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Abstract—Malware analysis, detection and classification has
allured a lot of researchers in the past few years. Numerous
methods based on machine learning (ML), computer vision and
deep learning have been applied to this task and have accom-
plished some pragmatic results. One of the basic assumption of
these works is that malware is spawned as a separate thread and
the distinguishing features can be extracted in a “clean” manner
irrespective of the malware obfuscation deployed. However, this
assumption does not hold true for the advanced malware obfus-
cation techniques such as code relocation, mutation and polymor-
phism. Stealthy malware is a malware created by embedding the
malware in a benign application through advanced obfuscation
strategies to thwart the detection. To perform efficient malware
detection for traditional and stealthy malware alike, we propose a
two-pronged approach. Firstly, we extract the microarchitectural
traces obtained while executing the application, which are fed
to the traditional ML classifiers to detect malware spawned as
separate thread. In parallel, for an efficient stealthy malware
detection, we introduce an automated localized feature extraction
technique that will be further processed using the recurrent
neural networks (RNNs) for classification. To perform this, we
translate the application binaries into images and further convert
it into sequences and extract local features for stealthy malware
detection. With the proposed two-pronged approach, an accuracy
of 94% and nearly 90% is achieved in detecting normal and
stealthy malware created through code relocation obfuscation
technique. Furthermore, the proposed approach achieves up to
11% higher detection accuracy compared to the CNN-based
sequence classification and hidden Markov model (HMM) based
approaches in detecting stealthy malware.

I. INTRODUCTION

The exponential growth in the embedded computing tech-
nology utilized in the Internet-of-Things (IoT) devices, has
made the system’s security an indispensable issue. Among
multiple security threats, malware is a vital threat due to
relatively less intricacy to design, craft and propagate into
the device(s) [1]. Malicious software, generally known as
‘malware’ is a software program or an application developed
by an attacker to gain unintended access to the computing
device(s) in order to perform unauthorized accesses as well as
malicious activities such as stealing data, accessing sensitive
information such as credentials, and manipulating the stored
information without user’s consent. In addition to the level of
threat posed by malware, a tremendous increase in the malware
samples is observed in the recent years [2]. This calls for
a comprehensive and robust malware detection technique to
mitigate the malware threat.

Traditional and primitive software-based malware detec-
tion techniques such as signature-based and semantics-based
anomaly detection techniques [3], [4] exist for more than two
decades, though effective, induces remarkable computational
and processing overheads and is inefficient to detect unseen
threats [5]. To overcome the limitations of the software-
based malware detection approaches, the work in [6] proposed
using the microarchitectural event traces captured through
on-chip hardware performance counter (HPC) registers. De-
spite the better performance compared to the software-based
approaches, HPC-based approach fails to effectively detect
stealthy malware1 [7]. We perform a case study to determine
the efficiency of HPC-based method using the data obtained
through embedded 4 on-chip HPC registers in detecting mal-
ware (More details of HPC-based approach is presented in
Section IV with experimental setup in Section V).

Fig. 1: Accuracy of HPC-based malware detection

Figure 1 illustrates the performance (accuracy) of HPC-
based approach when using different machine learning (ML)
models for detecting traditional malware and stealthy mal-
ware samples. As seen from Figure 1, HPC-based technique
equipped with neural network classifier outperforms in de-
tecting traditional malware samples with an accuracy of 85%
followed by decision tree (78%) and logistic regression (74%).
However, one can observe that this trend or performance
does not hold true when the malware is obfuscated through

1Stealthy malware is a malware which is embedded inside a benign
application through sophisticated malware obfuscation techniques, thereby
making it complex to detect with traditional approaches as well as HPC-based
approach and image processing approaches.



techniques such as code integration, code transposition, meta-
morphism, and polymorphism [8]. A significant drop in the
performance (accuracy) (31% for neural network, 24% for
decision tree and 19% for logistic regression) can be observed
in detecting the stealthy malware when solely using the
principle of HPC-based technique [9]. The efficiency of HPC-
based method is questionable with advance code obfuscation
techniques [10] which are used to embed malware into a be-
nign application and create a stealthy malware. As the stealthy
malware dissolves itself into the benign code and reunites
dynamically at runtime to launch the malicious behavior, just
leveraging globalized features for detecting stealthy malware
is not sufficient [11]. This impels us to learn and extract
the localized features for an efficient detection of stealthy
malware.

