
Entropy-Shield:Side-Channel Entropy Maximization
for Timing-based Side-Channel Attacks
Abhijitt Dhavlle

Dept. of Electrical and Computer Engineering
George Mason University

Fairfax, USA.
adhavlle@gmu.edu

Raj Mehta
Dept. of ECE

George Mason University
Fairfax, USA.

rmehta21@gmu.edu

Setareh Rafatirad
Dept. of Information Sciences and Technology

George Mason University
Fairfax, USA.

srafatir@gmu.edu

Houman Homayoun
Dept. of Electrical and Computer Engineering

University of California
Davis, USA.

hhomyoun@ucdavis.edu

Sai Manoj Pudukotai Dinakarrao
Dept. of Electrical and Computer Engineering

George Mason University
Fairfax, USA.

spudukot@gmu.edu

Abstract—The hardware systems have experienced a plethora
of side-channel attacks (SCAs) in recent years with cache-
based SCAs being one of the dominant threats. The SCAs
exploit the architectural caveats, which invariably leak essential
information during an application’s execution. Shutting down
the side-channels is not a feasible approach due to various
restrictions, such as architectural changes and complexity. To
overcome such concerns and protect the data integrity, we
introduce Entropy-Shield in this work. The proposed Entropy-
Shield aims to maximize the entropy in the leaked side-channel
information rather than attempting to close the side-channels. To
achieve this, the proposed Entropy-Shield introduces carefully
and sensibly crafted perturbations into the victim application,
thereby increasing the entropy of the information obtained by
the attacker to deduce the secret key, while the information
being observed looks legit yet futile. This methodology has been
successfully tested on cache targeted SCAs such as Flush+Reload
and Flush+Flush and the key information retrieved by the
attacker is shown to be ultimately futile, indicating the success
of proposed Entropy-Shield.

Index Terms—Side-Channel Attack (SCA), hardware-security

I. INTRODUCTION

Advancements in the design and complexity of modern
computing systems facilitate encompassing a plethora of func-
tional features to enhance performance and efficiency. Albeit
advancements with evolved features such as cache-sharing and
speculative execution that led to enhanced performance, they
have been exploited for crafting security attacks, termed as
side-channel attacks (SCAs). A wide variety of attacks have
threatened the hardware security domain and SCAs are one
branch of this domain. There have been a variety of previous
works to address threats to the hardware like those posed
by reverse engineering of hardware [1], attacks on machine
learning based malware detectors [2], [3], cache based side-
channel attacks [4], [5], etc. In this work, we address the issues
with SCAs, propose a solution for such attacks , and discuss
the past works. SCAs exploit the architectural vulnerabilities

rather than the caveats in the application and utilize the side-
channels or covert channels to extract the secret information
from the system and are passive.

A rapid increase in the cache targeted SCAs are reported
in recent times. To thwart such threats, our work focuses on
defending against cache targeted SCAs. A plethora of cache
targeted SCAs rely on the timing information to determine
the cache-access (hit or miss) patterns to obtain the accessed
addresses and eventually the secret key from the cache [6]–
[10]. For instance, Flush+Reload SCA [6] depends on the
assumption that the victim and the attacker share the same
memory space and utilizes the cache-access timing informa-
tion to retrieve the secret key from the system. Attacks such as
Prime+Probe [11] supersedes the Flush+Reload attack by not
requiring any shared memory space with the victim to extract
sensitive information.

To address the challenges of cache targeted SCAs, tech-
niques such as static cache partitioning [11], partition locked
cache [12], non-monopolizable (nomo) cache architectures
[13] and other works [14]–[16] are proposed. These techniques
can tremendously reduce the interference between the attacker
and the victim’s memory access, thus providing a better
defense. However, adopting such techniques require alterations
in the cache design and also leads to performance degradation
[11]. To overcome the limitations of the existing works such
as cache-partitioning, randomization of cache architectures are
introduced. The conventional fully associative cache is one
of the preliminary randomization based methods, in which
a memory line can be mapped to any of the existing cache
lines. Similarly, any of the cache lines can be evicted in
random, thus, preventing the leakage of cache-access infor-
mation. Despite its security benefits, this technique incurs
large delays and is power hungry [11]. In a similar way,
random permutation cache [12], newcache [17], [18], random
fill cache [19], and random eviction cache [11] strategies
are implemented. Compared to the cache-partitioning, the

randomization based solutions have shown higher robustness,
yet the above-mentioned methods require modifications to the
hardware and/or software and incur performance penalties.
However, previously proposed defenses are confined to the
specific attack, which makes it difficult to defend against an
emerging wide range of attacks.

