
Security and Complexity Analysis of LUT-based
Obfuscation: From Blueprint to Reality

Gaurav Kolhe∗, Hadi Mardani Kamali†, Miklesh Naicker‡, Tyler David Sheaves‡,
Hamid Mahmoodi‡, Sai Manoj P D†, Houman Homayoun∗ Setareh Rafatirad†, Avesta Sasan†
∗ Department of Electrical and Computer Engineering, University of California, Davis, CA, USA.
† Department of Electrical and Computer Engineering, George Mason University, VA, USA.

‡ School of Engineering, San Francisco State University, San Francisco, CA, USA.
∗{gskolhe, hhomayoun}@ucdavis.edu †{hmardani, spudukot, srafatir, asasan}@gmu.edu

‡{tsheaves, miklesh1, mahmoodi}@sfsu.edu

Abstract—Recent obfuscation schemes have leveraged recon-
figurable logics to alleviate various hardware security threats.
However, existing reconfigurable logic-based obfuscation schemes
focus on specific design factors such as gate replacement strategy
or an optimization metric such as SAT-hardness. Despite meeting
the focused metrics such as security, the obfuscation also incurs
overheads, which are not well analyzed in the existing works.

In this work, we provide a comprehensive analysis on recon-
figurable logic obfuscation schemes i.e., LUT-based obfuscation
by investigating 3-key design factors such as (1) LUT size, (2)
number of LUTs, and (3) replacement strategy as they have a
considerable impact on design criteria, i.e., Power-Performance-
Area (PPA) and Security (PPA/S). Our results show that among
the studied parameters the size of LUT has the most prominent
impact on improving the resiliency of LUT-based obfuscation
against the SAT and removal attacks. However, using large size
LUTs incur significant PPA overheads, making such solutions
unfeasible and unpractical.

To address this challenge, this work proposes a pragmatic
solution based on a customized LUT, where the security provided
by each LUT is superior to that of traditional LUT-based obfus-
cation. The proposed solution primarily benefits from LUT-based
obfuscation reinforced with additional logic/routing obfuscation
that is implemented using small 2-input LUTs. We evaluate the
hardware security and overhead of the proposed customized
LUT-based obfuscation on various benchmarks to prove that
the customized LUT-based obfuscation breaks the PPA trade-
offs while exhibiting robustness against the SAT and removal
attacks. The customized LUT-based obfuscation comes with 8×
reduced area and 2× reduced power on an average compared
to state-of-the-art LUT-based obfuscation without compromising
security.

I. INTRODUCTION

To minimize the increasing fabrication costs and design
complexity of Integrated Circuits (ICs), many IC design
companies are becoming fabless [1]. Employing third-party
Intellectual Property modules (3PIP) benefits the Intellectual
property (IP) holder by reducing the time-to-market while
cutting down the design flow efforts. Despite the economic
benefits, this trend poses significant challenges to hardware
security in numerous forms [2]–[5].

To thwart the prevalent security threats, many hardware
design-for-trust techniques have been introduced such as split
manufacturing [6], [7], IC camouflaging [8], and logic locking
[9]. Among multiple aforementioned techniques, logic locking
can thwart the majority of the attacks at various phases in

the IC Production chain [10]. This is because logic locking
requires the correct keys to unlock the true functionality of
the design. Additionally, as a part of the post-manufacturing
process, the activation of IC (i.e., providing correct keys) will
be accomplished in a trusted regime to hide the functionality
from the untrusted foundry and other attacks.

Although logic locking schemes enhance the security of
the IP, the advent of Boolean satisfiability (SAT) based attack
[11] [12], as an “oracle-guided” threat model, shows that by
applying a few stimuli to the design and analyzing the output,
the key value and functionality of an IC could be extracted in
the order of a few minutes.

To overcome the security threats posed by the SAT attacks
[13], numerous SAT resilient logic locking techniques [14]–
[17] have been proposed. However, many of these techniques
are vulnerable to other RE threats such as removal and Satisfi-
ability Modulo Theory (SMT) attacks [13], [18], [19]. Among
the proposed logic locking schemes, some recent obfuscation
methods [20]–[28] focus on using configurable barriers, such
as Look-Up-Tables (LUTs), as a key-programmable logic to
achieve resiliency against state-of-the-art attacks.

In this work, we first study the existing reconfigurable
logic obfuscation schemes and discuss their strengths and
weaknesses against the SAT attacks and the corresponding
overheads. We find that, most of the previously proposed
obfuscation techniques remain vulnerable to the SAT attack
when executed for a sufficient amount of time [11]. Among the
previously proposed reconfigurable logic obfuscation schemes,
we investigate LUT-based obfuscation and observe that in the
LUT-based obfuscation, utilizing large-size LUTs guarantees
the security against state-of-the-art SAT attacks, but at the cost
of significant area-power overheads. To make the LUT obfus-
cation a practically viable solution, we need to radically reduce
the design overheads without compromising on the security
aspect. Unfortunately, these two goals are contradictory, as
reducing the size of LUT helps in mitigating the design over-
heads, but, significantly compromises the security. To address
these challenges, we propose a pragmatic customized LUT
design that not only benefits from the configurable barriers
for obfuscation but also mitigates the incurred area and power
overheads without sacrificing the security. The customized
LUT replaces the fairly large LUT with a blend of two LUTs,

which is arranged in a way that 2-input LUTs are preceded by
a large LUT, thus, small LUTs provide routing obfuscation,
while the large LUT primarily provides logic obfuscation.
This combination of these two obfuscation techniques assists
in elevating security provided by logic obfuscation while
concurrently reducing the design overheads.

