
Reinforcement Learning based Self-adaptive
Voltage-swing Adjustment of 2.5D I/Os for Many-core

Microprocessor and Memory Communication

Huang Hantao1, Sai Manoj P. D.1, Dongjun Xu1,2, Hao Yu1 and Zhigang Hao3

1School of Electrical and Electronic Engineering Nanyang Technological University, Singapore 639798
2 Dept. of Electronic Engineering, Xi’an University of Technology, Xi’an, China 710048

3 MediaTek Singapore Pte. Ltd.

ABSTRACT
A reinforcement learning based I/O management is developed
for energy-efficient communication between many-core
microprocessor and memory. Instead of transmitting data under
a fixed large voltage-swing, an online reinforcement Q-learning
algorithm is developed to perform a self-adaptive voltage-swing
control of 2.5D through-silicon interposer (TSI) I/O circuits.
Such a voltage-swing adjustment is formulated as a Markov
decision process (MDP) problem solved by model-free
reinforcement learning under constraints of both power budget
and bit-error-rate (BER). Experimental results show that the
adaptive 2.5D TSI I/Os designed in 65nm CMOS can achieve an
average of 12.5mw I/O power, 4GHz bandwidth and
3.125pJ/bit energy efficiency for one channel under 10−6 BER,
which has 18.89% power saving and 15.11% improvement of
energy efficiency on average.

1. INTRODUCTION
As the number of I/Os grows dramatically when integrating

multi-core microprocessor and main memory for cloud server,
there is an emerging need to develop high data-rate and low
power I/O circuits[1]. Previous 2D wire-line communication by
PCB trace of backplane [2, 3, 4] has a large latency and poor
signal-to-noise ratio (SNR) in channels. Though 3D integration
by stacking several layers of dies vertically using through-silicon
via (TSV) I/O [5, 6] provides a scalable integration, it has high
thermal density with poor heat dissipation and hence can result
in serious reliability concern [7]. Recently, the 2.5D integration
by though-silicon interposer (TSI) in common substrate [8, 9]
can provide better thermal dissipation. With the design of
TSI-based transmission line (T-line), one can further achieve
high bandwidth and low power [10] I/O communication without
the area overhead, because the TSI is fabricated underneath the
common substrate. As such, the TSI T-line based I/O circuit
designs have become the recent interest towards energy-efficient
integration of multi-core microprocessor and main memory.

However, all previous I/O circuit designs assume a constant
and large output voltage-swing [11, 12]. For 2D wire-line
communication, large output voltage-swing is required to
compensate the channel loss and noise of the PCB trace. But a
large output voltage-swing in communication with high
data-rate can result in huge power consumption in
communication. Meanwhile, bit-error-rate (BER) requirement of
I/Os actually is not necessary to be low at all time as it depends
on the workload specification. Therefore, the constant and large
output voltage-swing of I/Os may be over designed with low
utilization. Thereby, in order to have an energy-efficient I/O
communication, one needs to develop a dynamic output
voltage-swing scaling to adaptively adjust the output
voltage-swing level under the dynamic BER constraint [13, 14].
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On-line machine learning based power management has been
recently practiced [15, 16, 17]. For example, Q-learning can be
utilized to find an optimal action-selection policy from the set of
states. However, Q-learning [18] is limited by the learning rate
with slow convergence. A reinforcement Q-learning can improve
the policy decision by using the prior knowledge of the system
with a Markov decision process (MDP) [16]. In this paper, a
reinforcement Q-learning algorithm is developed to adaptively
adjust the output voltage-swing levels of 2.5D TSI I/Os. Instead
of transmitting data under a fixed large voltage-swing, an
on-line reinforcement Q-learning based management is applied
to select the output voltage-swing at the transmitter. Based on
the historical data, the voltage-swing adjustment is formulated
as a MDP problem solved by model-free reinforcement learning
under constraints of both power budget and BER. To accelerate
the adjustment convergence, a prediction of BER and power as
virtual experience is applied to reinforcement Q-learning
algorithm. One corresponding 2.5D TSI I/O is designed in
65nm CMOS process for multi-level output voltage-swing with
balanced power and BER. Experimental results show that the
adaptive 2.5D TSI I/O circuit can achieve 12.5mW I/O power,
4GHz bandwidth and 3.125pJ/bit energy efficiency for one
channel under 10−6 BER, which has 18.89% reduction of power
and 15.11% improvement of energy efficiency on average when
compared to the traditional I/O communication with constant
output voltage-swing.