Albeit the progress achieved by existing works in malware
detection through HPC-based mechanism [4] or computer
vision techniques [12], these works are confined mostly to
detecting traditional malware. To overcome the shortcomings
of existing works and address the aforementioned challenges,
in this work we introduce a novel hybrid approach of detecting
malware and stealthy malware, despite the advanced crafting
techniques, with high efficiency. The major contributions of
this work to achieve such high performance malware detection
can be outlined in three-fold manner as follows:

• Our proposed traditional and stealthy malware detection
technique uses a HPC-based approach as well as localized
feature-based approach. In the HPC-based solution, the
HPC traces of a given application are collected during
runtime and is validated through a traditional ML classi-
fier for malware detection and classification.

• In the localized feature-based method, the application
binaries are translated into image binaries from which
local features are extracted and processed through long
short-term memory (LSTM) recurrent neural network
(RNN) for malware detection and classification.

• Depending on the confidence of the classification for
a given application, the class proposed by the two ap-
proaches is considered as the final output.

We have evaluated the proposed two-prong approach with
novel localized feature extraction technique on over 2500
malware samples, 1000 stealthy malware samples and 500
benign samples. The accuracy which we achieved on malware
samples was 94% and accuracy for stealthy malware was
nearly 90% with a F1-score of 92% and recall score of 91%.

The rest of the paper is organized as follows: we present the
motivation for our work and formulate the problem of stealthy
malware in Section II. In Section III, we present existing works
and outline the differences. We present the proposed malware
detection technique with emphasis on localized feature-based
extraction in Section IV, where we start with overview of
the methodology followed by HPC-based approach, localized
feature extraction based approach and an algorithmic descrip-
tion. The experimental evaluation of the proposed technique
is illustrated in Section V with conclusions drawn in Section

VI.

II. MOTIVATION AND PROBLEM FORMULATION

A. Motivation

Here, we discuss the the key findings which motivated
and impelled us to propose the hybrid two-pronged mal-
ware detection technique. Figure 2a, Figure 2b and Figure
2c visualizes the features for benign, stealthy malware and
traditional malware applications respectively in the form of
heatmaps. The y-axis (imageID) represents the sequence ID of
the various patterns extracted from the a gray-scale image of an
application’s executable and the x-axis (uniqueID) represents
the ID of the unique patterns that were obtained from the
malware and benign application dataset. The unique patterns
comprises of all the unique patterns that are found in the
experiment wide range of malware and benign applications.
The intensity of the each pixel in the heatmap is the cosine
similarity percentage between the individual pattern in the file
for which the heatmap is generated and the unique patterns
belonging to the class. High intensity indicates ample presence
of the sequence in the particular application class, which shows
a close match between the various sequences.

We draw following observations from the plotted heatmaps:
(1) In Figure 2a, which is a heatmap for benign applications,
one can observe high intensity (dark) regions from unique
ID 183 to 671. However, the same region appear with less
intensity for the same unique IDs in the case of malware, as
in Figure 2c. Moreover, across the malware heatmaps (Figure
2b and Figure 2c), no such intense regions can be observed.
(2) In the heatmap for stealthy applications (Figure 2b), one
can observe that for a given uniqueID, the heatmap across
ImageIDs are not uniform i.e. one can observe equidistant
horizontal light intensity regions and similar faded horizon-
tal regions, indicating uneven pattern occurrence in stealthy
malware; and (3) the intensity of patterns are spread across
the uniqueID for stealthy malware, whereas localized in the
case of traditional malware, as observed in Figure 2c and
Figure 2b. Altogether, it makes stealthy malware harder to
detect. This simple experiment states that the difference in
heatmaps clearly illustrates that the localized features which
we are extracting from gray-scale images play an important
role to distinguish between stealthy malware, malware and
benign applications.