As a summary, the unsolved challenges and limitations of
the existing defenses can be outlined as follows: a) side-
channels are inevitable; b) hardware or software modifications
can lead to enhanced security, but might not be practical to
adapt; c) solutions such as VM migrations or switching leads
to performance degradation. To overcome the limitations of
previous works and thwart SCAs, here, we introduce Entropy-
Shield, a defense for timing-based side-channel attacks. In
contrast to the existing works that focus on architectural
changes, the proposed Entropy-Shield primarily focuses on
maximizing the entropy1 of the side-channel information ob-
tained by the attacker without interfering with the original
functionality of the victim application. In the Entropy-Shield
the original application is coupled with a protective application
that is able to facilitate to introduce intelligent perturbations in
the cache-access timing information obtained by the attacker.
In contrast to existing randomization techniques, proposed
Entropy-Shield introduces randomization under the constraint
that the archived information by attacker looks legit and simi-
lar to the normal timing information, yet leading to the wrong
key. The proposed Entropy-Shield introduces perturbations
in the sequence by executing dummy functions that do not
affect the functionality for the victim, but scrambling patterns
observed by the attacker, thereby reducing the entropy and
dissuading the attack. Proposed Entropy-Shield also offers two
different modes of operation: uniform and deceptive modes,
where the user can determine the mode to inject different
types of perturbations. We would like to emphasize that, in
this work ’entropy-maximization’ refers to a reduction in
the useful information obtained by an attacker over side-
channels to decrypt the secret key, or in other words increasing
the randomness of the data. The proposed Entropy-Shield
technique is thoroughly evaluated against both active and
passive cache targeted SCAs with victim utilizing different
keys.

The primary contributions of this work are:

• In contrast to existing randomization techniques, crafted
randomization in Entropy-Shield forces the wrong se-
quence to envisage as a legit pattern, thereby augmenting
the entropy in the obtained information.

• Offer different modes of operation of the proposed shield,
thereby giving liberty to the user to determine the level
of the induced perturbations.

• Evaluate the security offered by the proposed defense on
different encryption methods using different SCAs and
secret keys.

1We define Entropy as the amount of randomness in the obtained data that
tricks the attacker

The rest of the paper is organized as follows. Section II
discusses the previous related works. Section III discusses
the proposed Entropy-Shield. Experimental evaluation of the
proposed Entropy-Shield against different SCAs are presented
in Section IV. Section V concludes with the inferences and
the contributions made.

II. DEFENSES AGAINST SCAS: STATE-OF-THE-ART

In order to secure the hardware systems against cache
targeted SCAs, various defense techniques have been proposed
that use different strategies. We discuss the most relevant and
prominent ones in this section.

a) Isolation by Cache Partitioning [11]: Two processes
that do not share a cache cannot snoop on each others cache
activity. Thus, the idea of this approach is to assign to a
sensitive operation its own cache set, and not to let any other
programs share that part. As the mapping from memory to a
cache set involves the physical memory address, this can be
done by the operating system by organizing physical memory
into non-overlapping cache set groups, also called colors, and
enforcing an isolation policy. However, this leads to inefficient
resource utilization and hardware overheads.

b) Access Randomization [12]: To overcome limitations
of hardware-oriented approaches, randomizing the memory
access is introduced, thus, making the attack much harder, even
impossible. For instance, [11] uses random memory-to-cache
mappings. There is a permutation table for each process, which
enables a dynamic memory address to cache set mappings.
This makes the attacker hard to evict a specific memory line
of the victim process. However, maintaining the mapping and
updating mapping tables penalizes performance.

In addition to these general defense techniques, there are
many recent works in progress to minimize the cache SCAs.
For example, Vladimir Kiriansky proposed a dynamically
allocated way guard (DAWG) [20], a generic mechanism for
secure way partitioning of set-associative structures, including
memory caches. When applied to a cache, unlike the existing
quality of service mechanisms such as Intel’s Cache Allocation
Technology (CAT), DAWG fully isolates hits, misses, and
metadata updates across protection domains. DAWG requires
additional techniques to block exfiltration channels different
from the cache channel.