The proposed customized LUT-based obfuscation is rigor-
ously tested for various metrics such as power, performance,
area, and particularly security on different benchmarks such as
AES, which are representative in terms of size and complexity
of real-world designs. The main contributions of this work are
outlined as follows:

• Study existing reconfigurable obfuscation techniques:
We study the existing reconfigurable obfuscation tech-
niques and discuss their limitations for practical imple-
mentation. LUT-based obfuscation is further investigated
using three parameters: (1) LUT size, (2) number of
LUTs, and (3) replacement strategy, as they have a
considerable impact on design criteria.

• Increasing the size of LUTs (scale-up) as the most
important factor for SAT Resiliency: To address the
design security using LUT-based obfuscation we show
that size of the LUT is the crucial element in guaranteeing
security against state-of-the-art SAT attacks but comes at
the cost of hefty overheads, which makes the LUT-based
obfuscation an idealistic method for obfuscation.

• Proposed Pragmatic Customized LUT: As a practical
solution to implement LUT-based obfuscation, we pro-
pose a customized LUT that breaks the design overhead
and security trade-offs, whereas recent works are opti-
mized for either security or power, performance, and area.

II. LOGIC OBFUSCATION AND SAT ATTACK

A. Logic Obfuscation
In logic obfuscation, the functionality of the design is

concealed by inserting additional logic gates including key-
programmable XOR/XNOR gates, key-programmable MUXes
for interconnections, avoiding netlist extraction after de-
layering by introducing ambiguity. The strength of tradi-
tional logic obfuscation is based on the location of the in-
serted/replaced gates [9], [29], [30]. Traditional attacks, such
as justification/sensitization [31] try to RE the design using
heuristic techniques and Automatic Test Generation Pattern
(ATPG) based approaches to extract the keys.

B. SAT Attack
To retrieve the keys, SAT attack [11] iteratively eliminates

the incorrect keys based on specific input patterns, called
Distinguished Input Patterns (DIPs). DIP is an input that
produces two different outputs for two different keys. By
iteratively finding the DIPs, SAT attack can eliminate all
incorrect keys within a range of few seconds to minutes, even
for large circuits. At each iteration and after finding a DIP,
a new constraint is added to the satisfiability problem posed
on the SAT solver, until it can no longer find a satisfying
assignment. At this point, any key that satisfies all previously
found DIPs, is considered as the correct key for the obfuscated
circuit.

C. Post-SAT Obfuscation and Challenges
All logic locking and camouflaging algorithms after SAT

attack try to increase the number of iterations needed for
finding the correct key in the SAT attack. Most of them
concentrate on decreasing the size of wrong key elimination
in each iteration to maximize the number of iterations and
consequently exponentially increase the SAT attack execution
time. SARLock [14], Anti-SAT [15], and SFLL-HD0 [32]
are the state-of-the-art approaches with a common goal of
increasing the number of iterations exponentially. Also, some
obfuscation schemes are based on adding cycles in the circuit,
especially stateful/oscillating cycles [33], [34]. When the SAT
attack encounters these cycles, two states can happen: (1)
The SAT solver returns wrong key or (2) The SAT solver
will be stuck in an infinite loop. In fact, the SAT solver
cannot extract the correct key in cyclic-based approaches with
stateful/oscillating cycles. However, CycSAT, SMT-Solver, and
SRCLock [19], [34], [35] show that by considering some con-
ditions and having some pre-processing, cyclic-based schemes
can be decrypted. This motivates the research community
to build a comprehensive obfuscation scheme robust against
different hardware threats.

III. INVESTIGATION ON LUT-BASED OBFUSCATION

A plethora of work have focused on utilizing reconfigurable
logic such as LUT-based obfuscation as a defense against
reverse engineering (RE) attacks [20]–[28]. In LUT-based
obfuscation, the design is partially mapped to LUTs, for
example, if a 2-input AND gate has to be obfuscated using
LUT of size 2, one can set the configuration bits of the LUT
to ‘0001’ as per the truth table of the AND gate. The partial
mapping of the circuit results in a design implementation that
is a hybrid of custom (ASIC) and programmable (FPGA)
styles. Besides, reconfigurable bits can be stored in non-
volatile memory (NVM) such as magnetic tunnel junction
(MTJ). These, stored bits are highly susceptible to be lost
during RE de-layering process. With the incorrectly configured
LUT block, the design will remain unintelligible, which will
refrain the attacker from understanding the functionality of the
design. Figure 1 shows the LUT-based obfuscation.

