
ResCoNN: Resource-Efficient FPGA-Accelerated
CNN for Traffic Sign Classification

Martin Lechner∗, Axel Jantsch∗, Sai Manoj Pudukotai Dinakarrao†
∗Institute of Computer Technology, TU Wien, Vienna, Austria 1040

†Department of Electrical and Computer Engineering,
George Mason University, Fairfax VA, USA 22030

Email: {e1026059, axel.jantsch}@tuwien.ac.at, spudukot@gmu.edu

Abstract—Precise classification and detection of (distorted
and normal) traffic signs in real-time is one of the non-trivial
requirements for safe autonomous driving. The state-of-the-art
convolutional neural networks (CNNs) for traffic sign detection
though accurate are resource-hungry due to their inherent
structure with massive networks with millions of full-precision
parameters making them infeasible for low-end FPGA platforms
leading to higher implementation costs. The existing works
employing low-precision bits and similar techniques though
hardware friendly leads to degradation in accuracy. In this work,
we propose a resource-efficient CNN (ResCoNN) architecture
with a small number of weights (only 60,000 compared to a
few million in state-of-the-art CNNs) and employ for traffic sign
detection and classification. For increased efficiency, the network
takes advantage of binary weights and integer activations, rather
than employing complex computations like Batch Normalization
and Exponential Linear Units. ResCoNN achieves a classification
accuracy of >96% on real-world images at a framerate of 36fps
on a Zynq SoC (xc7z020clg484-1) with 90% reduced weights
compared to state-of-the-art CNNs.

I. INTRODUCTION

Enhanced capabilities of hardware-software co-design and
data processing techniques in embedded systems led to an
increased interest in the design of real-time intelligent systems
[1], [2]. Advanced driver assistance systems (ADAS) is one
of the applications where an intelligent processing of data
within a short time and with a better accuracy is crucial.
Object detection and classification targeting, among others,
traffic signs [3]–[6], road surface signs [7], and pedestrians
[8] is gaining attention in such systems to ensure safe driving.

Traffic sign detection and classification is a challenging
computer vision problem typically performed based on the
canonical structural features like size, shape, and color [9],
[10]. The main problems addressed are perspective and il-
lumination variations such as changing lighting conditions
(cloudy weather, night, heavy light, and so on). Furthermore,
distortions due to human-made or natural activities (e.g., tilted,
dirty or bleached boards) make the problem of traffic sign
detection and classification even more complex.

With significant progress achieved by deep learning ap-
proaches like convolutional neural networks (CNNs) for sign-
board detection [4], [6], they are widely adopted. Current
software implementations of CNNs either lack in performance
[11] or demands a lot of computational resources [3], [12]

leading to a high power consumption and large packages.
Typically, general purpose object detection frameworks can
reach between 5 frames per second (fps) [13] and 45 fps
[14] on high-end GPUs. Such configurations are not practical
and efficient to use for real-time situations, and in embedded
systems with limited resources. Specialized hardware accel-
erators allow massive parallelization and ensure that real-
time identification and classification of (distorted) traffic signs
is possible. Among various hardware platforms, FPGAs fit
best because of its parallelization, reconfigurability and low
power utilization properties [15], [16]. As FPGAs have limited
resources (area, processing capabilities, and memory), current
state-of-the-art classification [17]–[19] and detection [12],
[13] networks with millions of full-precision parameters and
complex architectures do not fit low-cost FPGA platforms.

The process of developing hardware-based neural networks
can be divided into three subtasks. Task one is creating a
hardware-friendly optimal architecture. This includes reducing
the number of parameters, eliminating the use of compu-
tational expensive functions and organizing the network in
a strict feed-forward way without any shortcuts to avoid
resource-heavy buffering schemes [20]. Second subtask in-
volves minimizing the required memory footprint and trading-
off with the accuracy of datatypes, as the memory is one
of the bottlenecks in the hardware design. Bit-width of one
bit results in binary networks. Finally, the last subtask is to
implement the CNN on an FPGA. In this work, we present
a resource-efficient convolutional neural network (ResCoNN)
which can classify ten categories of traffic signs (including
one background class) with only 60,000 weights following
the procedure above mentioned. Due to the full convolutional
architecture, the network can be used for traffic sign detection
on arbitrary sized input images without any changes.