B. Problem Formulation

Before introducing the problem, we present the notations
used in this work. We represent the corpus of dataset as D
that encompasses of malware samples M , benign samples B
and stealthy malware samples Ds i.e.,

D =M ∪B ∪ Ds (1)

Malware dataset M is organized in the following manner,

M = {M1,M2, ...,M j}
M j

n = {M j
1 ,M

j
2 , ...,M

j
n}

(2)
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Fig. 2: Heatmap for (a) benign applications; (b) stealthy malware; and (c) malware applications

where M j represents the jth malware sample with M j
n

representing that there are n number of patterns in a given
jth malware sample.

In similar way, benign samples are organized as

B = {B1, B2, ..., Bk}
Bk

q = {Bk
1 , B

k
2 , ..., B

k
q }

(3)

where Bk represents the kth benign sample with Bk
q rep-

resenting that there are q number of patterns in a given kth

benign sample.
The patterns for a given application are obtained and aligned

from the spatial distribution of samples of their gray-scale
images respectively.

Similarly, the stealthy malware created through code obfus-
cation techniques [10] are denoted by Ds such that

Di
s =M j ∩Bk 6= {φ} (4)

where Di
s is a ith stealthy malware sample which encompasses

jth malware sample and kth benign sample. Every stealthy
malware sample Di

s is structured in the following manner,

Di
s = {M

j
1 , B

k
5 ,M

j
4 , B

k
2 , B

k
10, ...,M

j
15, ...,M

j
n, B

k
q } (5)

Considering the emerging techniques in hiding the malware
(through polymorphism, metamorphism, dead-code insertion,
code relocation and register reassignment) [8] from the detec-
tion techniques, it is non-trivial to devise a methodology that
is capable of detecting traditional as well as stealthy malware
will similar efficiency. Thus, we define the problem as follows:

Despite dispersing or hiding the malicious patterns to
circumvent malware detection, one needs to devise a technique
that is able to characterize and efficiently detect the malware
through the sub-patterns that can distinguish stealthy malware
and benign applications.

This is mathematically defined as

f : D ⇒ Z (6)

where f is a mapping function that maps the incoming
application (benign, traditional malware or stealthy malware)
to its corresponding class efficiently, D is combination of
malware, benign and stealthy malware dataset and Z is the
class of the application. Our proposed approach extracts the

localized features of the incoming application, thus making
it feasible to detect the stealthy malware despite deploying
malware obfuscating techniques.

III. RELATED WORK

Here, we outline the existing works on traditional and
stealthy malware detection.

Many researchers have leveraged architectural and appli-
cation features for malware analysis and detection [13] in the
past. In [14] Bilar et al. used the difference of opcodes between
known malware and benign as a key to predict malware.
Similarly, other methods utilize frequency of opcodes [15] and
sequences of opcodes [16] to model the malicious behavior.
A graphical technique was proposed by Runwal et al. in
[17] to find the similarity of the opcode sequence. However,
these proposed techniques requires considerable amount of
work to model each program based on instructions. Since the
code size increases day by day, modeling program based on
opcodes becomes a time-consuming task and also increases
the memory requirement. Considering that each instruction of
the program has to be traced, there will be significant amount
of performance overhead on the system. Demme et al. [6]
proposed the use of hardware performance counter (HPC) to
monitor the lower level micro-architectural parameters such
as branch-misses, instruction per cycle, cache miss rate. In
[18] NumChecker detects malicious modifications to a kernel
function (system call) by inspecting the hardware events
including total instructions, branches, returns and floating-
point operations. However, all the above methods use low-
level hardware features to model the malicious behavior and
also have a low performance overhead but they are limited
by a high false positive rate (nearly 10%) [6]. In comparison,
our proposed technique not only uses HPCs, but also extracts
localized features and has lower false positive rate, which is
more significant in stealthy malware detection.