From the SAT attack perspective, to model the LUT-based
obfuscation, each LUT is substituted with a (2+)-level MUX.
The work in [11] has shown that many of the reconfigurable
schemes such as [20]–[23], [30] are vulnerable to the SAT
attacks. To thwart the SAT attacks recent works such as [27]
focuses SAT resiliency, however with no investigations on PPA

i1
i2

i5

xor22

o1

i8

i7

i6
xor21

or21 nor21

nand21

nand31

nand21

(a)

i1
i2

i5

xor21

o1

i8

i7

i6
xor22

or21

nand21

and21K4,1|15..0

16

LUT41

K4,2|15..0

LUT42

w'1

w'2

w'3

(b)

Fig. 1: Using Enlarged LUTs for obfuscation, (a) A Sample Circuit, (b)
Obfuscation with LUTs.

overheads, while the work in [26] fails to acknowledge the
resiliency of their solution against the SAT attack. One can
model the reconfigurable blocks proposed in previous works
using LUT of size 2 for the SAT attack modeling, as LUT of
size 2 can render all the functions realized by reconfigurable
blocks proposed in [24]–[27].

Figure 2 shows the resiliency of the LUT obfuscation by
leveraging LUT of size 2 against the SAT attack. Various
benchmarks are obfuscated with from 5% up to 35% using
LUT of size 2. It can be observed that irrespective of the
benchmark, the SAT attack can reverse engineer the design in
less than 5 days. It needs to be noted that obfuscating 35%
of the circuit isn’t a viable solution, as it adds an enormous
amount of overhead. Therefore, traditional LUT-based obfus-
cation techniques wouldn’t cater to providing resiliency.

When using the LUT with size n to replace a gate, each
n-input LUT can provide all 22

n

possible functions, which
increases the key length along with the search space to find
the correct key configuration for LUT. However, increasing
the size of large LUTs impose large area and performance
overheads. Therefore, the trade-off to address is (1) using large
LUT size while obfuscating less number of gates or (2) using
small LUT size while obfuscating a large number of gates
to enhance the attack resiliency. Therefore, in this work, we
perform a large design-for-security space exploration for LUT-
based obfuscation using three key factors namely (1) LUT size,
(2) number of LUTs, and (3) replacement strategy.

A. Replacement Strategies

The strength of obfuscation is also dependent on the location
of the gate(s) that are obfuscated i.e., replacement strategy. We
discuss a few replacement policies below.

1) Random Selection (RND): As the baseline replace-
ment strategy, we implement random selection/replacement,
as opposed to the independent selection in [21]. As the name
implies, the gates are selected randomly.

2) Low Output Corruptibility (LC): As mentioned pre-
viously, the SAT attack works on the concept of Conflict-
Driven Clause Learning (CDCL). In CDCL, the SAT attack
searches for the conflict clauses to make the cut-off for
learning clauses. Finding the conflict clauses depends on the

1E+1 1E+2 1E+3 1E+4 1E+5 1E+6

C2670

C7552

B12

FIR

IIR

AES

DES

B
en

ch
m

ar
k

s
ar

ra
n

ge
d

ac
co

rd
in

g
to

 g
at

e
co

un
t

Maximum
Time Out

SAT Execution Time (Sec)

Obfuscation Coverage

Fig. 2: SAT Attack Execution Time on various benchmarks obfuscated using
LUT size 2, while obfuscation coverage is varied from 5% to 35%.

1E-1

1E1

1E3

1E5

2 3 4 5 6 7 8

SA
T

 E
xe

cu
ti

on
 (

Se
c)

LUT Size

1% RND
2% RND
3% RND
1% LC
2% LC
3% LC
1% LCNoGen
2% LCNoGen
3% LCNoGen

The Impact of Less
Corruptibility

The Impact of
No Correct
Key Generation

Maximum Time Out

Fig. 3: SAT Attack Execution Time for Different (1) Replacement Strategy,
(2) LUT Size (scale up), and (3) Number of LUTs (scale out) in ISCAS-85
c7552.

comparison between two different outputs for two different
keys. Consequently, the higher the hamming distance of two
outputs, finding the DIP is less complex. If obfuscation
strategy influences different outputs by applying each input,
the probability of hamming distance > 1 will be increased
drastically, which leads to faster de-obfuscation. Therefore,
the higher the corruptibility, the easier de-obfuscation by the
SAT attack is. Therfore, the optimal solution is to minimize
the hamming distance to 1.

To have the lowest output corruptibility, one needs to
employ a custom Breadth-First Search (BFS) on the logic
design based to find the set of logic gates that have the lowest
corruption metric.

3) Avoiding Unintentionally Correct Key Generation
(LC_NoGen): Due to the capability of LUTs for implement-
ing all 22

n

possibilities for a LUT of size n, connecting
LUTs directly may generate some additional correct keys. This
scenario provides additional options for the SAT solver to find
the key, which results in diminishing execution time of the
SAT solver. Also, increasing the number of LUTs which are di-
rectly connected significantly increases the number of correct
possibilities in design. As a simple example, connecting two
inverters directly has the same functionality as connecting two
buffers back to back. Hence, since previous work uses a large
number of gates to be replaced with LUTs, the probability of
choosing directly connected gates are extremely high.