Similarly, Oleksenko proposed Varys [21], a system that
protects unmodified programs running in SGX enclaves from
cache timing and page table SCAs. The Varys takes a prag-
matic approach of strict reservation of physical cores to
security-sensitive threads, thereby preventing the attacker from
accessing shared CPU resources during enclave execution.
But the downside is it requires the application to monitor
the SSA (SGX State Save Area) value, thus increasing the
overhead. Stephen Crane in [22] explores software diversity
as a defense against side-channel attacks by dynamically
and systematically randomizing the control flow of programs.
This diversity based technique instead transforms programs
to make each program trace unique. This approach offers

probabilistic protection against both online and off-line side-
channel attacks. Chongxi Bao’s work in [23] shows that 3D
integration also offers inherent security benefits and enables
many new defense mechanisms that would not be practical
in 2D. Experimental results show that using their cache
design, side-channel leakage is significantly reduced while still
achieving performance gains over a conventional 2D system.
Xiaowan Dong presents in [24] defenses against page table
and last-level cache (LLC) side-channel attacks launched by a
compromised OS kernel.

As seen, the present works either require hardware or
software-stack modifications and/or incurs substantial perfor-
mance penalties. In contrast, proposed Entropy-Shield works
on the principle of maximizing the entropy through crafted
perturbations with less performance loss.

III. PROPOSED ENTROPY-SHIELD

Though it seems the attacker can obtain the secret key in
one iteration, it is nearly impossible to obtain in real scenarios
due to the system noise and other system operations. Hence,
the attacker needs to repeatedly execute the attack to extract
the complete secret information, thereby filtering the system
noise and other impacts. Unlike existing works, considering
these factors, we propose Entropy-Shield, that protects the
victim application by reducing the entropy of the side-channel,
despite attacker executing victim application multiple times.

Listing 1. Spy inserts probes to monitor victim’s cache lines
f unc Square () {

P robe 1 − Address 0 x086f0 }

f unc M u l t i p l y () {
P robe 3 − Address 0 x08628 }

f unc Modulo / Reduce () {
P robe 3 − Address 0 x08616 }

Similar to all existing works [6] [7], the underlying as-
sumption in successfully probing and eventually capturing
secret data is that the attacker knows the addresses of the
functions that perform sensitive operations. Shield has similar
knowledge as the attacker, where it knows which sections of
the victim code need to be monitored and protected. The
implemented Entropy-Shield is shown in Figure 1, where
the outcome of an encryption algorithm under SCA with
and without our proposed has been presented in (b) and (a)
respectively. We describe and illustrate the system with and
without Entropy-Shield when SCA is launched below.

A. Side-Channel Attack without Entropy-Shield

Figure 1(a) shows how traditional Flush+Reload attack is
able to spy on an (encryption) application to reveal the secret
key. The spy inserts probes at the function addresses of non-
trivial functions such as square, modulo, and the multiply
operations as these are repetitive, and their sequence reveals
the secret key bits. The spy constantly flushes the addresses
at probed locations and monitors it again if it was accessed
by the victim as shown in Listing 1. The spy does not insert
anything into the victim’s code for the probes; it means that

the addresses are monitored for the victim’s access, and when
the probed location is accessed, the spy takes a note of it.