The remainder of this paper is organized as follows. Firstly,
we describe the logic-memory integration architecture by 2.5D
TSI integration with adaptive I/O management and the
according problem formulation in Section 2. In Section 3, the
adaptive I/O management by the reinforcement Q-learning
algorithm is presented. Section 4 presents the circuit blocks of
2.5D TSI I/Os including: receiver/transmitter, adaptive tuning
and error-correcting coding. The experimental results are shown
in Section 5 with conclusion in Section 6.

2. 2.5D TSI I/O COMMUNICATION
In this section, we will present logic-memory integration

architecture by 2.5D TSI I/Os. Furthermore, the problem of
self-adaptive voltage-swing adjustment for low-power I/O
communication is formulated. Set of variables used in this paper
are defined in Table 1.

2.1 Logic-memory Integration by 2.5D TSI
Printed circuit board (PCB) with backplane [2, 3, 4]

containing sockets is the traditional 2D interconnection method
between processors and memories as shown in Fig. 1(a)(i). It
requires a long trace of T-line (≥ 25cm) with non-ideal vias,
suffering from channel loss and noise. In order to compensate
this channel loss with high-data rate, current starved circuits
and equalizers need to be employed [2, 3]. The 2.5D TSI T-line
[19, 20] does not need a long trace to interconnect processors
and memories. What is more, since TSIs are deployed
underneath the common substrate as shown in Fig. 1(a)(ii), the
area overhead is also mitigated. A comparison of channel loss
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Table 1: List of variables and their description

Notation Definition
S = {s1, ..., sN} Set of states
A = {a1, ..., aN} Set of actions
V = {v1, ..., vN} Set of voltage-swings

P (si, ai, si+1)
Transition probability

from state si to si+1 with action ai

BERi Bit-error-rate at ith output voltage-swing

Pwi
Communication power at

ith output voltage-swing

R(si, ai, si+1)
Reward value for transition

from state si to si+1 with action ai

γ Discount rate
α, β Weighted parameters for reward function
lr Learning rate

Q(si, ai) Q-value from Q-learning
RD Resistance of driver

Zdiff characteristic impedance of the T-line
It Tail current of CML driver
σv Standard deviation of noise
Nsi

Number of visits to state si
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Figure 1: (a) Interconnect by: (i) Backplane trace (ii)
TSI T-line; (b) Channel loss for: (i) Backplane trace;
(ii) TSI T-line

between the 2D PCB trace and 2.5D TSI based T-lines is
presented in Fig. 1(b). One can observe from Fig. 1(b)(i), at
5GHz clock frequency, the PCB trace with 25cm length has
nearly 24dB channel loss; whereas at same frequency for 2.5D
TSI with 10µm width, 3mm length has less than 1dB loss.
Therefore, the 2.5D TSI T-line based integration is selected for
the logic-memory integration. In addition, the 2.5D TSI based
integration shows much better thermal dissipation capability
when compared to the 3D TSV based integration.

Fig. 2(a) shows the system architecture for the logic-memory
integration by the 2.5D TSI I/O. Each of the core and memory
blocks comprises of transmitter as well as receiver to enable a
full duplex communication. To further reduce the I/O
communication power between logic and memory blocks, a
self-adaptive voltage-swing adjustment is required. The
current-mode-logic (CML) buffer is shown in Fig. 2(b) with
tunable tail-current (based on output of I/O controller) to
adaptively tune the output voltage-swing. By adjusting I/O
output voltage swing, I/O communication power can be reduced
with improved energy efficiency compared to the previous
designs [11] that utilize the fixed full output voltage-swing.
However, the BER increases when the output voltage-swing
decreases. Hence, a trade-off needs to be maintained between
the I/O communication power and BER, which requires an
optimized on-line management.

Detailed description of the transmitter, receiver, and the
adaptive tuning circuits is presented in Section 4. In the
following, we formulate an adaptive I/O output voltage-swing
tuning problem for the proposed architecture.
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Figure 2: (a) Core-memory integration by 2.5D TSI I/O
interconnect and its cross sectional view; (b) Adaptive
tuning I/O based on error checking and correction

2.2 Problem Formulation
As previously discussed, the BER at the receiver increases with

the decrease in the I/O communication power due to channel loss
and noise. As such, one needs to find an optimal output voltage-
swing at the transmitter such that balanced power reduction is
obtained with the maintained BER, which can be defined as the
following problem.