To overcome the shortcomings of these malware detection
techniques, the features extracted from HPCs in HPC-based
technique were given to specialized machine learning classifier
in [4] at runtime. The main purpose of HPC is to analyze and
tune architectural level performance of running applications
[19]. In addition to HPC-based techniques, researchers ex-
plored computer vision-based application analysis for malware



detection. Natraj et al. [11] classifies malware images by using
k-nearest neighbors. This approach is not capable of handling
code obfuscation techniques like code relocation and mutation,
and may not be feasible in resource constrained environments
because to extract the image texture as features for classifi-
cation and the system needs pre-processing. Artificial neural
network (ANN) for malware classification is used in [20] and
[21] which is computationally costly as there are multiple
fully connected layers in (ANN) for malware classification.
In [22] authors convert the binary executable of malware
samples to a gray-scale image and utilize a single-channel
lightweight convolutional neural network (CNN) to efficiently
detect IoT malware. David and Netanyahu apply a deep belief
network (DBN) [23] to log files which are generated directly
by a sandbox environment, which not only captures API
calls but also other events from the running malware as a
sequential representation. RNN is used widely in sequence
classification [12], [24] and pattern-based feature selection and
classification [25], [26]. The challenge of applying pattern-
based feature selection on symbolic sequences is that the
features must satisfy the following criteria: (1) frequent in
at least one class (2) distinctive in at least one class (3)
sequence should have a uniform length and (4) not redundant.
Sequence classification with sequence of symbols is a strong
classification task. We attain all the aforementioned criteria in
our proposed methodology. First criteria is accomplished from
equation (4). It clearly states that stealthy malware has atleast
one pattern from a malware or benign class. To fulfill criteria
2 and 4, we are using cosine similarity to find distinct pattern
based on spatial distribution and we discard repeating pattern
from one class or more classes. To assure that every sequence
has uniform length, we are using zero padding mechanism.

To the best of our knowledge, the existing works on malware
detection lacks strategies to efficiently detect stealthy malware
and traditional malware with same efficiency and requires
plethora of resources, making them computationally expensive
to adopt. In contrast, through the proposed two-prong approach
in our work, the HPC-based method is effective in detecting
malware, whereas through the localized feature based process-
ing we can detect the obfuscated malware.

Our proposed technique for detecting stealthy malware is
faster as we target to capture localized characteristics of
applications and convert them to sequences that are fed to a
ML sequence classifier which is trained to learn the sequences
as features for several applications. This makes our proposed
technique resource efficient as no additional hardware or
memory is needed.

IV. PROPOSED MALWARE DETECTION METHODOLOGY

A. Overview of the Proposed Methodology

First, we present the overview of the proposed two-prong
methodology depicted in in Figure 3 for an efficient mal-
ware detection, followed by in-depth details. The incoming
application (malware or benign or stealthy malware) is fed
to both, HPC-based method and localized feature extraction
based computer vision approach simultaneously as shown in

Figure 3. In the HPC-based approach, the prominent HPCs
information is collected during runtime, which is then fed to
ML classifier for malware detection. The prominent HPCs that
are needed, are determined offline by obtaining all feasible
HPC values and feeding to principal component analysis
(PCA) for feature reduction. While, the HPC-based technique
performs the dynamic analysis on incoming file, the localized
feature based approach is a static approach that utilizes com-
puter vision-based processing for malware detection. In this
approach, the incoming binary file is converted to a gray-scale
image from which the patterns are obtained. These patterns are
labelled and compared with the stored patterns of stealthy and
traditional malware by employing a RNN-LSTM. Depending
on the classification confidence from both the techniques,
the class predicted by the approach with higher confidence
is considered as the output class for input application. We
describe the details of individual approaches below.

