory-access can be granted
for latency sensitive applications. However, this technique
has overhead in terms of application mapping and
moreover, the channels are not balanced.

In this paper, we introduce a smart I/O, which is a 2.5D
TSI I/O with space-time multiplexing based on the
memory-access data-pattern characteristics to improve the
channel utilization rate with good QoS. Different
application workloads are first classified based on their
memory-access data-patterns at different time-slots.
Correspondingly, one can cluster the cores based on the
demanded bandwidth characterized by the magnitude of
memory-accesses (memory-access number). Accordingly,
the I/O channels are allocated to different clusters, which
is called space multiplexing. Moreover, inside one cluster,
cores will be assigned with different priority characterized
by the phase of memory-accesses. As such, cores in each
cluster can be scheduled to occupy the allocated 2.5D I/O
channels at different time-slots upon the priority, which is
called time multiplexing. Such a space-time multiplexing
improves the effective utilization of available 2.5D I/Os.

The proposed memory-access data-pattern aware smart
with space-time multiplexing is implemented on a
cycle-accurate simulator for up to 64-core microprocessor
with shared memory, which can be explored in 2D

TSV

Logic Layer Memory Layer

TSI Channels

Port 1

Core11

Core12

Core1N

Core21

Core22 CoreN2

CoreN1

Core2N CoreNN

...

......

...

...

......
..

Channel Management

Logics

Crossbar

Network

Port 2

Port M

......
..

..

Memory Controller

Figure 1: Side-view of 2.5D many-core microprocessor
and main memory integration by TSI I/O channels.

integration as well. The memory intensive benchmarks
from SPEC 2006 [19], PARSEC [20] and Phoenix [21] are
selected. Experiment results show that the proposed
memory controller can achieve up to 58.85% bandwidth
balancing and 11.90% QoS improvement.
The remainder of the paper is organized as follows.

Section 2 describes the system architecture with
formulated problem of space-time multiplexing in the
memory controller. Section 3 illustrates the study of
memory-access data-pattern classification and QoS
evaluation. The space-time multiplexing algorithm utilized
for the smart I/O is presented in Section 4. Validated
experiment results are discussed in Section 5 with
conclusions drawn in Section 6.

2. 2.5D ARCHITECTURE OF SHARED
MEMORY MANY-CORE
MICROPROCESSORS

In this section, an architecture of 2.5D TSI integrated
many-core microprocessors and a shared memory is
presented with the focus on the data-pattern aware smart
I/O for space-time multiplexing. A space-time
multiplexing problem is formulated to achieve a
demand-supply matching that can improve the I/O
utilization rate with good QoS.

2.1 System Overview
Figure 1 shows the 2.5D architecture utilized for

many-core memory-logic integration with the
reconfigurable memory controller for 2.5D TSI I/O channel
management. The die on the left composes of many-core
microprocessors and the die on right is the shared main
memory. Cores can access the main memory through a
reconfigurable crossbar switch-network [22] to perform
adaptive space-time multiplexing inside the memory
controller by configuring data-pattern aware 2.5D TSI I/O
channel connections. As TSIs are deployed underneath the
common substrate, area overhead is mitigated. The
crossbar switch-network is suitable for such a many-core
microprocessor with shared memory by the following
advantages: simple one-hop routing and ease of
implementing QoS policy. Besides, it can be easily
reconfigured based on the data-pattern analysis. The
switch-network can be reconfigured to connect with 2.5D
TSI I/O channels. In fact, one can model the 2.5D system
architecture by a demand-supply system with the following
three components:

• I/O channel demander: a set of microprocessor cores C
of set-size Nc having demand for different bandwidth.
Each core ci is to have a bandwidth demand of Bd(ci).

• I/O channel supplier: Nch TSI I/O channels have a

Main Memory

Core

Port M-1Port 1 Port 2

Memory

Controller

..
.

..
.

...

Port M...

Input

Output

Input ...

...
... ...

...

Output Output

Request

Queue
Data Queue Scheduler

Address

Decoder

R

...

Output

Core

R

Core

R

Core

R

Core

..
.