Problem: the level of output voltage-swing at the transmitter
can be tuned to achieve low power at the cost of BER based on
the I/O communication channel characteristics.

Opt. < Pwi, BERi >

S.T.(i) Pwi ≤ PwT

(ii) BERi ≤ BERT

(1)

where Pwi and BERi denotes the I/O communication power
and BER under the i-th output voltage-swing level Vsi . Note
that the BER and power are both functions of the output
voltage-swing. PwT and BERT represents the targeted I/O
communication power and BER of one TSI I/O channel under
the normal operation. With the increase of the output
voltage-swing Vsi , the I/O communication power Pwi increases
and BER BERi decreases, vice-versa. As such, the output
voltage-swing level Vsi needs to be adaptively tuned for
optimizing the I/O communication power and BER
simultaneously. This problem can be modeled as a Markov
decision process (MDP) and solved by the reinforcement
learning based Q-learning discussed in next section.

3. Q-LEARNING BASED ADAPTIVE
TUNING

In this section, we will first present the modeling of a Markov
decision process (MDP) and the according reinforcement
Q-learning algorithm for the adaptive tuning. System power
model and BER model are then discussed as well.

3.1 Reinforcement Q-learning
The I/O management can be modeled by a Markov decision

process (MDP) with variables defined as follows:

• State S: set of states indicating the value of system
variable(s). We consider the voltage-swing level as the
state.

• Action A: set of actions indicating the change of state. We
consider the change of voltage-swing level as the action.

• State transition probability P (si,ai,sj): probability
indicating the change from state si to state sj due to the
action ai.
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Figure 3: State diagram for reinforcement Q learning

• Reward R(si, ai, sj): benefit of taking action ai to change
the state from si to sj , which is dependent on historical
BER and power Pw.

• Q-value Q(si, ai): set of values to measure the benefits of
taking action ai to state si. Q′(si, ai) is the updated value
after taking action ai.

• Policy: process of state change under sequence of action.

One example with 4-state is shown in Fig. 3. For state s1,
action a1 can change its state to state s2 with probability
P (s1, a1, s2); For state s2, action a2 can change its state to
state s1 with probability P (s2, a2, s1). Whereas action a5
causes no change in state, whose probability is given as
P (s1, a5, s1). The state transition probability P is given by a
decaying function. The probability under the decaying function
is given by P = 1-1/(log(Nsi+2) with Nsi denoting the number
of visits to state si. The probability based action will ensure the
visit to all states at starting period. This will calculate Q-value
to every available state accordingly. After this, Q-value based
action will dominate and the optimal action with largest
Q-value will be selected.

To find the optimal of MDP, reinforcement Q-learning
algorithm can be utilized to evaluate the pair of state and action
as the Q-value. The traditional Q-learning algorithm [18]
converges to the optimal after unlimited iterations that may be
too slow for convergence. The reinforcement Q-learning [15] can
be utilized to find an the optimal with a faster convergence
based on the predicted next state and the according transition
probability with an initialized random action at first few states.
In this paper, we utilize the reinforcement Q-learning to find the
optimal for the modeled MDP to solve Problem 1 formulated in
Section 2.2, which is presented in Algorithm 1 as follows. The
first phase is initialization to form a look-up-table with states
(voltage-swing levels) and corresponding actions. In addition,
the transition probability P for all the states is 1 and the reward
is set to 0. This process of initialization is presented as Init() of
Algorithm 1.

Prediction of the next state (voltage-swing level) is performed
to obtain the corresponding action. In the action selection phase,
given by Selection(), the Q-value for the state and action pair
is found iteratively, where the Q-value is defined as the weighted
sum of the reward and its past values by