B. Crafted Perturbations in Side-Channel Information
Through Entropy-Shield

For the ease of understanding of Entropy-Shield, lets assume
the width of the secret key is only 16-bits of which after a large
number of attempts the spy is able to capture only 4-bits of it,
as shown in Figure 1(a). In such a case, the part of the key that
both the spy (attacker) and victim (user) were able to deduce
was “1001”, meaning that the attacker was successful in steal-
ing the secret data over the covert channel. If one can increase
the entropy of the side-channel by introducing perturbations
it is nearly impossible for the spy to steal the secret keys.
Though one can assume inserting function calls randomly can
introduce the perturbations, as done in previous works [19], it
is not efficient. The reason for inefficiency is that the attacker
can determine the presence of randomness or uniformity in
the measured data through observed meaningless operation
sequences and can perform post-processing or filtering to
remove the noise and retrieve the key. In contrast, the Shield
induces the perturbations that seem legit, yet deceptive. To
induce such intelligent perturbations Entropy-Shield invokes
the functions in an order from which the attacker can deduce
a key, i.e., for instance, the victim calls the functions that
would be executed if the secret key is ‘1’, though the secret
key bit is ‘0’, thereby inducing additional noise through which
entropy in the leaked information increases. Figure 1(b) shows
how by reducing useful information in the covert channel and
introducing crafted perturbations in the sequence, user (victim)
observes the original key “1001” while the spy (attacker)
observes it as “1111” for uniform and “1011” for deceptive
mode. One shortcoming of such straightforward flipping(all
0’s to 1’s) is that the attacker can detect it and flip the bits.
To thwart such a scenario, we introduce multiple modes of
execution shown in Figure 1(b) using key symbols, discussed
in the later section. The introduction of dummy operations is
shown in Algorithm 1.

Listing 2. Uniform and Deceptive mode of operation
M1 = Uniform ; M2= D e c e p t i v e
{ f unc Modulo (fake , mode , m u l t i p l y d o n e){
I f (M1 and ! m u l t i p l y d o n e){

M u l t i p l y (a rgumen t s = fake , un i fo rm)}
e l s e i f (M2 and ! m u l t i p l y d o n e){

random c a l l M u l t i p l y (a rgument = fake , random)}
e l s e i f (M1 and m u l t i p l y d o n e){

do f a k e Modulo and d i s r e g a r d r e s u l t s ;}
e l s i f (M2 and m u l t i p l y d o n e){

random c a l l f a k e Modulo and d i s r e g a r d r e s u l t s ;}
e l s e i f (! f a k e) {do Modulo o p e r a t i o n on b i t s ;}}

f unc M u l t i p l y (fake , mode){
i f (f a k e and mode= un i fo rm){

d i s c a r d M u l t i p l y r e s u l t s ;
Modulo (fake , uni form , m u l t i p l y d o n e)}

e l s e i f (f a k e and mode=random){
d i s c a r d M u l t i p l y r e s u l t s ;
random c a l l Modulo () ;}

e l s e i f (! f a k e) {
do M u l t i p l y o p e r a t i o n on b i t s ;}}}

Spy inserts
probes in the

Victim's
cache space

Victim Spy

Spy has addresses of
Victim's code

Inserts
Additional

Code

Injected Perturbations

Entropy-Shield

001 1

LLC

Probe_1:
0x086f0

Probe_2:
0x08616

Probe_2:
0x08628

spy and the victim
share the LLC cache

Victim's Cache
space

Side-Channel data seen by the attacker

Pr
ob

e
Ac

ce
ss

 T
im

e
(C

yc
le

s)

Threshold

Slot Time
Discarded

Threshold
Discarded

Original sequence from victim's side channel protected
by Entropy-Shield

1 1 1 1

Victim sees bits '1001'

Attacker sees bits '1111'

(b)

 Square
{ };

 Reduce
{ };

Multiply
{ };

Probe_1:
0x086f0

Probe_2:
0x08616

Probe_2:
0x08628

Square
Reduce
Multiply

Entropy-Shield inserts perturbation code segments here
during runtime which are dummy functions that do not

contribute to the results of the victim

Probe_1:
0x086f0

Probe_2:
0x08616

Probe_2:
0x08628

(a)

 Square
{ };

 Reduce
{ };

Multiply
{ };

Spy inserts probes
in the Victim's cache

space
Victim's Cache

space
Victim Spy

Spy has addresses of
Victim's code

Pr
ob

e
Ac

ce
ss

 T
im

e
(C

yc
le

s)

Probe_1:
0x086f0

Probe_2:
0x08616

Probe_2:
0x08628

spy and the victim share the
LLC cache

001 1Bit sequence derived

Side-Channel data seen by the
attacker

Threshold

Slot Time

Discarded
LLC

Uniform Mode

Deceptive Mode

Fig. 1. (a) Traditional side-channel attack on encryption algorithm where the data leaked via covert channel is accessible to the attacker; (b) Victim wrapped
with Entropy-Shield that injects perturbation during run-time to perturb the sensitive information leaked thereby making SCAs laborious and time-consuming.
Only Uniform mode results have been shown