..
.R

Core

R

Core

R

Core

R

TSI I/O Channels

Input

Input

Core Logic

Figure 2: Memory-access data-pattern aware
reconfigurable memory controller with space-time
multiplexing.

total supply bandwidth BT . The allocated bandwidth
Ba(ci) for each core ci is supplied with TSI I/O
channels by the reconfigurable memory controller.

• I/O channel controller: a set of M memory ports with
scheduler inside the reconfigurable memory controller
to map requests from Nc cores to memory through Nch

TSI I/O channels under demand-supply matching by
flexible crossbar switch-network.

Note that the TSI I/O channel management in memory
controller can be implemented by simple logics of address
decoder, data queue, request queue and scheduler.

2.2 Space-Time Multiplexing
The process of matching huge memory-access bandwidth

demands by the data-pattern aware smart TSI I/O
channels using the space-time multiplexing can be
described as follows. Initially, based on the demanded
bandwidth Bd(ci) from core ci, the connection to one of
the M ports of memory controller is established by on-chip
routers. As such, cores with similar bandwidth demands
form one cluster and connected to one port inside the
memory controller. Note that each port can connect to any
of the Nch TSI channels by crossbar switch-network. A
number of TSI I/O channels are further allocated to one
port based on the demanded signature bandwidth, which is
called as space multiplexing. What is more, as the cores
with similar bandwidth demands can differ in
memory-access priority, they occupy the channel at
different time-slots, in a time multiplexed manner. The
configuration is dynamically changed depending on the
results of clustering at run time. Time multiplexing avoids
overloading at a port due to allocation of similar
workloads. This space-time multiplexing based smart I/O
not only meets the demand, but also improves QoS with
better I/O utilization rate. A more detailed view of the
proposed architecture is presented in Figure 2.

B
a
n
d
w
id
th

Time (ms)

Bd(c1)

Bd(c3)

Bd(c2)

1 2 3 4 5 6 7 8 9 10

Control-cycle Tc

Bd(c4)

M(c3)

M(c4)

M(c1)

High priorityTime-slot Ts Control-cycle Tc

(a) (b)

1 2 3 4 5 6

Time-slot Ts

B(p2)

B(p1)

...

Figure 3: Illustration of LLC MPKI memory-access data-
pattern: (a) bandwidth; (b) priority.

2.3 Problem Formulation
As there exists time-varying heterogeneous bandwidth

demands from cores to access shared main memory, TSI
I/O channels may not be fully utilized under a fixed
connection. To manage 2.5D TSI I/O channels with
time-varying bandwidth demands from many cores, the
main idea in this paper is to learn the memory-access
data-patterns so that one can perform a reconfigurable
space-time multiplexing of I/Os and can improve their
utilization efficiency. As such, the complexity for a
large-scale demand-supply matched I/O management can
be reduced with the aid of data-pattern aware smart I/Os
with space-time multiplexing. One can formulate a
space-time multiplexing design problem as follows:

Problem: A data-pattern aware space-time multiplexing of
I/Os need to be carried out to adaptively allocate Nch TSI
I/Os to Nc cores such that:

min:

Nc∑
i=1

|Ba(ci)−Bd(ci)|

s.t.: Ba(ci) ≥ Bd(ci);

(1)

where Bd(ci) and Ba(ci) are the demanded and allocated
bandwidths for core ci respectively. The number of
memory-access requests are for one control-cycle, which
will be defined in the later part of this paper. In addition
to the allocated bandwidth, the priority of requests also
needs to be satisfied. In the following, we present a
solution by studying the memory-access data-patterns.

3. MEMORY-ACCESS DATA-PATTERN
In this section, we present memory-access data-pattern

analysis that will be utilised for space-time multiplexing and
the QoS metric utilized for the performance evaluation. We
define control-cycle with period of Tc and each control-cycle
is further divided into time-slots with period of Ts. Within
each control-cycle Tc, I/O channels are allocated; while at
each time-slot Ts, cores are allocated with I/O channels.

3.1 LLC MPKI Pattern
There exist many approaches to describe the

memory-access data-pattern of workloads. Last-level cache
(LLC) misses-per-kilo-instructions (MPKI) is an important
metric to indicate the communication intensiveness
between cores and memory. Higher LLC MPKI indicates
larger bandwidth requirement. DRAM row buffer hit-rate
is another metric to show the spatial locality of the
workload. Since, this paper focuses mainly on the
memory-logic communication, LLC MPKI pattern is
considered for analyzing the memory-access data-pattern.