Our main contribution is a streamlined CNN for traffic sign
identification with the following features:

• A simple, straightforward architecture with 8bit unsigned
integer activations and ReLU non-linearities.

• Avoidance of computational expensive functions like
Batch Normalization (BN)

• The FPGA friendly CNN requires 57% of the available
LUTs and 23% of the flip-flops (FFs) on a ZedBoard
with 36fps.

978-1-7281-5416-9/19 $31.00 c© 2019 IEEE

TABLE I: OVERVIEW OF DIFFERENT STATE-OF-THE-ART NETWORKS FOR
OBJECT AND TRAFFIC SIGN CLASSIFICATION AND DETECTION

General purpose classification networks

Architecture Weight Layers Weights Source

AlexNet 8 (5 conv, 3 fc) ≈6.2e7 [21]
ZF-Net 8 (5 conv, 3 fc) ≈1e8 [22]
VGG16 16 (13 conv, 3 fc) ≈1.4e8 [18]
GoogLeNet 22 (22 conv, 3 fc)1 ≈6.8e6 [19]
ResNet 152 (151 conv, 1 fc) ≈1.7e6 [17]

Traffic sign classification networks

Architecture Layers Weights Source

MCDNN 5 (3 conv, 2 fc) ≈1.5e6 [4]
CNN + bypass 4 (3 conv, 1 fc) ≈3.7e6 [23]

General purpose detection networks

Architecture Layers Weights Source

OverFeat 8 (5 conv, 3 fc) ≈1.5e8 [11]
YOLO 26 (24 conv, 2 fc) ≈2.7e8 [14]
YOLOv2 19 (19 conv) ≈2e7 [12]
R-CNN (AlexNet) 8 (5 conv, 3 fc)2 ≈6.2e7 [21], [24]
R-CNN (VGG16) 21 (16 conv, 3 fc)2 ≈1.4e8 [18], [24]

• State-of-the-art classification accuracy of 96.53% with
only ≈60,000 binary weights (60% to 90% less compared
to other state-of-the-art networks)

The rest of the paper is organized as follows: Section III
describes our network architecture and our training method.
The simulation results and the comparisons are presented in
section IV with conclusions drawn in section V.

II. RELATED WORK

A. Convolutional Neural Networks

With AlexNet [21] winning the ImageNet competition in
2012, convolutional neural networks began to dominate visual
tasks like image classification and object detection. Since
then, many other network architectures have been proposed
increasing the classification accuracy. During the initial phases
of research on CNNs, the CNNs grew in size, from 60 million
parameters (AlexNet) up to 140 million in VGG16 [18].
In the past few years, people tried to reduce the network
sizes by adding new layer structures or increasing the total
depth. GoogLeNet [19] adds inception modules (6.8 million
parameters) and ResNet [17] uses 151 convolutional layers
based on deep residual learning with shortcut connections (1.7
million parameters). However, all these networks are designed
for general purpose classification. But traffic signs are of
regular shape with usually a single color next to black and
white in each sign. It is non-trivial to use a significantly lower
number of parameters to perform traffic sign detection and
classification which results in faster processing and a smaller
footprint. Also, the accuracy of detection and classification has
to be maintained.

Faster R-CNN [13] and YOLOv2 [12] are two promising
general purpose object detection architectures. More tradi-

1GoogLeNet is 27 layers deep with a total number of about 100 layers
2Network architecture / size only given for underlying classification network

tional approaches like OverFeat [11] apply a classification
network on many different locations and scales of an image
and process the obtained class scores further to predict a
bounding box. Efficient sliding window helps to reduce the
necessary computations by taking advantage of the inherent
share of computations in CNNs in overlapping regions. Faster
R-CNN, the latest version of R-CNN [24], uses a region
proposal network (RPN) on top of the last feature map i.e.,
before the affine layers of any classification network applied
on the full image. The RPN returns only promising areas
of an image to minimize the computational overhead during
classification. Again, all these methods are not customized for
traffic signs and uses many parameters as shown in table I.