C. Modes of Operation in Entropy-Shield

With the basic mode of operation, the Entropy-Shield per-
turbs the sequence of operations such that all the zeros(0’s) in
the secret key are converted to ones (1’s) from the viewpoint
of the attacker. It is beneficial when the user wants to add
maximum noise to the sequence. However, to enhance the
robustness of the Entropy-Shield and make it laborious for the
attacker, our Shield is equipped with the capability to switch
between two modes of perturbation: uniform and deceptive.
The Uniform mode flips all the 0’s in the sequence to all
1’s. In the ‘deceptive’ mode, the shield randomly perturbs the
sequence, which generates a sequence where only randomly
selected 0’s are converted to 1’s. Effectively, this makes it
difficult for the attacker to differentiate which bits belong to
the original sequence generated due to the victim’s operations
and which ones were not. Moreover, in deceptive mode, the
sequence perturbed or generated by the Shield is different in
each iteration. Listing 2 shows the part of the code where
either of the modes are selected. Each function call, Multiply
or Modulo is given arguments, which helps it to recognize
if the victim or the Shield made the call. For flipping 0’s to
1’s for the Uniform or the Deceptive mode, it requires that
the Modulo call a fake Multiply function, and then the same
Multiply function calls Modulo function again, so the sequence
becomes Square-Modulo-Multiply-Modulo translating to bit
‘1’. Hence, the algorithm first checks if a fake call was made
and it is the first call to Reduce in the sequence using “if (M1
and !multiply done)”

After this is verified using the line shown above, the
program proceeds to the Multiply function with the “fake”
argument, which helps it to drop the results of the Multiply
function and make a fake call. The program control then
returns to Modulo, where this time, it knows that the call to
itself is repeated, and it directly executes a fake call to itself
and ignores the result. Across all the code, the Shield checks
for the mode of operation and repetitively injects perturbations

or randomly does it. Thus the cache is accessed, but at the
same time, it does not affect the results of the victim. The
victim code does not need to be modified because the results
and/or the algorithm is not modified; it keeps running itself
until it encrypts/decrypts the data with the secret key. Hence,
in any mode of operation, the victim does not get affected or
interrupted.

D. Summary of Proposed Entropy-Shield

Algorithm 1 consists of pseudo-code for the Entropy-
Shield. Lines 2-19 belong to the victim’s code encapsulated
by Entropy-Shield with code for dummy functions. Line 9
checks for the mode of operation and then sets the Call flag
accordingly. Lines 10 and 11 perform static perturbations and
random perturbations based on the Uniform and Deceptive
modes respectively. For the Multiply function which calls for
Modulo function again, Lines 16, 17 and 18 perform similar
functions. Probes at Lines 4, 8 and 15 are monitored by the
spy and are not inserted by the Entropy-Shield. Lines 20-25
belong to the spy/attacker, which flushes a particular location
(function addresses in this case) and reloads them to see if
the victim accessed them. Line 26-28 compare the reloaded
address’s access time, and if it happens to be less than the
threshold, then the address was accessed by the victim and
not otherwise. With Flush+Flush, Line 25 would be absent.
The perturbations added modify the sequence of executed
operations, thus giving a notion of actual cache accesses made
by the victim. Hence the attacker observes an incorrect key.

IV. IMPLEMENTATION RESULTS

A. Experimental Setup

We tested the Entropy-Shield on a PC with Intel-i7 proces-
sor running Ubuntu 18.04.2 LTS OS with 16 GB RAM and
GnuPG version 1.4.13. The Flush+Reload [6] and Flush+Flush
[7] attack codes are deployed, which can be found at [25] and
[26] respectively.