Note that the memory-accesses number can be inferred by
LLC MPKI [23]. Memory access number M(ci) for core ci
within control-cycle Tc is the sum of access number at each
time-slot Ts of Tc, given as

M(ci)|Tc =

Tc/Ts∑
t=1

M(ci)|t. (2)

The bandwidth demand Bd(ci) of core ci is related to the
memory-access number M(ci) by

Bd(ci) =
M(ci) ∗ Lc

Tc
(3)

where Lc is the last-level cache line size.
Based on the memory-access number, one can classify

the communication traffic pattern of cores indicated by the
similar demanded bandwidth. Cores with similar
demanded bandwidths can vary in arrival time of
memory-access requests. As such, one can prioritize the
cores based on request arrival time to allocate the channel.
Priority Ri will be raised when the core ci has early arrival
request or more number of requests, in case of multiple
requests arriving at same time. Core assigned with highest
priority will be allocated with the 2.5D I/O channel for
accessing memory.

Figure 3(a) illustrates the bandwidth demand Bd(ci) for
4 cores. At control-cycle 1, due to the bandwidth demands,
cores c1, c3 and c4 are allocated with bandwidthB(p1), while
core c2 with bandwidth B(p2). As such, cores with different
workloads can be classified based on demanded bandwidth
magnitudes, for space multiplexing.

Further within the cluster consisting of cores c1, c3 and
c4, all cores will compete for channel at time-slot Ts. To
avoid overloading of I/O channels, a time multiplexing
based on priority can be implemented. Figure 3(b) shows
the allocation of channels based on the priority within the
time-slot. Memory-access request from a core is shown by
a rectangular box. At time-slot 1, since there is only one
request from c4, I/O channel will be allocated to it. Here,
when multiple requests arrive at the same time, priority is
decided based on the total number of memory-access
requests, which is 2 for c1 and 4 for c3 at time-slot 2. So,
c3 is assigned with a higher priority and occupies the I/O
channel. Core assigned with high priority is shown with
red outline. Thus, the cores are further classified based on
the phase or priority in time, for time multiplexing.

3.2 Quality of Service
The system performance is sensitive to long-latency

memory requests because instructions dependent on the
long latency load cannot proceed until the load completes.
More number of memory-access served indicates a better
performance. Hence, the memory controller must balance
the accesses from different cores with good QoS
maintenance mechanisms [10].

We evaluate the performance of the system based on the
number of memory-access requests processed and hence
define QoS mathematically as

QoS =

∑Nc
i=1 riM(ci)∑Nc
i=1 M(ci)

(4)

where ri is the processed ratio of requests for core ci. Higher
QoS value indicates a better performance.

4. DATA-PATTERN AWARE SPACE-TIME
MULTIPLEXING OF I/OS

To solve the demand-supply matching problem by space-
time multiplexing, time varying memory-access data-pattern
(LLC MPKI) of cores is first extracted and then utilized in
space multiplexing for channel allocation as well as in time
multiplexing for time-slot allocation.

4.1 Space Multiplexing: Channel Allocation
We first discuss the adaptive allocation of I/Os to the

cores. The demand here is the bandwidth requirement
from cores running workloads and the supply is the I/Os to
support the required access to memory. To deal with large
number of cores, we cluster the cores based on the
memory-access data-pattern (LLC MPKI).
Clustering can be defined as the process of grouping

cores with similar demanded signature bandwidth. Each
cluster is allocated with cores and connected to one of the
memory controller ports through on-chip routers. Inside
the memory controller, cores are virtually partitioned and
allocated to a port of the reconfigurable memory controller
which can meet the demanded bandwidth. This clustering
of cores based on the memory-access bandwidth helps in
improving the performance of low memory-intensive
applications by mitigating the stalling of memory-access
requests from low memory-intensive applications without
affecting the performance of memory-intensive applications
[17]. The number of cores for different clusters may be
different. Note that the configuration of virtual clusters
changes adaptively. If the demand does not vary, the
clustering is expected not to change.
For example, z-th cluster Gz at port pz is formed by

Gz = {ci|Bd(ci) ≤ B(pz); ci ∈ C, z = 1, 2, ...,M} (5)

where Bd(ci) is the bandwidth demanded from core ci; and
B(pz) is the bandwidth allocated to port pz of the memory
controller. Such a clustering by the magnitude of the
memory-access is called space multiplexing. However, this
space multiplexing overloads a port, hence a time
multiplexing is needed to avoid this overloading.