B. Traffic Sign Classification and Detection in Software and
Hardware

Before the era of CNNs, traffic sign detection was done
using handcrafted, or support vector machine (SVM) trained
features like Histogram of Gradients (HOG) [9], Scale-
Invariant Feature Transform (SIFT) [25], or combinations of
different features. Because of the size of state-of-the-art neural
networks, a lot of current hardware implementations of traffic
sign classification and detection algorithms still rely on these
methods. [26] for example uses trained Haar-like features in
a cascaded structure similar to the Viola-Jones face detection
method [27]. As a downside, this architecture can only detect
a single traffic sign. The focus of [26] is on detecting stop-
signs. In contrast, [5] uses a combination of color and color
transition features in the YCbCr color space. This architecture
in [5] can only detect and classify speed limit signs, but the
method can easily be extended to more classes.

Besides using one of the general purpose networks men-
tioned above, there are also architectures specialized on traf-
fic sign classification. Multi-Column Deep Neural Networks
(MCDNN) [4] are an ensemble of multiple CNNs where each
network is applied to differently preprocessed input images
(histogram equalization, contrast normalization, and so on). A
small sized architecture with four weight-layers and bypass
connections is presented in [23]. The features computed in
the first convolutional layer are not only fed into the second
layer but also forwarded to the classifier as high-resolution
features. The basic idea behind this approach is to combine
global features with more detailed local ones. For CNN based
traffic sign detection, implementations of Faster R-CNN are
widely used [3], [6]. Current research works also try porting
large-scale neural networks on hardware platforms [28], [29].
However, such implementations typically require expensive
high-end FPGAs.

In contrast, this work focuses on efficient detection and clas-
sification of traffic signs with light weighted CNNs. To achieve
this, we take advantage of the geometric structure of traffic
signs to reduce the number of required weights compared to
general purpose networks and remove performance limiting
and resource heavy functions like Batch Normalization.

Input layer

class scores

32

32

28

28

14

14

10

10

5

5

1

1

1

1

3 24 24 32 32 64 10

conv1
5x5x24

pool1
2x2 maxpool

conv2
1x1x16
3x3x32
1x1x20
3x3x32

pool2
2x2 maxpool

affine
1x1x24
3x3x64
1x1x32
3x3x64

out
1x1x10

Fig. 1. Architecture of the 50k full convolutional neural network

RGB Input Image
(any size)

conv. net

score map
class predictor

10

3
Win

Hin

Ws Hs

1

classification
map

Fig. 2. Setup for traffic sign detection

III. SYSTEM ARCHITECTURE AND TRAINING METHOD

A. System Architecture

The images used for training are RGB color images with
a resolution of 32×32 pixels and the network produces a
1×1×10 array of class scores. However, at test time, the sys-
tem (ResCoNN) should be able to process images of arbitrary
size at real-time for combined classification and detection. To
achieve this, we take advantage of the efficient sliding window
technique presented in [11]. As a consequence, the resulting
network has to be fully convolutional. Under these constraints
we utilize a simple base convolutional structure for our system:
(5× 5conv⇒ 2× 2max-pool) · 2⇒ 5× 5conv⇒ 1× 1conv.
In order to address the problem of traffic sign detection and
classification to fit on low-end FPGAs, we intend to reduce the
number of weights needed for the CNN. Therefor, we replace
most 5× 5 layers by two consecutive 3× 3 layers and insert
1×1 squeezing layers before each convolutional layer (except
the first layer) similarly to [30]. Figure 1 gives an overview
of the final network architecture with four main layers with
weights (conv1, conv2, affine, out) whereas two of them are
split up into four sub-layers each. Every convolutional layer is
followed by a ReLU non-linearity. Even if exponential linear
units (ELUs) can improve the training process [31], they are
contrary to our objective to keep the network complexity low.
For the same reason, we use neither batch normalization nor

ensembles, as both techniques have a negative effect on the
performance during the forward pass. For weight initialization,
we follow the strategy recommended in [32] for ReLU units.
Similar to [32], we initialize the weights of all layers with
small Gaussian distributed values with a standard deviation of√
2.0/nl where nl is the number of inputs of each layer.
The second convolutional layer (conv2) takes 24 input chan-

nels and produces 32 output channels. A 5× 5 convolutional
layer would require 19,200 weights whereas the combination
of 3× 3 and 1× 1 layers optimizes it to 11,400 for the CNN
architecture in Figure 1. As such, we save about 40% of the
weights in this layer.