Q′(si, ai) = (1− lr) ∗Q(si, ai) + lr ∗ delta (2a)

delta = (R(si, ai, si+1) + γ ∗max(Q(si+1, ai)−Q(si, ai))).
(2b)

where ai and si belongs all available actions and states.
Q′(si, ai) shows the updated Q-value after taking the action ai
to the next state si+1. The learning rate lr is initialized 0.5 and
the higher means to more weight of estimate future Q value. γ
is set as discount rate to discount the temporal difference and
set to be 0.9 in the following experiments. In each iteration, the
action is selected ether based on the transition probability or
based on the maximum Q-value (or policy). If the transition
probability is smaller than one threshold, the random action is
selected; otherwise, the policy action with the maximum
Q-value is selected. The random action will happen at the first
few rounds to explore the design space. As the learning process
continues, the policy action with the calculated Q-value will

Algorithm 1: Reinforcement Q learning algorithm
Input: Communication power Pw, BER feedback
Output: Output-voltage
function Init()

1→P (si, ai, si+1)
Reward R(si, ai, si+1)= 0
vpredict →Vsi
Selection()

end function

function Selection()
for k = 1 : n

vi →si ∈S
Q′(si, ai) ← (1− lr)∗ Q(si, ai)+
lr ∗ (R(si, ai, si+1)+γ∗ max(Q(si+1, ai)-Q(si, ai)))
If P (si, ai, si+1) > rand(0, 1)

ai←rand(A)
else

ai←max(Q(si+1, ai))
end if
Update()

end for
end function

function Update()

Reward: R(si, ai, si+1) = α*
max(Pw)
Pw(k)

+β*
max(BER)
BER(k)

Update Policy (si, ai), based on new Q
∀ si ∈ S {

ai←rand(A)
Q′(si, ai) = Q(si, ai)
P (si, ai, si+1) = 1− 1

log(Nsi
+2)

}
end function

dominate and become more accurate to use. As such, a higher
probability exists that the action ai with the maximum Q-value
will be selected. The policy action with the maximum Q-value
(2) can be described as below

ai ← max(Q(si+1, ai)). (3)

Action
Reward States

Power BER V oltages
a1 Power1 BER1 V1

..

.
..
.

..

.
..
.

The LUT is designed as above. Lastly, the phase of Update()
is activated at the end of each iteration of Selection() function.
The reward is defined as the weighted value of BER and Power
and will be updated as follows

R(si, ai, si+1) = α ∗ max(Pw)

Pw(k)
+ β ∗ max(BER)

BER(k)
(4)

where k denotes the iteration and max power and BER are
predicted based on history input. At the end of Update, each
state will be randomly visited and Q value (2) will be updated
accordingly. The transition probability P (si, ai, si+1) is also
updated as Nsi (the number of visits to state si ) will increase
after each iteration.

Note that with the prediction of states si as in function Init()
and Update(), the convergence to the optimal solution is
accelerated [16]. This is done at the end of each round with the
random action ai to visit the state si.

3.2 System Models
The prediction of power and BER of I/O communication

channel and their according models are discussed in this part.
The first component of reward function is the I/O
communication power. The system power model includes the
I/O communication power of driver and the TSI T-line power.
Both are the functions of the output voltage-swing Vsi .
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For the CML driver based TSI T-line [21] the I/O
communication power is given by

Pwi =Vsi · (It +
η ∗ Vdd ∗ s

(RD + Zdiff )
∗ f). (5)

where It is driver tail current; s is duration of signal pulse; η is
activity factor; RD is the resistance of driver; and Zdiff is the
characteristic impedance of the TSI T-line.

The tail current It at the current control-cycle is set by analog
design and can be obtained from the measurement. Control-cycle
is defined as the minimum time required for the state transition.
Tail current for the next control-cycle can be predicted for the
next control-cycle by auto-regression (AR)

It(k + 1) =

M−1∑
i=0

wiIt(k − i) + ξ. (6)

Here It(k + 1) is the predicted tail current at k + 1-th
control-cycle; wi denotes the auto-regression coefficient obtained
from autoregressive method; ξ is the prediction error and M
represents the order of the AR prediction. Based on the
predicted tail current, the output voltage-swing Vsi can be
calculated and the I/O communication power for the next
control-cycle can be also calculated as Pwi(k + 1).

The second component of the reward function is the BER of
the I/O communication, which is feedback from the receiver.
The BER depends on the output-voltage swing, external noise,
channel noise etc, [22]. In a wire-line communication system,
BER can be estimated with the dependence on the
voltage-swing as

BERi =
1

2
erfc(

Vsi√
2σv

). (7)

Here, the erfc is complementary error function and σv is the
standard deviation of the noise.