4.2 Time Multiplexing: Time-slot Allocation
The time-slot allocation for time multiplexing can be

described as follows. Memory-access requests from
different cores can arrive at different time-instants and
each can have different memory-access number. The core
with earliest request will access the I/O channel first.
Memory access request from a core with early arrival time

will be assigned with high priority, defined as

Ri = H if ta(ci) < ta(cj). (6)

where H indicates high priority and ta(ci) indicates the
arrival time of the memory-access request from core ci; and
Ri indicates the priority for core ci. In case, when multiple
requests arrive at same time, the priority is assigned to the
core with more number of memory-access requests. This
priority based time multiplexing mitigates the overloading
caused by space multiplexing.
It needs to be noted that the priority can change due to

the change in the memory-access data-pattern (LLCMPKI),
and so does the multiplexing of I/Os.

4.3 Space-Time Multiplexing of I/O

The space-time multiplexing based I/O management
inside the memory controller is given in Algorithm 1.

Algorithm 1 Proposed I/O Management

Input: Set of cores C, ports P , bandwidth demands Bd(ci)
1: for i = 1 : Nc do
2: Gz={ci|B(pz−1) < Bd(ci) ≤ B(pz); z = 1, 2, ...,M}
3: end for
4: channel allocation for each cluster
5: for z = 1 : M do
6: With all cores inside Gz

7: for t = 1 : Tc/Ts do
8: if ta(ci)=min(ta|Gz) then
9: Ri = H
10: else if ta(ci) = ta(cj) then
11: Ri = H if M(ci) > M(cj)
12: end if
13: end for
14: end for
Output: cluster G, allocated I/O channels

Initially, set of ports P are labeled in ascending order of
bandwidth it can provide i.e., B(pz) > B(pz−1). Cores
with similar bandwidth demands are grouped into one
cluster and connected to one port with required TSI I/Os.
As such, B(pz) = Ba(ci) > Bd(ci). This is presented in
Line 1-4 of Algorithm 1. Once the cores are clustered,
priority based scheduling will be performed at each
time-slot. The requests from cores will be processed on a
first-come-first-serve principle. At a time-slot, if there is
only one request the corresponding core will be served first
(Line 8-9); If there are more than one requests, then the
core with more number of requests is assigned higher
priority and served (Line 11). Here ‘served’ indicates the
TSI I/O channel will be occupied by the core in need. This
process is repeated for every control-cycle Tc. Thus, I/O
channel management can be performed in a space-time
multiplexed manner to improve I/O utilization and QoS.
Due to demand-supply matching, the utilization rate of
TSI I/Os are improved. This improvement of QoS and
improved I/O utilization rate helps to achieve a better
energy-efficiency. The overhead of the proposed work can
be the extra control logic required.

5. SIMULATION RESULTS
5.1 System Setup

In order to validate the data-pattern aware memory
controller for the 2.5D TSI I/O management, system-level
cycle-accurate simulation is performed. Gem5 simulator
[24] is utilized for many-core microprocessors and DrSim
simulator [25] is employed for shared main memory. The
proposed space-time multiplexing 2.5D I/O management
using reconfigurable memory controller is implemented
inside the DrSim simulator. Table 1 summarizes the
system design specifications. The TSI I/O channel model
is based on [7] and the length is 1.5mm. The crossbar
switch-network inside memory controller is estimated with
1mm2 area and 1GHz frequency for a 64-core system under
32nm design [22]. The benchmarks are selected from SPEC
2006 [19] with high memory-access demand, PARSEC [20]
with medium memory-access demand and Phoenix [21]
with less memory-access demand. We set the control-cycle
Tc and time-slot Ts as 1ms and 0.1ms respectively based

sje
ng

lb
m

gobm
k

h264re
f

as
tar

bzip
2

so
plex

hm
m

er

povra
y

str
ea

m
clu

ste
r

ca
nnea

l

gro
m

ac
s
nam

d

word
 co

unt

lib
quan

tu
m

m
atr

ix
 m

ul.

blac
ksc

holes

0.1

1

10

Low

High

Medium

L
L

C
 M

P
K

I

 LLC MPKI

 # of memory requests

0

50k

100k

150k

200k

250k M
em

o
ry

 req
u

ests (#
)

Figure 4: Analysis of memory-access data pattern.