For detection, we can, in theory, feed an input image of any
size into the network leading to a three-dimensional score map
of size Ws×Hs×Nclasses as shown in Figure 2. In practice,
Ws and Hs, calculated using eq (1), have to be integer values
to get a whole-numbered output map.

Ws =
Win

P
−

C∑
k=1

Fk − 1

Pk
, Hs =

Hin

P
−

C∑
k=1

Fk − 1

Pk
(1)

where Win and Hin are the sizes of the input image, P is
the total sub-sampling caused by pooling, C is the number of
convolutional layers, and Fk is the spatial convolution size of
filter k with sub-sampling of Pk behind. For an input image
of 1344 × 768 pixels, the size of test images in the German
Traffic Sign Detection (GTSDB) dataset [33], we get a score
map of 329×185×10 giving a score resolution of about four
pixels.

At test time, we apply the network on multiple scales of the
input image similar to [11] to detect the traffic signs within
a wide range of sizes inside the image, i.e., a wide range of
distances from the camera. The class predictor shown on top
of the score map in Figure 2 is responsible for interpreting
the class scores to get the final predictions collected in the
classification map. There are several possible algorithms to
choose from for the prediction function, ranging from a simple
max-function, over a minimum confidence level using the
softmax function, to more advanced methods taking a small
neighborhood and multiple scales into account. Since the
softmax function requires computing the sum of exponential
functions, we only compare the basic max operation and the
neighborhood checking method.

B. Weight Binarization

To binarize the weights, we follow the strategy presented
in [34]. When using the binary representation {−1, 1}, the
network structure does not have to change. The weights are
still stored as full precision variables to allow a gradient-based
weight optimization, but for the forward and backward pass,
the weights are binarized as follows:

wb = Sign(w) =

{
+1 if w ≥ 0

−1 otherwise
(2)

with the binarized weight wb and the floating point weight w.
To keep the output activation in the same range for all layers,

TABLE II: TRAFFIC SIGN CLASSES

class name examples

0 Warning Signs Uneven Road, Road Works
1 Prohibitory Signs No Overtaking, No Entry
2 Mandatory Signs Turn Left, Straight Only
3 Informational Signs Pedestrian Crossing
4 End-of Signs End of Overtaking Restricions
5 Speed Limits Speed Limit (50)
6 Give Way Give Way
7 Stop Stop
8 Priority Road (End of) Priority Road
9 Background -

we scale them down to 9-bit integers using binary shifting
operations depending on the number of input channels. The
following ReLU units eliminate the negative values resulting
in 8-bit unsigned integer outputs.

C. Training Method

The network is trained using the RMSprop strategy with a
slight modification. Instead of just monitoring the relative size
of an update step r, we use it to modify the learning rate. In
other words, we reduce the learning rate for large steps and
increase it for tiny steps according to the following rule:

η =


η · η−, if r > αu

η · η+, if r < αl

η, otherwise
(3)

where η− and η+ are the factors to increase or decrease the
learning rate with 0 < η− < 1 < η+, and αu and αl being
the upper and the lower threshold, respectively. Additionally,
both threshold values can be decreased over time similar to the
learning rate. In our experiments, we initially set αu = 2.5e−3,
αl = 2.5e−4, η− = 0.75 and η+ = 1.25. This method is very
robust to variations of the parameters as long as the thresholds
are separated by a factor of at least 10.

For weight initialization, we follow the strategy recom-
mended in [32] for ReLU units. Similar to [32] we initialize
the weights of all layers with small Gaussian distributed values
with a standard deviation of

√
2.0/nl where nl is the number

of inputs of each layer.
We also use a small amount of dropout [35] for the affine

layer only. While a small dropout with p = 0.85 in this
layer improves the accuracy a bit, a higher setting has a
negative impact. Also dropout applied in the convolutional
layers reduces the overall performance. Since we use a fully
convolutional network, it is better to drop complete feature
vectors instead of single activations (spatial dropout [36]).