B. HPC-based Detection

In the HPC-based detection technique, we require the
microarchitectural event traces captured through HPCs for
malware detection. One of the challenges is that there are a
limited number of available on-chip HPCs that one can extract
at a given time-instance. However, executing an application
generates few tens of microarchitectural events. Thus, to
perform real-time malware detection, one needs to determine
the non-trivial microarchitectural events that could be captured
through the limited number of HPCs and yield high detection
performance. To achieve this, we use principal component
analysis (PCA) for feature/event reduction on all the mi-
croarchitectural event traces captured offline by iteratively
executing the application. Based on the PCA, we determine
the most prominent events and monitor them during runtime.
The ranking of the events is determined as follows:

ρi =
cov(Appi, Zi)√

var(Appi)× var(Zi)
(7)

where ρi is pearson correlation coefficient of any ith appli-
cation. Appi is any ith incoming application. Zi is an output
data contains different classes, backdoor, rootkit, trojan, virus
and worm in our case. cov(Appi, Zi) measures covariance
between input and output. var(Appi) and var(Zi) measure
variance of both input and output data respectively. Based on
the ranking, we can select most prominent HPCs and monitor
them during runtime for efficient malware detection. These
reduced features collected at runtime are provided as input to
ML classifiers which determine the malware class label (Ŷ
⇒ Backdoor, Rootkit, Trojan, Virus and Worm) with higher
confidence (α). This HPC-based malware detection technique
is fast, robust and accurate in detecting and classifying the
malware but it has overhead in terms of area, power and
latency. Despite the benefits, as seen in Figure 1, this approach
does not yield higher performance on stealthy malware due to
contamination of HPC when malware is embedded into the
benign application. To address this critical issue, a computer
vision-based approach is adopted in parallel.



C. Localized Feature Extraction based Detection

In the computer vision-based detection technique, as shown
in Figure 3, the application binary is converted into a gray-
scale image for localized feature extraction. A raster scanning
is performed on the converted binary images to find the image
patterns. Each pattern is of 32×32 block size. We utilize
a cosine similarity to distinguish between multiple patterns
i.e., if the cosine similarity of two patterns is higher than
threshold (0.75 in this work based on conducted experiments),
they are considered to be same. When more than one matched
patterns are found, the one with the highest cosine similarity
is considered. It needs to be noted that the pattern matching
for an incoming binary is performed with the patterns in
the database (created through similar process during training
phase, but offline). Once the image patterns are recognized for
a given binary file, the whole image binary is converted into a
sequence of patterns (Each pattern is provided with a unique
ID). This sequence is fed to a long short-term memory (LSTM)
recurrent neural network (RNN). RNN can be fed with the
sequences of same length. However, the size of sequence can
vary according to the size of gray-scale image of the converted
binary file. To address this challenge, we perform the padding
of zeros to sequence in order to make its length uniform. As
the pattern or sub-pattern of a malware cannot alter despite
embedding the malware to launch malicious payload, through
this technique the stealthy malware can be detected with higher
performance (around 90% accuracy).

We generate a training dataset as shown in equation (2) and
equation (3) which consists of several sequences for variety of
classes of malware (backdoor, rootkit, trojan, virus and worm)
and benign applications. We also create a testing dataset as
shown in equation (5) which contains stealthy malware sam-
ples by embedding malware into benign applications through
code obfuscation technique [10]. All the sequences for this
application are generated using the discussed method.

Learning of RNN for the patterns happens as follows. Let
ut and ht denote the input and state vectors, respectively, at
time instance t. Let Win, Wrec, b, Wout, bout be the input
to hidden layer weight matrix, recurrent weight matrix, bias,
output weight matrix and output bias respectively. Let ω and ε
be the activation function of the hidden layer and output layer
respectively. In our proposed work, tanh is used for hidden
layer and softmax is used for the output. The recurrent models
are then described by the following equations:

ht = ω × (Win × ut +Wrec × ht−1 + b) (8)

X̂t = ε× (Wout × ht + bout) (9)

This RNN-model is finally used to classify the incoming
stealthy malware binary based on equation (8) and equation (9)
and predicts the corresponding class label X̂t. The rationale
to utilize RNN is to exploit the temporal as well as spatial
dependencies that attackers utilize to craft stealthy malware.