0 2 4 6 8 10

0

5k

10k

15k

20k

25k

M
e
m

o
ry

-a
c
c
e
ss

 (
#

)

Time (ms)

 libquantum mcf

 lbm gobmk

(a)

0.2 0.4 0.6 0.8 1.0
0

400

800

1k

2k

2k

2k

M
e
m

o
ry

-a
c
c
e
ss

 (
#

)

Time (ms)

 libquantum mcf

 lbm gobmk

(b)

Figure 5: SPEC 2006 memory-access data-patterns: (a)
for execution time of 10ms; (b) for one control-cycle.

on switching speed. Furthermore, we assume a baseline
system which has fixed core-to-memory connections, while
the proposed system employs the reconfigurable
connections. The overhead in terms of hardware for the
data-pattern aware smart I/O is the additional area
required for crossbar switch. The latency caused by
crossbar is small compared to the chosen control-cycle.

Table 1: System parameters

Processor core 1GHz x86
L1 I-cache 32kB private, 64B cache line
L1 D-cache 32kB private, 64B cache line
L2 cache 256kB private, 64B cache line

Main memory
4GB capacity, 800MHz DDR3-1066 channel,
x8 DRAM chips, 8 banks per channel

5.2 Memory-access Data-pattern Analysis
Memory-access data-patterns can be classified based on

the bandwidth demands (LLC and number of memory
requests) is presented in Figure 4. We classify benchmarks
as high, medium and low memory-access benchmarks. For
example, a core running lbm benchmark having LLC
MPKI of 59 (represented by vertical bar) and 233K
memory requests can be categorized under high
memory-access, whereas core running libquantum is
classified under low memory-access benchmarks due to low
LLC MPKI of 0.24 and 1776 memory requests. One needs
to note that LLC and number of memory-access requests
are proportional.
Further, we present how the data-patterns with similar

memory-access numbers can be classified. From Figure
5(a), one can observe that lbm and gobmk has similar
bandwidth signature and high memory-access demands
compared to libquantum and mcf . Thus, lbm and gobmk
can form a cluster (space multiplexing). In Figure 5(b) we
present the memory-access number within one
control-cycle. Variation in number of memory-access
demands of cores in one cluster (lbm and gobmk) can be
observed, based on which priorities can be assigned to
occupying I/O channels in time multiplexed manner.

Cluster 1

Cluster 2

Cluster 3

Cluster 4

ID: Core’s ID

32

24

31

41 43 44

13 14

22

34

42

11 12

2321

33

bzip2 gcc mcf milc

gobmk soplex hmmer sjeng

libq h264ref lbm astar

blacksch canneal matrixm wordc

BM: Benchmark

11

bzip2

24

13 14

22

12

2321

gcc mcf milc

gobmk soplex hmmer sjeng

3231

41 43 44

34

42

33

libq h264ref lbm astar

blacksch canneal matrixm wordc

ID

BM

Figure 6: Adaptive clustering of cores at two consecutive
control-cycles.

1 2 3 4 5 6 7 8
0

5k

10k

15k

20k

25k

30k

35k

14k

13k

S
ta

n
d

a
rd

 d
e
v

ia
ti

o
n

Time (ms)

 Baseline Proposed

27k

Figure 7: Bandwidth balance across TSI I/O channels
of 64-core under randomly distributed 16 benchmarks of
SPEC 2006, Parsec and Phoenix.