Figure 3 illustrates the overall impact of the three key design
factors on execution time. As it can be seen, even for random
insertion strategy, for LUT size larger than 8, obfuscating ∼1%
of each circuit is sufficient to provide SAT resiliency. Further,
it is evident that LC_NoGen, which has both conditions
considered in replacement strategy, remarkably increases the
SAT execution time, which shows its effectiveness on SAT
resiliency. However, increasing the size of LUTs significantly
increases the hardness of obfuscation regardless of the replace-
ment strategy and the number of LUTs obfuscated.

B. LUT Size versus Number of LUTs
One of the straightforward approaches for LUT-based ob-

fuscation is to either increase the number or the size of LUTs
to enhance the security against the SAT attack(s). For example,
instead of using a LUTn for the n-input gate, a LUTn+ (i.e.,
LUTn + 1, LUTn + 2,...) is used. When LUTs are replaced
by MUXs for SAT modeling leads to a log2(n)-level MUX-
based structure. Thus, by increasing the size of the LUTs,
the SAT attack replaces them with more deeper MUX trees,
and consequently, the de-obfuscation time gets exponentially

1E-1

1E0

1E1

1E2

1E3

1E4

1E5

0 20 40 60 80 100 120 140

S
A

T
 E

xe
cu

ti
on

 T
im

e
(S

ec
)

of LUTs

LUT2 LUT3 LUT4 LUT5 LUT6 LUT7 LUT8

LUT9 LUT10 LUT11 LUT12 LUT13 LUT14

Maximum Time Out

160

Fig. 4: SAT Attack Execution Time on Synthesized ISCAS-85 c7552 with Different Number of LUTs and Different LUT Sizes.

longer to exploit the value of keys for LUTs, making large
LUT resilient against the SAT attack.

1

10

100

1000

1

10

100

1000

1 10 100 1000

N
or

m
al

iz
ed

 P
ow

er
 (

R
es

il
ie

nt
)

N
or

m
al

iz
ed

 P
ow

er
 (

N
on

-R
es

ili
en

t)

Normalized Area

Non-Resilient
Resilient

Fig. 5: Normalized area and power overhead of LUT-based obfuscation.
Instances that result in the SAT execution time out are marked as SAT resilient
configuration.

Additionally, the SAT attack work based on the cconcept
of Conflict-Driven Clause Learning (CDCL) for finding DIPs
[14]. Due to the symmetric structure of the MUX tree model,
there is no shortleaf in the equivalent logic to find the cut-
off (conflicts) in the logic tree. Due to the virtue of this,
enlarging the size of LUTs (scale-up) increases the depth of
this symmetric tree which makes it harder against the SAT
solver to find conflicts.

Figure 1 shows an example of using large-sized LUTs in
the design. As it can be seen, two 2-input NOR gate (nor21)
and 3-input NAND gates (nand31) are substituted by LUT4.
Using larger LUTs provide some extra input for each LUT,
called dummy inputs. For example, LUT41 and LUT42 have 2
and 1 extra inputs, respectively. Although different assignment
strategies can be applied and evaluated for feeding these extra
inputs, to acquire the most secure solution, we arbitrarily fed
these inputs from the intermediate wires.

Figure 4 demonstrates the SAT execution time with more
details on ISCAS-85 C7552 for different size of LUTs, and

different number of LUTs using the replacement strategy
LC_NoGen. This experiment shows that using larger sizes of
LUT provides higher SAT resiliency than obfuscating a higher
number of gates with smaller sizes of LUTs. For instance, only
replacing a single gate with a LUT13 is sufficient to make the
design perfectly resilient against the SAT attack.

Although our evaluations from Figure 4 show that LUT
scale-up is the most straightforward approach for LUT-based
obfuscation for yielding high resiliency against state-of-the-
art attacks, Figure 5 shows that precipitous increase in the
number and the size of LUT can render inefficient solutions.
Every possible combination from Figure 4 is synthesized using
Synopsys Design Compiler to obtain area and power overhead
which are plotted in Figure 5. In this example, we consider
the design to be resilient to the SAT attack if the execution
results in time out. It can be observed that securing design
for more than 5 days using LUT obfuscation, incurs at least
10x area and power overhead, making LUT-obfuscation an
idealistic solution for hardware security.

Therefore, to make LUT obfuscation as a realistic solution
one needs to 1) radically reduce the design overhead, and 2) do
not compromise the security against various attacks. Unfortu-
nately, the results show that these two goals are contradictory
to the discussed LUT-based obfuscation. To reduce the design
overhead, one can reduce the size of LUT, however, this will
significantly compromise the security. To address the design
overhead, in the following section, we propose a customized
LUT design.