For the given input application, we have 2 labels (same or
different) predicted through HPC-based and computer vision-
based approaches. In our work, we consider the confidence
of the prediction from both the approaches and the label
from predictor with confidence higher than threshold (α =
75%, which is determined through trial-and-error method) is
considered to be the associated class for the input application.
For the dataset with 1000 stealthy malware samples and 2500
traditional malware samples, we did not encounter a scenario
where both the detection techniques have high confidence and
contrasting output classes.

D. Summary of Proposed Methodology

Algorithm 1 Pseudo-code describing proposed methodology
for malware detection.
Require: Application Appi ∈ {M,B,Ds}
Ensure: ZAppi

{ZAppi
is class for Appi}

1: pthread_create hpc_function()
2: hpc function(Appi):
3: fe = f1, f2, ....., fn { feature extracted using perf}
4: fr = PCA(fe) { feature reduction using PCA}
5: α1, Ŷt = ML(fr) {ML(.) is a Machine learning

model built offline}
6: end
7: pthread_create localized_function()
8: localized function(Appi):
9: Appi ⇒ gray-scale image

10: PAppi
⇐ (P0, P1, ..., Pn) {Obtain patterns for gray-

scale image}
11: Compare PAppi

with patterns in database(DB)
12: SAppi ⇐ (a1, b1, ..., bn, zn)
{Obtain sequence for gray-scale image}

13: α2, X̂t = RNN(SAppi) {RNN(.) is a RNN
model built offline}

14: end
15: if α1 ≥ α and α1 > α2

16: ZAppi
⇐ Ŷt

17: else
18: ZAppi ⇐ X̂t

19: end

In Algorithm 1, we have provided the pseudocode for our
proposed malware detection methodology. Let us consider the
incoming application as Appi which may belong to either a
malware, benign or stealthy malware. As soon as our archi-
tecture encounters the incoming application, it spawns two
threads using pthread_create namely hpc function()
and localized function().

Thread hpc function(Appi) performs the dynamic anal-
ysis on the incoming application Appi based on HPC-based
detection method. Initially we extract the features fe of Appi
using perf tool. Due to limited number of HPCs, we utilize
PCA to perform feature reduction to obtain reduced features
fr, which is performed offline. These reduced features fr are
monitored during runtime for the incoming application and fed
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Fig. 3: Proposed hybrid approach for detecting stealthy malware

to ML classifier to determine the α1 and Ŷt i.e., confidence
and label of the application respectively, as shown in Line 1-5
in Algorithm 1.

On the other hand, thread localized function(Appi) per-
forms localized feature extraction scheme simultaneously.
Here, the incoming application Appi is converted into a gray-
scale image. Raster scanning is performed on this gray-scale
image to obtain sequence of patterns PAppi for the gray-scale
image. These obtained sequence of patterns are compared
with the patterns available in database (formed through similar
procedure but carried out offline). We created this database
(DB) with 2500 malware samples, 1000 stealthy malware
samples and 500 benign samples. After comparison, we assign
a sequence of labels SAppi to these patterns. Lastly, this
sequence is fetched as an input to a pre-trained RNN to classify
incoming Appi and gives most relevant output α2 and X̂t,
which are confidence and label of class respectively, as shown
in Line 7-13 in Algorithm 1.

Once we obtain the outputs from both approaches, we
compare confidence of both the detection techniques α1 and
α2 with the threshold confidence α. Final Classification output
label of the proposed malware detection methodology, ZAppi

is Ŷt if α1 ≥ α and α1 > α2 otherwise ZAppi
is X̂t.

V. EXPERIMENTAL RESULTS

In this section we will discuss about (1) Experimental setup
used for evaluating our work, (2) Visualization of stealthy
malware, (3) Performance of malware detection and (4) Key
findings.