Algorithm 1 Pseudocode illustrating generation of perturba-
tions with Entropy-Shield
Require: Private Encryption Key
Ensure: Decoded Incorrect Encryption Key
1: Victim Program(Mode = Uniform or Deceptive) {Performs secure-critical

operations that leak data over covert channel}
2: func Square()
3: { - - - - - - - - - - -
4: Probe 1 address
5: - - - - - - - - - }
6: func Modulo()
7: { - - - - - - - - - - -
8: Probe 3 address
9: Call = Uniform or Deceptive

10: If (Call==Uniform) then {dummy call Multiply(); discard Modulo
results}

11: else if (Call==Deceptive) then {dummy call Multiply() at random
intervals; discard Modulo results }

12: - - - - - - - - - }
13: func Multiply()
14: { - - - - - - - - - - -
15: Probe 2 address
16: Call = Uniform or Deceptive
17: If (Call==Uniform) then {dummy call Modulo(); discard Multiply

results}
18: else if (Call==Deceptive) then {dummy call Modulo() at random

intervals; discard Multiply results}
19: - - - - - - - - - }
20: Attack Program{Sample pseudo code that decodes the secret key}
21: Loop 1:
22: clflush (Probe 1); clflush (Probe 2); clflush (Probe 3)
23: wait for an interval;
24: Reload Probe 1; reload Probe 2; reload Probe 3
25: Measure reloading time(t)
26: compare t ,# threshold time(th)
27: if(t > th) => Cache miss
28: if(t < th) => Cache hit
29: jump Loop1
30: Based on perturbed sequence of Cache hit operation, Incorrect Secret

Key is Deduced

B. Entropy-Shield with Flush+Reload Attack

In this section, we present the results of our proposed
Shield. We have chosen the Flush+Reload and Flush+Flush
attack spying on RSA-RSA and DSA-Elgamal encryption
algorithms with the secret key of 4096-bits, as implemented in
the GnuPG. We have evaluated two different secret keys. We
also present the outcome of the Shield with different modes
of operation - uniform and deceptive.

TABLE I
KEY AS VISIBLE TO THE ATTACKER AND THE VICTIM WITH

ENTROPY-SHIELD - UNIFORM MODE OF OPERATION

Attack Type Encryption Key Original Key Victim seen key Key seen by the attacker

Flush+Reload RSA-RSA key 1 0FCFFF 0FCFFF FFFFFF
DSA-Elgamal key 2 587BFA 587BFA FFFFFF

Flush+Flush RSA-RSA key 3 54FF0B 54FF0B FFFFFF
DSA-Elgamal key 4 89DE00 89DE00 FFFFFF

TABLE II
KEY AS VISIBLE TO THE ATTACKER AND THE VICTIM WITH

ENTROPY-SHIELD - DECEPTIVE MODE OF OPERATION

Attack Type Encryption Key Original Key Victim seen key Key seen by the attacker
Iteration 1 Iteration 100th

Flush+Reload RSA-RSA key 1 0FCFFF 0FCFFF 5FDFFF 0FEFFF
DSA-Elgamal key 2 587BFA 587BFA 59FBFB 78FFFE

Flush+Flush RSA-RSA key 3 54FF0B 54FF0B 75FF1B 55FF1F
DSA-Elgamal key 4 89DE00 89DE00 CBDF02 8BDF01

We verified the efficiency of our proposed Entropy-Shield
by examining the perturbations injected both on the victim
and spy end. We modified the GnuPG’s code to output the
injected perturbations along with the sequence of square,
modulo, and multiply operations. Figure 2 presents a graph
of the sequence of operations plotted against time slots versus
the probe time, as seen by the attacker/victim. Figure 2(a)
shows the secret information observed by the victim and the
attacker without the Entropy-Shield. Every Square-Modulo
operation not followed by Multiply is translated as bit ‘0’
and every Square-Modulo-Multiply-Modulo operation as a bit
‘1’ [6]. The probe time in cycles has to be less than the
threshold (value depends on the system, 125 in our work) value
to be considered as accessed by the victim. For simplicity,
we have not shown the operations that took higher than
the threshold. In this case, the victim and the attacker both
see the same information, meaning the victim continues to
operate on encryption/decryption, and the attacker sees the
same operations on the covert channel. Figure 2(b) shows the
sequence of operations when the Entropy-Shield is protecting
the victim in uniform mode. Hence, after perturbations are
injected into the sequence, the victim observes the key as
“011100000111” while the attacker sees it as “111111111111”
since all the ‘0’ bits are flipped to bit ‘1’. These perturbations
are induced irrespective of the key, as shown in Table I
with all zeros converted to ones. Figure 2(c) presents the
operations as observed by the attacker with the deceptive
mode of operation. The red-colored operations are injected
perturbations and do not belong to the original sequence of
the victim’s activities. Unlike the uniform mode, the deceptive
mode injects perturbations randomly and the bit positions that
are perturbed change during every iteration of the victim as
seen in Table II where the key “587BFA” is translated to
“59FBFB” during iteration 1 and “78FFFE” during iteration
100. Parts of the sequence where perturbations were injected
are highlighted in the tables.