IV. PROPOSED CUSTOMIZED LUT

To reduce the design overhead, we need to break the trade-
off between the security offered by the LUT and the design
overhead. In the proposed solution, we leverage a 2-input LUT
(LUT2) which is preceded by a large LUT as shown in Figure
6, where the LUT2 can be used for routing obfuscation or
logical obfuscation, while the other larger LUT is primarily
used for logical obfuscation. If security grows at a higher rate
than the incurred overhead, then replacing few gates with large
LUTs can realize the proposed solution a viable means of
hardware security.

When a large LUT is used for obfuscation, besides creating
larger key search space, it also creates the SAT-hard instance.

When a netlist is converted to the bench format for the SAT
attack simulation, the LUTs that are used for obfuscation can
be represented using the MUXes as discussed in Section III.
In the SAT solver, the clause to variable ratio is one of the
important metrics for qualitatively evaluating the complexity
of the problem. For example, a SAT-instance to be proven
as SAT-hard, the clause to variable ratio needs to be around
4.2 [17]. However, when the clauses are short, there are
many satisfying assignments and the clauses are said to be
under-constrained. On the other hand, long clauses are over-
constrained (contradictions can often be easily found), facil-
itating determining a large number of DIPs. The SAT solver
uses the DPLL (Davis Putnam Logemann Loveland) method
for backtracking, and with an increasing ratio of clauses to
the variable, the computational cost of DPLL calls decreases
monotonically. When LUT is represented using the MUX in
the bench format, it has 4 clauses. By leveraging the LUTs
for obfuscation, it assists in averaging clause/variable ratio
in the Conjunctive Normal Form (CNF) to 4. Furthermore,
symmetric problems pose a great difficulty to the SAT solver
in finding a solution [17]. To further aggravate the security
offered by traditional LUT, we add extra LUTs at the select
line of large LUT. The scenario can be visualized as the
addition of MUX-tree by LUT2 to the existing MUX-tree
of Large LUT. The resulting customized block benefits from
both LUT and routing obfuscation. As the LUT is a fully
reconfigurable logical block, by addition of a 2-input LUT
increases the number of ways large LUT can be configured,
which significantly increases the key search space. For the
customized LUT to function as intended, the LUT2 needs to
be configured correctly, followed by the larger LUT, which
adds additional constraints in finding the keys. All these
factors altogether help in elevating the security offered by the
customized LUT.

We leverage the proposed algorithm LC_NoGen for gate
replacement which adds an extra layer of resiliency to the
customized LUT solution. From figure 6, we can see the
process of obfuscation using customized LUT. From previ-
ous experiment, for C7552 design to be SAT resilient gates
are identified and replaced using LUT8 in traditional LUT
obfuscation, whereas, in the customized LUT, the gate can
be mapped to the combination of LUT2 and LUTn such
that n < 8 where n is the size of LUT. Therefore we
compare proposed LUT obfuscation against traditional LUT
obfuscation with size 8.

In proposed LUT obfuscation we map the gate which is
selected for obfuscation to the large LUT. This large LUT is
accompanied by extra 2-input LUT which are placed in front
of the large LUT. Previously if the single gate was mapped
to LUT8, using customized LUT we can map the gate to
LUT4, and 4-inputs of LUT4 can be driven using 4 LUT2.
This customized LUT will require 8 inputs among which few
can be driven using dummy inputs. Using LUT4 and 4 LUT2

for obfuscation, we can have 4 × 22
2 × 22

4

configurations.
Replacing a single gate with such a bigger LUT leaves a

place for further research of mapping additional gates to the
LUT such that PPA overhead can be mitigated. However, we

(b) (a)

PI: Primary Input PO: Primary Output

W2

W3
D1
D2
D3
D4
D5
D6

LUT
Size
8

W3

W2

D1

D2
D3

D4
D5

D6

LUT
Size
4

LUT
2

LUT
2

W1

LUT
2

LUT
2

PI1
PI2

PI3
PI4

PI5

PI6
PI7

PO1

W3

W2

W1

NS

Not Selected for
replacement

W1

D1 D6: Dummy Wire

Fig. 6: Gate replacement using (a) traditional LUT of size 8, (b) customized
LUT with LUT size 4 and 4: 2-input LUT, Marked gates are selected for
obfuscation using Algorithm. LC_NoGen

still show that even mapping a single gate to such large LUT
makes the customized LUT obfuscation a practical solution
in the hardware security domain. In this example, we show
that the large LUT8 is replaced by LUT4 with 4 2-input LUT,
however, we are not limited to this single configuration. We
can use the configuration such as LUT6 with 6 2-input LUT.

A. ASIC Iterative Security-driven Design Flow

As NVM based spin-transfer torque (STT) MTJ-based
LUTs have shown higher PPA efficiency [21], we consider
STT-based LUT instead of SRAM based LUT for the purpose
of obfuscation in this work, because STT technology not
only can provide incredible features like (1) higher integration
density than SRAMs, (2) high endurance and retention time,
(3) near-zero leakage, and (4) soft error resilience, it is also
highly integrative in the CMOS fabrication process [21]. Ad-
ditionally,it provides on-die re-configurability which enables
to achieve high performance. The STT-LUT is defined as a
Verilog module in which it has instances of the MTJ-Latch
(or NV-latch) cell and the RTL code of the multiplexer. The
proposed logic obfuscation needs gate level netlist. The result
of the obfuscation is a new netlist in which identified gates for
logic obfuscation are replaced with NV-LUTs. Since the NV-
LUTs are firm macros that contain RTL code of a MUX, the
netlist with NV-LUT inserted needs to be re-synthesized and
optimized, given their impact on timing constraint. In order
to obtain the best PPA results as well as SAT resiliency, we
introduce an iterative-based design flow.