A. Experimental Setup

The proposed methodology is implemented on an Intel
core i7-8750H CPU with 16GB RAM. We have obtained
malware applications from VirusTotal [27] with 2500 malware

samples that encompasses of 5 malware classes: backdoor,
rootkit, trojan, virus and worm. Further, we utilized benign
applications such as documents (.pdf, .txt, .docx) inside which
the binaries of above mentioned malware classes are integrated
through code obfuscation (code relocation [8]) process to cre-
ate 1000 stealthy malware samples. We selected a benign file
and randomly embed a malware sample using code relocation
technique. Thus, malware code is not only embedded using
code relocation but to increase the stealthiness we randomly
placed the code into a benign file. We created around 600 such
complex stealthy malware. To test robustness of our technique
we also created around 400 stealthy malware by embedding
malware into benign file using code transposition technique
[10] i.e. reordering the sequence of instructions of an original
code without having any impact on its behavior. The HPC-
based mechanism is a single layer neural network with 10
neurons in hidden layer. The RNN model has 1 dimensional
dropout layer with threshold of 0.7, LSTM layer with 64
neurons and 0.7 recurrent dropout followed by a dense layer
with softmax activation. It uses ADAM optimizer and loss is
calculated based on the categorical cross entropy.

B. Visualization of Stealthy Malware

Figure 4 visualizes stealthy malware using the most promi-
nent four features determined using the aforementioned feature
reduction (PCA). Among all the captured HPC events, branch
instructions, branch loads branch-instructions and LLC-loads
seems to be prominent, as the malware impacts the branch
and last-level cache (LLC) to inject the payload. We plot
the impact of one feature on other and its correlation to
the malware/benign class here. and resulted in significant As
seen from Figure 4, trojan stealthy malware class is easily
distinguishable from benign class for branch-instructions vs
branch-loads graph, whereas, in branch-instructions vs LLC-



loads graph, trojan stealthy malware is easily distinguishable
from other classes of malware. Hence, from Figure 4 we
can conclude that HPC-based detection technique could only
detect one class of stealthy malware (trojan). So, utilizing
a localized feature extraction based detection technique in
parallel makes our proposed solution more robust.
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Fig. 4: Visualization of stealthy malware

C. Performance of Malware Detection
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Fig. 5: Loss and accuracy of the proposed malware detection
model

Figure 5 depicts the loss and accuracy for the overall mal-
ware dataset D =M∪B∪Ds. As seen from Figure 5, with the
increase in epochs the accuracy increases and saturates at 40
epochs, hence we considered the model trained with 40 epochs
for final evaluation. For the normal malware i.e., malware
spawned as separate thread, an accuracy of nearly 90% is
achieved with HPC-based malware detection. However, for
stealthy malware, the HPC-based malware detection accuracy
is shattered to 54% on an average (These individual results
are not plotted for the purpose of brevity). However, with the
proposed hybrid approach, an accuracy of 94% is achieved,
with a loss of 0.14 as shown in Figure 5, respectively despite
of code obfuscation.

Fig. 6: Performance Comparison of Sequence Classifiers

Performance comparison of the sequence classifiers can
be illustrated from Figure 6, where we have compared our
technique with other traditional sequence classification mech-
anisms. We observe that for a normal malware application,
RNN sequence classifier based on our localized feature ex-
traction method, classifies malware with the highest accuracy
of 94% accuracy as compared to some traditional sequence
classifier which classifies the same malware application with
91% (CNN), 84% (HMM) and 85% ( HPC-based) of accuracy.
While the traditional sequence classification approaches failed
badly with a significant drop in accuracy while testing stealthy
malware 31% (CNN), 37% (HMM) and 31% (HPC-based);
our localized feature extraction based method achieved an
accuracy of nearly 90% while testing stealthy malware on
RNN. The most important observation was the accuracy was
definite even while testing stealthy malware with randomized
code obfuscation, code relocation and polymorphism tech-
niques used for creating stealthy malware [8], [10].