As such, the BER can be obtained from the ECC at the receiver
by counting errors during a period. During the learning process,
based on the BER obtained at the ECC under one output-voltage
swing, σv is estimated from (7) for prediction.

4. ADAPTIVE 2.5D I/O CIRCUIT DESIGN
The overview of adaptive 2.5D I/O circuit design is described

as follows. To achieve high bandwidth by 2.5D TSI single
channel I/O, we employ 8:1 serializer in the transmitter (Tx)
and 1:8 deserializer at the receiver (Rx). Eight digital D
flip-flops followed by a 2:1 MUX is used to serialize data at Tx.
Each of the Tx and Rx has a voltage-controlled-oscillator
(VCO) to generate the required clock signal (2GHz) with 50Ω
resistor. At the Rx, the serial bit stream is sampled and
de-serialized. The received data is re-synchronized by the
recovered clock from the clock-data recovery (CDR) block.

Compared to the traditional serial I/Os by the backplane
PCB trace [2, 3, 4], the 2.5D TSI I/Os do not need the complex
equalizer circuits at the receiver due to the small signal loss in
the short TSI T-line channel. A sampler at the front-end of
receiver is employed to convert the current-mode signals into
digital levels. A delay-locked loop (DLL) based clock-data
recovery (CDR) at receiver is implemented to de-skew the
sampling clocks.

To protect transmitted data from channel loss and noise, data
is encoded and transmitted which can be corrected at receiver.
Here, we encode the data by Hamming code and corresponding
parity bits are transmitted. As shown in Fig. 4, 32-bit parallel
data (D − 32) is initially stored in the output FIFO of the
transmitter. For error detection and correcting purpose, 7 parity
bits are generated by AND and XOR gates with MSB bit as 0.
As such, the total encoded data to be transmitted will be 40-bit
for every 32-bit data.

At the receiver, the first 32-bit of data is stored in the input
FIFO (D− 32 bits); and 7-bit of the last 8-bit (parity) is utilized
for error checking and correction (ECC). The received data is
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Figure 4: Encoding and decoding at transmitter and
receiver

checked through parity checker and left-shifter is used to correct
bit error. As such, BER can be calculated by the number of error
bits detected when compared to the total number of transmitted
data bits over one period. The detected power and BER are
provided as input to the I/O management controller guided by
the reinforcement Q-learning algorithm. The resulting control
bits are used to regulate the DAC currents at the tail of CML
buffer.

Table 2: System settings for logic-memory integration
with TSI I/O

Item Description Value Size

Core
Technology node 65nm

0.3mm2Frequency 500MHz
Power 15mW

I/O controller

Voltage swing 0.1V , 0.15V , 0.2V , 0.3V

0.03mm2Driving current 2mA, 3mA, 4mA, 5mA
Action unit 10mV

Number of levels 4
Switching time 0.4ns

TSI

Length 3mm

3mm2Inductance 300pH
Resistance 5Ω
Capacitance 60fF

Memory
SRAM 16 KB

0.2mm2

Power 6mW

5. SIMULATION RESULTS

5.1 Experiment Setup
The reinforcement Q-learning algorithm for the adaptive 2.5D

TSI I/O control is verified in Cadence Virtuoso
(Ultrasim-Verilog) and Matlab. The flowchart in Fig. 5 reviews
the overall implementation flow. The geometry and technology
are presented in Table 2. An 8-core MIPS microprocessor with
8-bank of SRAM memory is designed with GF 65nm CMOS.
The 2.5D TSI T-line is of length 3mm and 10µm width, driven
by the CML buffer. The power traces are measured from
Cadence Virtuoso and control cycle is set as 1ns, larger than the
switching time of I/O controller. The I/O management
controller is based on the reinforcement Q-learning output to
balance the I/O communication power and BER at receiver.
The look-up-table (LUT) is designed with I/O communication
power and BER are stored for adaptively tuning the
voltage-swing. The LUT is set up as follows: (100mV ,
6.27E − 2mW , 9.12E − 2), (250mV , 3.92E − 1mW , 4.28E − 4),
(350mV , 7.68E − 1mW , 1.53E − 6), and (450mV , 1.27mW ,
9.81E − 10), for filetransfer benchmark. The value is selected
from the average of the output-voltage swing. The power of
output signal will be tracked and power can be predicted from
history power consumption. The average output-voltage swing
therefore can be calculated and status can be set based on fixed
output voltage step.
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Figure 5: Flowchart of reinforcement Q-learning based
self-adaptive voltage swing tuning