Figure 7 shows the proposed iterative security-driven ASIC
design flow optimization. The logic library of the NV-latch
is used in the re-synthesizing step and the multiplexer of the
LUTs and the rest of the netlist is further re-optimized to meet

RTL

Logic

Synthesis

Netlist

Physical

Design

GDSII

Gate

Selection

STT-LUT

Replacemnt

Re-

synthesis

NV (MTj)

Latches

Library

Iterative

Fig. 7: Iterative-based Security-driven Design Flow with Maximizing PPA
optimization with the best security solution.

the original timing. This involves executing the gate selection
algorithm such that the obfuscated LUT is not the part of
critical path. Therefore, the gate selection, replacement and
re-synthesis processes need to be iteratively performed until
the PPA constraints, as well as the security constraints, are
satisfied1. Also, the iterative flow involves altering the size of
the customized LUT and the number of gates to obfuscate.

As discussed earlier, leveraging large LUT size, adds an
enormous amount of PPA overheads, however, its resiliency
is far superior to that of the traditional LUT obfuscation.
Since the security per PPA overhead of customized LUT
rendered by leveraging LUTn is greater than security rendered
by traditional LUT obfuscation with LUTn, we can afford
to replace less number of gates with Large LUT sizes in
customized LUT-based solution to create resiliency with per-
missible overheads. After meeting the timing and area/power
constraints and security requirements, the physical design
would be manufactured. The iterative flow largely benefits
from Design-space-exploration and adds additional overhead,
but guarantees optimal design configuration. While for our
studied circuit benchmarks, less than 4 levels of iteration were
found to be sufficient to meet security and design parameter
constraints, for large circuits more iterations might be required,
which leaves further scope for the research.

V. EXPERIMENTAL EVALUATION

A. Experimental Setup

In order to demonstrate the efficacy of the proposed LUT-
based obfuscation, we used a cluster computing environment
which has 53 Dell computing nodes, each with dual Intel
Xeon CPUs. The total number of cores ranging from 16 to
24 with RAM varying from 64GB to 512GB. The jobs can
be run 5 days without interruption, which is the reason time-
out states have been set to 5 days. We employed benchmarks
from different sources for evaluation, illustrated in Table I.
The selected benchmarks comprises of the circuit that are
representative of the real world IPs. For security evaluation,
we employed recently proposed SAT attack i.e. SMT-attack
[19], which is super-set of the SAT attack. It uses one or more
theory solvers in addition to its internal SAT solver. For this

1gray part in Figure 7 is iterative to obtain the best result.

TABLE I: Benchmarks used for Experimentation.

Circuit c2670 c7552 b12 AES FIR IIR DES
#Gates 430 1296 2780 9511 14971 17054 25450
Source ISCAS’85 ISCAS’85 ISCAS’89 OpenCores CEP CEP OpenCores

reason, it is capable of modeling far more complex behaviors
and could formulate much stronger attacks.

We comprehensively measure and explore the SMT solver
execution time by sweeping the size of large LUT in
customized-LUT from 4 to 7 to demonstrate the impact of
customized LUT for security design.

According to the security-driven PPA optimization, the
benchmarks are first synthesized in Synopsys generic 28nm
technology using Synopsys’ Design Compiler. After the first
synthesis and determining different solutions based on replace-
ment strategy, an iterative-based re-synthesis finds the optimal
solution that satisfies the timing and security constraints. Using
the ASIC Iterative Security-driven Design Flow, the delay
overhead can be eliminated for both traditional LUT-based
obfuscation and proposed solution and hence only area and
power overhead are discussed in fine granularity.

B. Security Analysis against the SAT-based Attack

Figure 8(a) shows the Design space exploration for bench-
mark C7552 by leveraging proposed obfuscation2. The most
significant observation is that the resiliency provided by tra-
ditional obfuscation by using 14 LUTs with size 8 can be
achieved using small LUT size and number. Replacing 2 gates
with 7-LUT2 preceded by LUT7 and replacing 6 gates with
6-LUT2 preceded by LUT6 renders the obfuscation resiliency
to create a time-out scenario. Hence, we can conclude that
the resiliency provided by customized LUT with size 6 and 7
is greater than the traditional LUT with size 8. When using
LUT size 4 and 5 for the proposed obfuscation, we need
to obfuscate more gates to achieve time-out states. Hence,
for proposed custom LUT-based obfuscation scaling up LUTs
(increasing the size of LUTs used for obfuscation) is beneficial
in rendering higher resiliency. On the other hand, customized
LUT obfuscation using LUT 4 and 5 nevertheless, provides
higher security per PPA overhead than leveraging obfuscation
using traditional LUT of size 8. It is worth noting that
both instances of obfuscation render SMT-attack timeout, thus
resulting in the same level of resiliency, however, Figure 8(b)
shows that obfuscating 14 gates with customized LUT using
size 4 adds 3.58x overhead compared to 14.76x overhead
added by traditional LUT. One may argue that the SAT results
are bounded by 5 day execution time, however, it is evident
that, customized LUT can yield higher security compared to
traditional LUT at the cost of lower PPA overheads.