TABLE I: Comparison of Precision score

Classifier Backdoor Rootkit Trojan Virus Worm Stealthy
CNN 0.88
HMM 0.81

RNN (proposed) 0.93
HPC-based 0.80

TABLE II: Comparison of Recall score

Classifier Backdoor Rootkit Trojan Virus Worm Stealthy
CNN 0.9 0.93 0.81 0.85 0.82 0.4
HMM 0.8 0.85 0.76 0.82 0.7 0.45

RNN (proposed) 1 0.98 0.9 1 1 0.91
HPC-based 0.8 0.76 0.79 0.71 0.7 0.62

TABLE III: Comparison of F-1 score

Classifier Backdoor Rootkit Trojan Virus Worm Stealthy
CNN 0.87 0.9 0.8 0.83 0.78 0.37
HMM 0.72 0.79 0.8 0.83 0.67 0.4

RNN (proposed) 0.94 0.97 0.94 0.97 0.93 0.92
HPC-based 0.83 0.72 0.77 0.68 0.66 0.57

In addition to accuracy, we evaluate and compare other
performance metrics for malware detection. Precision score
of 0.93 is achieved with the proposed methodology with
an average F-1 score and recall score of 0.94 and 0.96
respectively. As seen from Table I, the precision obtained
with proposed methodology is 11% higher on an average
compared to other approaches, including HPC-based approach.
Similarly, from Table II and Table III, we conclude that the
recall score and F-1 score attained with proposed methodology
is approximately 24% higher and 23% higher respectively, on
an average compared to other approaches.

We plot the ROC-curve for malware detection to evaluate
the robustness, which is depicted in Figure 7. It is evident
that with the proposed proposed malware detection, a higher
area under curve (AUC) of 0.94 is obtained, which indicates
a higher robustness. Considering the evaluation evidences, we
can substantiate that our proposed hybrid malware detection
technique successfully outperforms other malware detecting
mechanisms in detecting traditional and stealthy malware.
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Fig. 7: ROC-curve

D. Key Findings

Some of the key findings of our proposed hybrid malware
detection technique are as follows:

• We perform raster scanning on a gray-scale image with
a 32 × 32 scanning block, which help us to capture each
and every pattern from that gray-scale image. This also
ensures that there is minimal loss of information and
localized features.

• To find spatial similarity in patterns, we use cosine
similarity where all the patterns with cosine similarity
greater than 0.8 are considered similar.

• Further, we generate a sequence of labels from these
patterns for every gray-scale image, where every unique
pattern will have a unique label and pattern with same
cosine similarity or cosine similarity greater than 0.8 will
be assigned the same label.

• Finally, a RNN model is trained with data comprising of
sequences for every benign and malware application.

• In order to detect the obfuscated piece of malware,
the extracted localized features play a vital role such
that when a incoming application is a stealthy malware,
our proposed detection technique successfully detects
and classifies it despite of a malware application being
randomly obfuscated into a benign application.

VI. CONCLUSION

In this work, we propose a hybrid approach of utiliz-
ing architectural (trace) as well as code properties obtained
through HPCs and localized features extraction, respectively
for stealthy malware detection. In the HPC-based approach,
we determine the most prominent HPCs for malware detection
and feed them to ML classifier for malware detection. In
parallel, we provide the incoming application to the devised
image processing technique to convert application binary to
a gray-scale image and extract distinct patterns over spatial
distribution using. Sequence labelling was further performed
to these distinct patterns. As discussed in the paper, our
proposed methodology successfully addresses all the sequence
classification criteria which makes sequence classification a
difficult task. For sequence classification, we utilize a RNN to
extract and process the localized features to attain the highest
average accuracy of 90% over stealthy malware and 94% over
traditional malware application. Thus, we conclude that our

proposed methodology is robust and fast in detecting stealthy
malware and traditional malware. We will study hardware
implementation and analysis of this technique as our future
research work.
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