5.3 Adaptive Clustering Analysis
Here, we present the adaptive clustering of cores based

on the signature of demanded bandwidth. For a 16-core
case, we assume the total number of I/O channels are 8
and the number of ports is 4 and each core is randomly
assigned with a benchmark. Hence, for the baseline system
with fixed connections, each port is assigned with four
cores and each port is connected to 2 I/O channels. While
for the proposed system, ports connect to 4, 2, 1 and 1 I/O
channels respectively to meet the memory-access demands
from high to low traffic benchmarks. A similar setup is
assumed for 64-core case. Figure 6 illustrates the adaptive
clustering result of 16-core case at two consecutive
control-cycles (5ms to 6ms). Different filling patterns
represent different clusters. Cluster 1 handles high-traffic
workloads, cluster 2 are used for middle-traffic workloads,
and cluster 3 and cluster 4 are allocated with low-traffic
workloads. For example at 5ms, core 12 running gcc
benchmark is assigned to low traffic cluster 4, but is
assigned to middle traffic cluster 2 in the next control-cycle
due to time varying memory-access characteristics.

Bandwidth balancing across all ports can improve the
I/O channel utilization efficiency. We use requests per
channel to measure the traffic flow at each control-cycle
and calculate the standard deviation for all four ports. The
standard deviation shows the variation from average value.
A low standard deviation indicates more bandwidth
balancing. Bandwidth balancing for a 64-core processor,
with 52 SPEC 2006, 8 Parsec and 4 Phoenix benchmarks
randomly allocated to cores is shown in Figure 7. For
example, at 5ms the baseline system show standard
deviation of 26K memory requests, while the proposed
system just requires 11.5K with 55.90% bandwidth
balancing improvement. The average of standard deviation
for baseline and proposed system is 27K and 13K memory
requests, indicating a 14K reduction in deviation. On
average the proposed system can improve the bandwidth
balancing by 58.85% under 64-core case.

0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6 0.090.47

Q
o

S

Time (ms)

 Baseline Proposed

0.56

Figure 8: Communication QoS efficiency improvement
by STM I/O management for 16-core.

5.4 QoS Analysis
For a 16-core microprocessor with SPEC 2006, Parsec

and Phoenix benchmarks randomly distributed on cores,
comparison of QoS for proposed system and baseline
architecture is presented here. Improvement in QoS by the
proposed system is shown in Figure 8. The average QoS
for the baseline system is 0.472, whereas for the proposed
space-time multiplexing achieves a QoS of 0.561. Further
considering a 10ms span as an example, the average QoS
achieved by the proposed, baseline and time multiplexing
schemes are presented in Table 2. For a 16-core case, a
QoS of 0.589, 0.473 and 0.528 are achieved by proposed,
baseline and time multiplexing schemes, respectively. This
indicates nearly 11.90% more requests are served and
improvement in QoS by the proposed method compared to
baseline. Whereas for 64-core case the proposed system
achieves a QoS of 0.577 compared to QoS of 0.461 and
0.514 achieved by baseline and time multiplexing
techniques respectively. Use of space multiplexing alone
may result in large congestion at memory controller, hence
not compared. As mentioned in the previous section, the
improvement is achieved from the performance
improvement of low memory-intensive applications (space
multiplexing) and mitigation of request stalling (time
multiplexing).

Table 2: QoS Comparison

For 16-core
Method # Requests served QoS
Baseline 448578 0.473

Time multiplexing 523840 0.528
Proposed 580399 0.589

For 64-core
Method # Requests served QoS
Baseline 2092083 0.461

Time multiplexing 2340843 0.514
Proposed 262005 0.577

6. CONCLUSION
In this paper a smart I/O, which is a data-pattern aware

I/O with space-time multiplexing is demonstrated for 2.5D
memory-logic integration. With the reconfigurable crossbar
switch-network inside the memory controller, bandwidth
demand from many-core to access the shared memory can
be managed when accessing with limited 2.5D TSI I/O
channels. A space-time multiplexing based communication
between cores and memory is realized by reusing the I/O
channels with improved communication efficiency. By
adaptive clustering of the cores upon the magnitude of
memory-access patterns, 2.5D I/O channels are allocated
to core clusters by space multiplexing. With further

considering priority upon the phase of memory-access
patterns, time-slots are allocated to access 2.5D I/O
channels in one cluster by time multiplexing. The proposed
architecture is verified by the system-level simulator with
benchmarked workloads, which shows up to 58.85%
bandwidth balancing and 11.90% QoS improvement.

7. REFERENCES
[1] A. Vahidsafa and et.al., “SPARC M6: Oracle’s next generation

processor for enterprise systems,” in HOT CHIPS, 2013.