Also from Figure 8(b), it can be noted that for all the cases
of customized LUT obfuscation, the normalized power and
area overhead is smaller than that of the traditional obfuscation
using LUT8. We can also observe that leveraging LUT7

for customized LUT occurs less PPA overhead than other
LUT sizes. Using a small number of large LUTs render
maximum resiliency in case of proposed LUT solution, as

2LUTm + n:LUT2 represents Customized LUT where n LUTs of size 2 is
preceded by LUTm, where LUTm represents LUT of size m.

0x

1x

2x

3x

4x

5x Traditional LUT

C2670 C7552 B12 FIR IIR AES DES
Benchmarks arranged according to gate count

N
or

m
al

iz
ed

 P
ow

er
 O

ve
rh

ea
d

Proposed LUT

(a)

0x

5x

10x

15x

20x

25x Traditional LUT

C2670 C7552 B12 FIR IIR AES DES
Benchmarks arranged according to gate count

N
or

m
al

iz
ed

 A
re

a
O

ve
rh

ea
d

Proposed LUT

(b)

1E0

1E1

1E2

1E3

1E4

1E5

1E6

1 2 3 4 5 6 7 8 9 10 11 12 13 14

LUT4 + 4:LUT2

LUT5 + 5:LUT2

LUT6 + 6:LUT2

LUT7 + 7:LUT2

LUT8

SA
T

 E
xe

cu
ti

on
 T

im
e

(S
ec

)

number of LUTs

Maximum Time Out

(a)

3.583.954.57

2.78

14.76

0x

2x

4x

6x

8x

10x

12x

14x

16x

1 2 3 4 5 6 7 8 9 10 11 12 13 14

LUT4 + 4:LUT2

LUT5 + 5:LUT2

LUT6 + 6:LUT2

LUT7 + 7:LUT2

LUT8

N
or

m
al

iz
ed

 P
P

A
 O

ve
rh

ea
d

number of LUTs
(b)

Fig. 8: Comparison of traditional LUT-based obfuscation with LUT8 against customized LUT-based obfuscation. The size of LUT in customized LUT is
varied from 4 to 7. Figure (a) shows the SAT execution time whereas Figure (b) shows the normalized PPA overhead, both as the function of LUT size and
number of gates replaced. The aim of the experiment is to have a obfuscation configuration that maximizes SAT resiliency with minimal overheads.

3
5

9
12

2
3

6 71
2

4
106

105

104

103

102

101

100

K = 110 K = 160 K = 360 K = 400
KEY SIZE

D
e-

ob
fu

sc
at

io
n

 ti
m

e
in

 s
ec

on
ds

LUT4 + 4:LUT2 LUT5 + 5:LUT2 LUT6 + 6:LUT2

Fig. 9: SMT solver de-obfuscation time as a function of the size and the
number of LUTs being used in customized LUT obfuscation. Number of
LUTs to be replaced are constrained by the key size and PPA overhead. The
Number of gates replaced is denoted by the number above the bar.

the SAT resiliency provided by each individual customized
LUT is superior compared to traditional LUT.

Figure 9 also demonstrates a similar effect. The number
of key bits is the number of fuses that are required to store
the configuration bits of the LUT. The increased number
of fuses results in increased overheads. Hence, by keeping
the constraint on the key size imposes the constraint on the
overhead. By adding the constraint on the key size, the size
and number of LUTs that can be used for obfuscation is also
constrained. We obfuscate ’AES’ benchmark while keeping
the key lengths restricted to 110, 160, 360 and 400 bits
respectively. The number of gates that were replaced is shown
on the top of the bar. In each run of the SMT-solver, it can
be observed that using less number of large LUT sizes for
obfuscation, provided better resiliency than using small LUT
sizes in large measures for obfuscation. Only by using 4 LUTs
of size 6, we encounter the time-out, which is more than
leveraging 12 LUTs of size 4 for obfuscation. This is due to the
virtue of the stronger resiliency created by utilizing the large
LUT sizes. While the key sizes are equal, the overhead added
in each case are roughly equal, however, the security provided
by large LUT size is evident. Therefore, it can be concluded
that security grows at a higher rate than the added overhead, or
the additional security comes with lower PPA overheads and
the trade-off between security and design overhead is mitigated
in the proposed LUT.