With the use of 65nm CMOS process, The overall I/O
performance can provide 76mV − 190mV peak-to-peak signal
swing with 4Gb/s bandwidth, and power consumption is only
12.5mW when implemented in 65nm CMOS process. Around
0.03mm2 area overhead incurs to realize the adaptive self-tuning
of output voltage-swing and a latency of 100 − 200ps for the
additional control circuits. For comparison, we have three
implementations: 1) the I/O without management (normal); 2)
the I/O control by the Q-learning without reinforcement (basic);
and 3) the I/O control by the Q-learning with reinforcement
(proposed). In the following, firstly, the adaptive tuning of the
output voltage-swing with resulting eye-diagrams is presented;
secondly, the reinforcement Q-learning results is presented with
the prediction of the I/O communication power and the BER;
and finally, the power saving and management time as well as
energy efficiency are presented under different benchmarks of
workloads.
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Figure 6: Example of one adaptive tuning procedure

5.2 Adaptive Tuning Results
The experiment of eye-diagram under the control of adaptive

tuning is performed to verify the functionality of the adaptive
I/O circuit tuning. Fig. 7 shows the current consumption under
different levels of the output voltage-swing. The sources of error
are introduced in three stages: stage 1 is to introduce 20% of
clock jitter; stage 2 is to add additional 10% receiver offset; and
stage 3 is to further add additional 10% power supply noise.

Moreover, an example of one adaptive tuning by the
reinforcement Q-learning is shown in Fig. 6. Initially, the
voltage-swing for the next control-cycle is predicted as 344mV
and maximum BER is 1E − 6. The voltage-swing 344mV fits to

the state s4 because of the nearest voltage level. The action will
be selected based on the probability check as in Selection() of
Algorithm 1. As shown in Fig. 6 the red line and red dotted line
indicate the policy-based action selection and probability-based
action selection, respectively. For the probability-based action
selection (red dotted line), a random action is selected to visit
any of the available states. This takes place with high
probability at the starting period to ensure the visit to all the
available states, where its Q-value will be updated accordingly.
Afterwards, the action with maximum Q-value will dominate
and be considered as the optimal action. As Fig. 6 shows,
action a4 is eventually selected leading to the voltage level at
state s2, which is the smallest voltage-level with the BER
requirement satisfied. Afterwards, the new voltage-swing is
assigned based on the state s2 as 320mV . As such, the driver
tail-current is tuned to have the output voltage-swing as
320mV . Lastly, the Reward R(s4, a4, s2) will be updated based
on the feedback of BER and power obtained at Rx.
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Figure 7: The eye-diagrams under adaptive current (or
power) adjustment by output-voltage swing tuning

5.3 BER vs. Power Results
Fig. 8 shows the trade-off between BER (black circle) and the

I/O communication power (blue rectangle). With the increase
in output voltage-swing, BER decreases at the cost of the I/O
communication power, which is validated through 4 benchmarks.
This observation shows that there is a balance point where we
can use less power with the BER guaranteed. Furthermore, as
the sensitivity of power and BER with voltage-swing level are
different for each benchmark, adaptive tuning of the I/O voltage-
swing based on the reinforcement Q-learning can help to achieve
an optimal trade-off of the communication power and BER for
different benchmarks respectively as discussed below.

5.4 Benchmarking Results
The I/O communication power saving is verified for various

SPEC benchmarks [23] in Table 3 by the self-adaptive tuning
using: no Q-learning (normal); the Q-learning without
reinforcement (basic); and the proposed Q-learning with
reinforcement (proposed). It shows that the reinforcement
Q-learning algorithm is more power efficient with faster
convergence. On average, the measured power consumption is
19mW with an energy efficiency of 4.75pJ/bit for the I/O
without the adaptive tuning, which is further reduced to
12.5mW by the reinforcement Q-learning. On average, the
power saving of 18.89% and energy efficiency improvement of
15.11% are achieved by the adaptive tuning based on the
reinforcement Q-learning; and only 12.95% of power and 14% of
energy-efficiency improvement are achieved when using the basic
Q-learning. What is more, on average, the reinforcement
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Table 3: Power and run-time comparisons under various
benchmarks