[2] M. B. Healy and et.al., “Design and analysis of 3D-MAPS: a
many-core 3D processor with stacked memory,” in IEEE CICC,
2010.

[3] M. P. D. Sai and et.al., “Reliable 3-D clock-tree synthesis
considering nonlinear capacitive TSV model with
electrical–thermal–mechanical coupling,” IEEE Trans. on
CAD, vol. 32, no. 11, pp. 1734–1747, Nov 2013.

[4] M. P. D. Sai, H. Yu, and K. Wang, “3D many-core
microprocessor power management by space-time multiplexing
based demand-supply matching,” IEEE Trans. on Computers,
vol. PP, 2015.

[5] “Hybrid Memory Cube Consortium,”
http://hybridmemorycube.org/tool-resources.html.

[6] H. Yu, J. Ho, and L. He, “Allocating power ground vias in 3D
ICs for simultaneous power and thermal integrity,” ACM
Trans. on Design Automation of Electronic Systems
(TODAES), vol. 14, no. 3, p. 41, 2009.

[7] J. R. Cubillo and et.al., “Interconnect design and analysis for
through silicon interposers (TSIs),” in IEEE 3DIC, 2012.

[8] A. Vassighi and et.al., “Thermal runaway in integrated circuits,”
IEEE Tran. on DMR, vol. 6, no. 2, pp. 300–305, Jun 2006.

[9] S.-S. Wu and et.al., “A thermal resilient integration of
many-core microprocessors and main memory by 2.5D TSI
I/Os,” in ACM/IEEE DATE Conf., 2014.

[10] M. K. Jeong and et.al., “A QoS-aware memory controller for
dynamically balancing GPU and CPU bandwidth use in an
MPSoC,” in ACM/IEEE DAC, 2012.

[11] B. Akesson and et.al., “Memory controllers for
high-performance and real-time MPSoCs requirements,
architectures, and future trends,” in ACM/IEEE Int. Conf. on
Hardware/Software Codesign and System Synthesis, 2011.

[12] Denali Software Inc., “Databahn DRAM memory controller IP,”
2009.

[13] S. Rixner and et.al., “Memory access scheduling,” in Int. Symp.
on Computer Architecture, 2000.

[14] O. Mutlu and T. Moscibroda, “Parallelism-aware batch
scheduling: Enhancing both performance and fairness of shared
dram systems,” in Int. Symp. on Computer Architecture, 2008.

[15] E. Ebrahimi and et.al., “Fairness via source throttling: A
configurable and high-performance fairness substrate for
multi-core memory systems,” in ACM Architectural Support
for Programming Languages and Operating Systems, 2010.

[16] Y. Kim and et.al., “Thread cluster memory scheduling:
Exploiting differences in memory access behavior,” in
IEEE/ACM Int. Symp. on Microarchitecture, 2010.

[17] S. P. Muralidhara and et.al., “Reducing memory interference in
multicore systems via application-aware memory channel
partitioning,” in IEEE/ACM Int. Symp. on Microarchitecture,
2011.

[18] R. Das and et.al., “Application-to-core mapping policies to
reduce memory system interference in multi-core systems,” in
IEEE Int. Symp. on High Performance Computer
Architecture, 2013.

[19] “SPEC CPU2006 Benchmark,” http://www.spec.org/cpu2006/.

[20] “PARSEC Benchmark,” http://parsec.cs.princeton.edu/.

[21] C. Ranger and et.al., “Evaluating mapreduce for multi-core and
multiprocessor systems,” in IEEE Int. Symp. on HPCA, 2007.

[22] K. Sewell and et.al., “Swizzle-switch networks for many-core
systems,” IEEE J. on Emerging and Selected Topics in
Circuits and Systems, vol. 2, no. 2, pp. 278–294, Jun 2012.

[23] A. Hilton, S. Nagarakatte, and A. Roth, “iCFP: Tolerating
all-level cache misses in in-order processors,” in IEEE Int.
Symp. on HPCA, 2009.

[24] N. Binkert and et.al., “The gem5 simulator,” ACM SIGARCH
Computer Arch. News, vol. 39, no. 2, pp. 1–7, 2011.

[25] M. K. Jeong and et.al., “DrSim: A platform for flexible DRAM
system research,” http://lph.ece.utexas.edu/public/DrSim.