C. Entropy-Shield with Flush+Flush Attack

We have evaluated our Entropy-Shield against a passive
attack such as Flush+Flush, whose key extraction results are
presented in Table I and II for both the modes. Similar to
the Flush+Reload, the induced perturbations can deceive the
spy in both uniform and the deceptive modes. For instance,
in the uniform mode, the key gets translated from “54FF0B”
to “FFFFFF” whereas for the deceptive mode, it is observed
as “75FF1B” and “55FF1F” during iteration-1 and iteration
100, respectively. For our proposed defense to work even for
Flush+Flush, it basically needs to ensure that the lines of code
within the square, modulo or multiply functions is cached and
only then it is possible for the attacker to flush a cache line
within the code and consider that the function/operation must
have been accessed by the encryption algorithm. Tables I and
II are ideal case because while executing them on our machine
we reduced the number of background activity. But, in actual
scenarios, the OS and other application activity generate noise
in the cache, making the attack more difficult and owing to

which the attacker might not be able to see the key bits in
consecutive order. Hence, as the keys observed by the attacker
are different every time, and with such randomness, it is
challenging for the attacker to retrieve the secret key. Given
the fact that executing SCAs is non-trivial when it comes to
retrieving secret keys amid operating system noise and various
cache operations. The working principle remains the same for
both the RSA and DSA encryption.

D. Performance of Entropy-Shield

Since Entropy-Shield includes additional functional calls,
this would incur overheads in terms of execution time. To
analyze the overheads, we have executed the RSA and DSA
algorithms with and without Entropy-Shield for 1000 times
and averaged the execution time to remove the noise impacts
in measurements. We executed our proposed Entropy-Shield
for the encryption methods mentioned in Table II and with
different keys for over 1000 times. It has been observed that
with the proposed Entropy-Shield, the execution time increases
by 8% on average, which is significantly small and can also
happen in the presence of system noise, thus can be ignored,
and also an attacker cannot detect the Entropy-Shield based
on runtime.

graph.

Time Slots
0 10 20 30 40 50 60

Ad
dr

es
s

Pr
ob

e
Ti

m
e

(in
 c

yc
le

s)
0

 1

00

15

0 Time Slots

0

 1
00

15
0

Original Sequence without Entropy-Shield

Entropy-Shield Uniform Mode

Time Slots

0

 1
00

15
0

Entropy-Shield Deceptive Mode

Sequence Observed by the Attacker- "111100101111

Sequence Observed by the Attacker- "111111111111"

Sequence Observed by the Attacker- "011100000111"

Fake Multiply

Square Reduce/Modulo Multiply

Fake Reduce/Modulo

(a)

(b)

(c)

Randomly injected perturbations

Fig. 2. Plot of sequence of operations (a) Original sequence of operations
without Entropy-Shield as seen by both the victim and the attacker; (b)
Sequence of operations with Entropy-Shield in Uniform mode are seen
differently by the attacker and victim; (c) Sequence of operations with
Entropy-Shield in deceptive as seen differently by the attacker and victim

V. CONCLUSION

In this work, we discussed the threats side-channel attacks
(SCAs) posed to the computing systems and delineated the
available defense mechanisms proposed in the past. The down-
sides of the previous works are that they require significant
modifications to the hardware or software architectures to
safeguard cache subsystems. Hence, we proposed Entropy-
Shield which can protect applications from SCAs by reducing
the amount of useful information leaked on the covert channel.
We verified the efficacy of Entropy-Shield on Flush+Reload
and Flush+Flush attack with RSA and Elgamal encryption

methods as victims and found it to be successful. The average
overhead with our proposed shield is 8% compared to without
the defense in place. Our approach can easily be modified to
suit a variety of applications.

REFERENCES

[1] G. Kolhe and et.al., “Security and complexity analysis of lut-based
obfuscation: From blueprint to reality,” in Int. Conference On Computer
Aided Design, 2019.