Benchmark
Communication Power saving Run time(s)
power (mW )

Proposed Basic Normal Proposed Basic Proposed Basic Improvement
ammp 0.231 0.250 0.296 22.11% 15.54% 0.0804 0.1049 23.28%
applus 0.474 0.494 0.555 14.64% 10.99% 0.0817 0.1051 22.25%
apsi 0.652 0.674 0.744 12.34% 9.41% 0.0817 0.1051 22.25%
art 0.199 0.216 0.255 22.01% 15.29% 0.0829 0.1057 21.55%

bzip2 0.210 0.224 0.267 21.19% 16.10% 0.0829 0.1056 21.50%
crafty 0.381 0.419 0.461 17.39% 9.11% 0.0822 0.1061 22.53%
eon 0.234 0.253 0.298 21.32% 15.10% 0.0807 0.1051 23.24%

equake 0.232 0.249 0.295 21.07% 15.59% 0.0821 0.1047 21.60%
facerec 0.333 0.364 0.409 18.53% 11.00% 0.0833 0.1060 21.42%

fft 0.153 0.179 0.199 23.12% 10.05% 0.2002 0.2309 13.30%
file transfer 0.512 0.554 0.598 14.58% 7.36% 0.2057 0.2485 17.22%

fma3d 0.539 0.561 0.623 13.35% 9.95% 0.0850 0.1083 21.51%
galgel 0.241 0.261 0.307 21.56% 14.98% 0.0820 0.1069 23.29%
gap 0.284 0.310 0.355 19.86% 12.68% 0.0808 0.1036 22.01%
gcc 0.507 0.536 0.587 13.60% 8.69% 0.0838 0.1064 21.24%
gzip 0.238 0.257 0.302 21.08% 14.90% 0.0817 0.1051 22.26%
lucas 0.518 0.548 0.602 13.90% 8.97% 0.0818 0.1053 22.32%
mcf 0.248 0.264 0.307 19.41% 14.01% 0.0817 0.1056 22.63%
mesa 0.228 0.243 0.287 20.45% 15.33% 0.0846 0.1065 20.56%
mgrid 0.274 0.297 0.346 20.83% 14.16% 0.0818 0.1051 22.17%
parser 0.429 0.458 0.508 15.43% 9.84% 0.0825 0.1084 23.89%
perlbmk 0.207 0.226 0.266 22.21% 15.04% 0.0822 0.1052 21.86%
sixtrack 0.341 0.357 0.412 17.39% 13.35% 0.0819 0.1065 23.10%
swim 0.242 0.262 0.310 21.82% 15.48% 0.0812 0.1052 22.81%
twolf 0.216 0.235 0.279 22.38% 15.77% 0.0839 0.1037 19.09%
vortex 0.225 0.239 0.288 21.94% 17.01% 0.0832 0.1056 21.21%
vprs 0.240 0.255 0.300 19.96% 15.00% 0.0826 0.1059 22.00 %

wupwise 0.424 0.442 0.502 15.39% 11.95% 0.0836 0.1058 20.98%
Average - - - 18.89 % 12.95% 0.0912 0.1152 20.83%

Q-learning takes 0.091s for convergence, whereas the basic
Q-learning takes 0.115s. The run time has also improved by an
average of 20.83% as shown in Table 3
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Figure 8: Trade-off between BER and power under
various benchmarks: (a) FFT benchmark; (b)
Filetransfer benchmark; (c) bzip2 benchmark; (d) gzip
benchmark;

6. CONCLUSION
In this paper, one reinforcement Q-learning based adaptive

I/O management of multi-level output voltage-swings is
developed for 2.5D TSI I/Os in logic-memory integration. Based
on the predicted I/O communication power and BER from
historical data, the voltage-swing adjustment is formulated as
Markov decision process (MDP) problem and solved by
model-free reinforcement learning under constraints of both
power budget and bit-error-rate (BER). Experimental results
have shown that the reinforcement Q-learning based adaptive
I/O management for one 2.5D TSI I/Os designed in 65nm
CMOS can achieve an average of 12.5mW I/O power, 4GHz
bandwidth and 3.125pJ/bit energy efficiency for one channel
under 10−6 BER, which has 18.89% reduction of power and
15.11% improvement of energy efficiency when compared to the
I/Os with constant output-voltage swing.
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