IV. RESULTS

A. Dataset

For our experiments, we us a modified version of the
German Traffic Sign Recognition (GTSRB) dataset [37], [38]
for training and the German Traffic Sign Detection (GTSDB)
dataset [33] for testing. First, we included suitable images from
the Belgium Traffic Sign dataset [39] and added background
images to accomplish the detection task. After rescaling all

TABLE III: NETWORK CONFIGURATIONS AND BEST VALIDATION
ACCURACY ACHIEVED

40k 50k 50k v2 60k 100k

conv 1 5x5x24 5x5x32 5x5x24 5x5x40 5x5x32

conv 2

1x1x12 1x1x16 1x1x12 1x1x20 1x1x16
3x3x32 3x3x32 3x3x32 3x3x48 3x3x48
1x1x16 1x1x20 1x1x16 1x1x24 1x1x24
3x3x32 3x3x32 3x3x32 3x3x48 3x3x48

affine

1x1x16 1x1x24 1x1x16 1x1x24 1x1x32
3x3x64 3x3x64 3x3x64 3x3x64 3x3x96
1x1x32 1x1x32 1x1x40 1x1x32 1x1x48
3x3x64 3x3x64 3x3x80 3x3x64 3x3x96

out 1x1x10 1x1x10 1x1x10 1x1x10 1x1x10

accuracy (%) 95.62 97.53 96.61 97.77 97.79

images to 32×32 pixels, we increased the size of the dataset
by duplicating all training images and adding slight variations
to the duplicates inspired by [23]. These are:

• Rotations between −20◦ and 20◦

• Brightness shifts by adding random numbers between
−30 and 30 to all three channels equally to take different
lighting conditions into account.

• Color shifts by adding random numbers between −30 and
30 to all three channels individually to consider different
illumination conditions, i.e. more blueish or reddish light

• Gaussian noise with zero mean and a maximum variance
of 1.25e−3

We also added another set of labels to the dataset grouping
similar traffic signs together as shown in Table II.

Usually, the validation set is subsampled from the training
set at random. However, the GTSRB dataset contains multiple
images of the same traffic sign recorded when getting closer.
Thus subsampling would cause the validation set to be not
independent of the training set. We overcome this issue by
manually selecting some sequences for the validation set. For
the classification test set, we extended the GTSRB test set
by adding background images. In total, our dataset consists
of 140,360 training images of which 73,128 images contain
background information, 7,822 validation images (4,460 back-
ground images) and 20,631 test images (10,137 background
images). To satisfy the traffic sign detection requirement, about
the half of each set contains background information.

B. Classification Results

In our experiments, we evaluated different scales of our
architecture presented in Section III. Table III shows the
layer configuration for each of the four networks named
corresponding to the approximate number of parameters. All
networks are trained using the same training method and
hyperparameter settings. The accuracies reported in the last
row of Table III are obtained by taking the best validation
accuracy of three independently trained networks for each
configuration. Although the 100k network achieves the highest
accuracy, we choose the 60k version for further experiments,
as it performs nearly the same while having 40% less weights.

On the test set, our best network reaches a classification
accuracy of 96.53%. While most per-class accuracies are

above 98.5%, two classes (prohibitory signs and background
information) show a significant drop. For the background
images, the discrepancy is easy to explain as they contain a
lot of other not traffic related signboards and various company
logos that might look similar to traffic signs. Regarding
the prohibitory signs, the most noticeable error sources are
warning signs (class 0), speed limits (class 5) and priority
road signs (class 8). Prohibitory signs and speed limits have a
very similar appearance which can explain the confusion but
the missclassifications with priority road signs are not obvious
as they feature a different shape and color.

C. Detection Results

In the context of autonomous driving, it is not important to
locate traffic signs precisely in an image, i.e., a nicely fitting
bounding box is not required. Hence our detection network
returns only the classes of signs present in the image and not
their location. For testing the detection accuracy, we directly
applied our trained classification network on six scale versions
(original image and five downscaled images) of full-scale
images of the GTSDB test set. While our network was able
to detect 92.1% of the traffic signs correctly, it also produced
a high rate of false positives. The main reason is that the
classification accuracy for background images is only 89.6%
in combination with the size of the score map of 329x185.
Thus, the score map contains 60,865 individual scores, and
even with 94.8%, there will be an average of roughly 6,330
misclassifications on a single image when performing the
classifications based on the maximum score only. With a
more advanced approach of checking the neighborhood, i.e.
a detected traffic sign in the score map is only taken as a
valid detection if the 3-by-3 neighborhood contains at least
one additional detection of the same class, we can reduce the
missclassifications to approximately 6 per image. A further
improvement can be achieved by clever filtering and post-
processing schemes as used in [11]. However, such methods
conflict with our goal of building a simple architecture to be
used on FPGAs.