[2] S. M. P. Dinakarrao et al., “Adversarial attack on microarchitectural
events based malware detectors,” in Design Automation Conf., 2019.

[3] S. Shukla and et.al., “Microarchitectural events and image processing-
based hybrid approach for robust malware detection: work-in-progress,”
in Embedded Systems Week, 2019.

[4] F. Brasser et al., “Advances and throwbacks in hardware-assisted secu-
rity: Special session,” in Proceedings of the International Conference
on Compilers, Architecture and Synthesis for Embedded Systems, 2018.

[5] A. Dhavlle et al., “Work-in-progress: Sequence-crafter: Side-channel
entropy minimization to thwart timing-based side-channel attacks,” in
International Conference on Compliers, Architectures and Synthesis for
Embedded Systems (CASES), 2019.

[6] Y. Yarom and K. Falkner, “Flush+reload: A high resolution, low noise,
l3 cache side-channel attack,” in USENIX Conference on Security, 2014.

[7] D. Gruss et al., “Flush+flush: A fast and stealthy cache attack,” in
Int. Conf. on Detection of Intrusions and Malware, and Vulnerability
Assessment, 2016.

[8] J. Bonneau and I. Mironov, “Cache-collision timing attacks against aes,”
in Int. Conf. on Cryptographic Hardware and Embedded Systems, 2006.

[9] Y. Zhang et al., “Cross-VM side channels and their use to extract private
keys,” in ACM Conf. on CCS, 2012.

[10] D. Harnik et al., “Side channels in cloud services: Deduplication in
cloud storage,” IEEE Security Privacy, vol. 8, no. 6, pp. 40–47, Nov
2010.

[11] Z. He and R. B. Lee, “How secure is your cache against side-channel
attacks?” in Proceedings of the IEEE/ACM, 2017.

[12] Z. Wang and R. B. Lee, “New cache designs for thwarting software
cache-based side channel attacks,” in Proceedings of the ISCA, 2007.

[13] L. Domnitser et al., “Non-monopolizable caches: Low-complexity miti-
gation of cache side channel attacks,” ACM Trans. Archit. Code Optim.,
vol. 8, no. 4, pp. 35:1–35:21, Jan. 2012.

[14] E. Brickell et al., “Software mitigations to hedge aes against cache-based
software side channel vulnerabilities.” IACR Cryptology ePrint Archive,
vol. 2006, p. 52, 01 2006.

[15] J. Kong et al., “Deconstructing new cache designs for thwarting software
cache-based side channel attacks,” in ACM Workshop on Computer
Security Architectures, 2008.

[16] D. Page, “Partitioned cache architecture as a side-channel defence
mechanism,” IACR Cryptology ePrint Archive, vol. 2005, p. 280, 2005.

[17] Z. Wang and R. B. Lee, “A novel cache architecture with enhanced
performance and security,” in MICRO, 2008.

[18] F. Liu et al., “Newcache: Secure cache architecture thwarting cache
side-channel attacks,” IEEE Micro, vol. 36, no. 5, pp. 8–16, Sep. 2016.

[19] F. Liu and R. B. Lee, “Random fill cache architecture,” in IEEE/ACM
International Symposium on Microarchitecture, 2014.

[20] V. Kiriansky et al., “DAWG: A defense against cache timing attacks in
speculative execution processors,” in MICRO, 2018.

[21] O. Oleksenko et al., “Varys: Protecting SGX enclaves from practical
side-channel attacks,” in USENIX, 2018.

[22] S. Crane et al., “Thwarting cache side-channel attacks through dynamic
software diversity,” in In Network and Distributed System Security
Symposium, 2015.

[23] C. Bao and A. Srivastava, “3d integration: New opportunities in defense
against cache-timing side-channel attacks,” IEEE (ICCD), 2015.

[24] X. Dong et al., “Shielding software from privileged side-channel at-
tacks,” in USENIX Security Symposium, 2018.

[25] T. Hornby. (2016) Flush+reload attack. Last accessed: 15-July-2019.
[Online]. Available: https://github.com/defuse/flush-reload-attacks

[26] (2017) Flush+flush attack. Last accessed: 15-July-2019. [Online].
Available: https://github.com/IAIK/flush flush/tree/master/sc/ff