D. Hardware Results

As a hardware platform, the Zynq SoC (xc7z020clg484-1)
is used, mounted on the ZedBoard, and operating at 100MHz.
It offers 53,200 Look-Up Tables (LUTs), 106,400 Flip-Flops
(FFs), 280 units of 18k block RAM (BRAM) and 220 DSP48E
units as a part of FPGA.

To save resources, the weights are stored using the {0, 1}
binary representation although the architecture presented in
Section III uses -1 and 1. This modification results in more
efficient computations since it does not require a 2-bit signed
datatype for the weights and removes the need of multiplying
the weights and the activations. Because each convolutional
layer (except the out layer) is followed by a ReLU layer, the
ReLU functionality is included in the convolutional layer. A
benefit of this combination is that the output - which has to be
buffered for the following layer - fits in an unsigned integer
variable of 8bit instead of a 9bit signed integer.

TABLE IV: SYNTHESIS RESULTS FOR THE 3×3 CONVOLUTIONAL LAYERS
OF THE 60K ARCHITECTURE

Channels Filters LUT FF BRAM 18K

20 48 4,418 (8%) 3,722 (3%) 40 (14%)
24 48 5,223 (10%) 4,558 (4%) 48 (17%)
24 64 6,790 (13%) 5,779 (5%) 48 (17%)
32 64 9,025 (17%) 7,942 (7%) 64 (23%)

TABLE V: SYNTHESIS RESULTS FOR THE 1X1 CONVOLUTIONAL LAYERS
OF THE 60K ARCHITECTURE. ROWS ONE TO THREE ARE SQUEEZING

LAYERS AND ROW FOUR IS THE out LAYER

Channels Filters LUT FF BRAM 18K

40 20 504 (0.9%) 234 (0.2%) 0 (0%)
48 24 690 (1.3%) 324 (0.3%) 0 (0%)
64 32 1,207 (2.3%) 537 (0.5%) 0 (0%)
64 10 465 (0.9%) 226 (0.2%) 0 (0%)

With the modifications above, the binary weight network
is synthesized using Vivado HLS and verified using the
integrated RTL/C co-simulation tool. Assuming a hardware-
friendly C/C++ code, HLS allows a simple and fast hardware
synthesis. Because the design is pipelined and embedded in a
streaming environment, it can process one input at each clock
cycle. One input can contain multiple variables depending on
the number of input channels. This would allow a frame rate of
325fps. However, such a frame rate is not required for traffic
sign detection and additionally, a good amount of resources
can be saved by reducing the parallel computations. Thus, each
of the 9 elements of the 3 × 3 filters are computed one after
another resulting in a speed of 36fps. The synthesis results
of all 3-by-3 convolutional layers are given in Table IV and
the results for the 1-by-1 squeezing layers in Table V. The
results show, that the BRAM 18K memory resources are the
main limitation. Computing a 3 × 3 filter requires to buffer
two lines of each input channel. Thus, the number of required
BRAM 18K units is always two times the input channels.
Because the BRAM 18K units are organized as 2048 × 9bit
(8bit + 1 parity bit), the results are valid for input images up
to a with of 2048 pixels.

For an approximation of the hardware size of the whole 60k
architecture, two additional layers have to be analyzed. These
are the 5-by-5 convolutional input layer and the 2-by-2 max-
pooling layers. Synthesizing the convolutional layer results in
an usage of 1,422 (3%) LUTs, 1,040 (1%) FFs, and 12 (4%)
BRAM 18Ks under the same constraints as used for the 3×3
layers. The pooling layers are simple to analyze. The hardware
required is minimal, but 2-by-2 pooling requires buffering one
line of each input channel. Because splitting up the maximum
operation, does not change the result, half of the necessary
BRAM units can be saved. In more detail, taking the maximum
of the two values to be buffered reduces the required memory
as well as the memory accesses by the factor of two since a
new value only has to be stored every second clock cycle. As
a result, each 2-by-2 max-pooling layer needs a number of
BRAM units equal to half of the input channels of this layer.
That is 20 for the first and 24 for the second pooling layer.

TABLE VI: ESTIMATION OF THE REQUIRED RESOURCES FOR THE 60K
NETWORK ON A ZEDBOARD

LUT FF DSP48E BRAM 18K

30,434 (57%) 24,686 (23%) 0 (0%) 256 (91%)

The overall synthesis outcomes are given in Table VI.
As explained, the memory required for buffering the input
channels for each convolutional layer and the pooling layers
is the main limitation for the depth of the network. Due
to binarization, the weights require only 7.5kB of memory.
On the other hand, there are enough LUT and FF resources
available to increase the width of the network, i.e. the number
of weights in each layer, or to integrate other functionalities
directly onto the FPGA.

V. CONCLUSION

Computer vision with the aid of convolutional neural net-
works is widely employed in ADAS and other similar appli-
cations. The existing works primarily focus on optimization
of weights, and approximation of CNNs. However, a large
number of weight values lead to a large memory footprint
and processing overheads. In contrast, we have presented a
resource- and performance efficient CNN based traffic sign
detection architecture towards an efficient hardware acceler-
ated implementation. The proposed ResCoNN employs simple
unsigned integer activations and ReLU non-linearities instead
of complex functions such as batch normalization. The results
show that high accuracy classification can be done with only
60k binary weights (which is 60% to 90% compared to
other traffic sign classification networks), a simple architecture
with 8bit integer activations while omitting computational
expensive functions in the forward pass. We deployed the
resulting CNN on a ZedBoard where we could realize a frame
rate of 36fps. However, the memory required for buffering the
activations between the individual layers is the main limitation
which we will address in a future work.

REFERENCES

[1] M. Wess et al., “Weighted quantization-regularization in DNNs for
weight memory minimization towards HW implementation,” IEEE
Trans. on Computer Aided Systems of Integrated Circuits and Sys., 2018.

[2] S. Pagani et al., “Machine learning for power, energy, and thermal man-
agement on multi-core processors: A survey,” IEEE Tran. on Computer
Aided Systems of Integrated Circuits and Sys., 2018.

[3] X. Changzhen et al., “A traffic sign detection algorithm based on deep
convolutional neural network,” in IEEE ICSIP, 2016.

[4] D. Cirean et al., “Multi-column deep neural network for traffic sign
classification,” vol. 32, pp. 333–8, 02 2012.

[5] F. Schwiegelshohn et al., “FPGA based traffic sign detection for auto-
motive camera systems,” in 2015 10th ReCoSoC, June 2015, pp. 1–6.

[6] Z. Zuo et al., “Traffic signs detection based on faster r-cnn,” in 2017
IEEE 37th ICDCSW, June 2017, pp. 286–288.

[7] R. Qian et al., “Road surface traffic sign detection with hybrid region
proposal and fast r-cnn,” in ICNC-FSKD, 2016.

[8] D. Ribeiro et al., “A real-time pedestrian detector using deep learning
for human-aware navigation,” CoRR, vol. abs/1607.04441, 2016.

[9] I. M. Creusen et al., “Color exploitation in hog-based traffic sign
detection,” in 2010 IEEE ICIP, Sept 2010, pp. 2669–2672.

[10] M. Liang et al., “Traffic sign detection by roi extraction and histogram
features-based recognition,” in IJCNN 2013, Aug 2013, pp. 1–8.

[11] P. Sermanet et al., “Overfeat: Integrated recognition, localization and
detection using convolutional networks,” CoRR, vol. abs/1312.6229,
2013.

[12] J. Redmon and A. Farhadi, “YOLO9000: better, faster, stronger,” CoRR,
vol. abs/1612.08242, 2016.

[13] S. Ren et al., “Faster R-CNN: towards real-time object detection with
region proposal networks,” CoRR, vol. abs/1506.01497, 2015.

[14] J. Redmon et al., “You only look once: Unified, real-time object
detection,” CoRR, vol. abs/1506.02640, 2015.

[15] J. Fowers et al., “A performance and energy comparison of FPGAs,
GPUs, and multicores for sliding-window applications,” in ACM/SIGDA
Int. Symp. on FPGAs, 2012.

[16] M. I. AlAli et al., “Implementing image processing algorithms in FPGA
hardware,” in 2013 IEEE AEECT, Dec 2013, pp. 1–5.

[17] K. He et al., “Deep residual learning for image recognition,” CoRR, vol.
abs/1512.03385, 2015.

[18] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” CoRR, vol. abs/1409.1556, 2014.

[19] C. Szegedy et al., “Going deeper with convolutions,” CoRR, vol.
abs/1409.4842, 2014.

[20] M. Wess et al., “Neural network based ECG anomaly detection on FPGA
and trade-off analysis,” in Int. Symp. on Circuits and Systems (ISCAS),
2017.

[21] A. Krizhevsky et al., “Imagenet classification with deep convolutional
neural networks,” in Proceedings of the 25th International Conference
on Neural Information Processing Systems, ser. NIPS’12. USA: Curran
Associates Inc., 2012, pp. 1097–1105.

[22] M. D. Zeiler and R. Fergus, Visualizing and Understanding Convolu-
tional Networks. Cham: Springer International Publishing, 2014, ch.
Learning and Inference, pp. 818–833.

[23] P. Sermanet and Y. LeCun, “Traffic sign recognition with multi-scale
convolutional networks,” in IJCNN 2011, July 2011, pp. 2809–2813.

[24] R. Girshick et al., “Rich feature hierarchies for accurate object detection
and semantic segmentation,” in IEEE CVPR, 2014.

[25] M. C. Kus et al., “Traffic sign recognition using scale invariant feature
transform and color classification,” in ISCIS, 2008.

[26] W. Shi et al., “An FPGA-based hardware accelerator for traffic sign
detection,” IEEE Transactions on VLSI Systems, vol. 25, no. 4, pp. 1362–
1372, April 2017.

[27] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” in Proceedings of the 2001 IEEE CVPR, vol. 1,
2001, pp. I–511–I–518 vol.1.

[28] H. Li et al., “A high performance FPGA-based accelerator for large-scale
convolutional neural networks,” in FPL 2016, Aug 2016, pp. 1–9.

[29] Embedded vision alliance - ”Caffe to Zynq: State-of-the-art machine
learning inference performance in less than 5 watts,”. Available at
https://www.embedded-vision.com/platinum-members/xilinx/embedded-
vision-training/videos/pages/may-2017-embedded-vision-summit-
kathail (7/2017).

[30] F. N. Iandola et al., “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and <1mb model size,” CoRR, vol. abs/1602.07360, 2016.

[31] D. Clevert et al., “Fast and accurate deep network learning by
exponential linear units (elus),” CoRR, vol. abs/1511.07289, 2015.
[Online]. Available: http://arxiv.org/abs/1511.07289

[32] K. He et al., “Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification,” CoRR, vol. abs/1502.01852,
2015.

[33] S. Houben et al., “Detection of Traffic Signs in Real-World Images:
The German Traffic Sign Detection Benchmark,” in International Joint
Conference on Neural Networks, no. 1288, 2013.

[34] M. Courbariaux and Y. Bengio, “Binarynet: Training deep neural net-
works with weights and activations constrained to +1 or -1,” CoRR, vol.
abs/1602.02830, 2016.

[35] N. Srivastava et al., “Dropout: A simple way to prevent neural networks
from overfitting,” JMLR, vol. 15, pp. 1929–1958, 2014.

[36] J. Tompson et al., “Efficient object localization using convolutional
networks,” CoRR, vol. abs/1411.4280, 2014.

[37] J. Stallkamp et al., “The German Traffic Sign Recognition Benchmark: A
multi-class classification competition,” in IJCNN 2011, 2011, pp. 1453–
1460.

[38] J. Stallkamp et al., “Man vs. computer: Benchmarking machine learning
algorithms for traffic sign recognition,” Neural Networks, 2012.

[39] R. Timofte. Belgiumts dataset. Available at
http://btsd.ethz.ch/shareddata/ (5/2017).