Figure 10 shows the Power and Area overhead for the differ-
ent benchmarks using proposed LUT of size 7. The overheads
are compared against the traditional obfuscation using LUT
size 8, as we observe that from Figure 3 using LUT8 for
any replacement strategy rendered time-out instances of SMT-
execution. The sufficient number of gates are encrypted such
as to meet the time-out condition. It can be observed that the
8x and 2x average reductions in area and power overheads on
average compared to traditional LUT-based obfuscation. The
overheads are inclusive of all the wiring/routing overhead. One
may argue that for circuits such as C7552 the incurred area
overheads that are still high i.e. (2x), however the circuit size
of the C7552 is small (only 1290 gates), therefore the overhead
added by the LUTs is significant. However, with large and
more practical circuits like AES, DES which are representative
of real-world IPs, demonstrates that the overhead added by the
proposed LUT-based obfuscation is small and justifiable (∼1x)
which renders this technique a practical solution for rendering
SAT resilient designs. It is also important to note that the
obfuscated circuit is normally a small part of a larger millions
or billions gates design.

C. Resiliency to Other Attacks
The proposed customized LUT-based obfuscation is also

resilient to the removal attacks. One cannot remove the LUT
or MUX as removing them can strip the functionality of the
circuit. The layout of the LUT is visually similar and nothing
can be inferred by visual inspection. Though the Electron
Microscopy (EM) can be applied for read-out data during run-
time, the technology is currently not mature enough to reverse
engineer the switching elements [24].

ACKNOLEDGEMENT

This work was funded by Defense Advanced Research
Projects Agency (DARPA-AFRL, #FA8650-18-1-7819).

VI. CONCLUSIONS

In this work, we studied the logic locking by means of using
reconfigurable logic, and performed comprehensive analysis
of LUT-based obfuscation. Our experimental results show
that the size of LUT is the most influential and straight-
forward factor in SAT resiliency, however, it introduces sig-
nificant and unacceptable PPA overheads. To mitigate the

0x

1x

2x

3x

4x

5x Traditional LUT

C2670 C7552 B12 FIR IIR AES DES
Benchmarks arranged according to gate count

N
or

m
al

iz
ed

 P
ow

er
 O

ve
rh

ea
d

Proposed LUT

(a)

0x

5x

10x

15x

20x

25x Traditional LUT

C2670 C7552 B12 FIR IIR AES DES
Benchmarks arranged according to gate count

N
or

m
al

iz
ed

 A
re

a
O

ve
rh

ea
d

Proposed LUT

(b)

Fig. 10: Comparison of (a)Power, (b) Area overhead in Traditional LUT obfuscation with LUT size 8 and Proposed LUT Obfuscation with LUT size 7. The
number of gates is chosen such that each of the obfuscated instance results in SMT execution time-out. The added overhead in case of Proposed LUT is less
as each of the gate replaced using proposed LUT renders higher resiliency compared to that of the traditional LUT thus requiring few gates to be obfuscated
resulting in lower PPA overheads.

overhead occurred due to the large LUT sizes, we introduce
a customized LUT that breaks the trade-off between security
and the design overheads. The introduced obfuscation using
proposed custom LUT reduces the design overhead to an
acceptable range without compromising the SAT resiliency.
The obtained PPA results indicate that, for today’s state-of-
the-art attacks, our proposed obfuscation solution, that uses
the novel and customized LUT introduced in this work, is
an effective solution for meeting the security and resiliency
requirements while keeping the PPA overhead of the design in
check. We have illustrated that our solution resists both SMT-
based and removal attacks. To further mitigate the overhead,
further research can be focused on mapping more gates to the
LUT and enhancing the dummy wire selection strategies.

REFERENCES

[1] U.S.D. Of Defense. (2005) Defense Science Board Task Force
on High Performance Microchip Supply. [Online]. Available:
www.acq.osd.mil/dsb/reports/2000s/ADA435563.pdf,

[2] R. Karri et al., “Trustworthy Hardware: Identifying and Classifying
Hardware Trojans,” Computer, vol. 43, no. 10, pp. 39–46, 2010.

[3] M. Rostami et al., “A Primer on Hardware Security: Models, Methods,
and Metrics,” Proc. of the IEEE, vol. 102, no. 8, pp. 1283–1295, 2014.

[4] Sai Manoj P D et al., “Adversarial attack on microarchitectural events
based malware detectors,” in Design Automation Conf., 2019.

[5] Brasser Ferdinand et al., “Advances and throwbacks in hardware-assisted
security: Special session,” in Int. Conf. on Compilers, Architecture and
Synthesis for Embedded Systems, 2018.

[6] J. Rajendran et. al, “Is Split Manufacturing Secure?” in Design, Automa-
tion Test in Europe Conf. Exhibition (DATE), 2013, pp. 1259–1264.

[7] K. Z. Azar et al., “COMA: Communication and Obfuscation Manage-
ment Architecture,” in Int’l Symp. on Research in Attacks, Intrusions
and Defenses (RAID), 2019, pp. 1–13.

[8] R. P. Cocchi et al., “Circuit Camouflage Integration for Hardware IP
Protection,” in Design Automation Conf. (DAC), 2014, pp. 1–5.

[9] J. A. Roy et al., “Ending Piracy of Integrated Circuits,” Computer,
vol. 43, no. 10, pp. 30–38, 2010.

[10] M. Yasin et al., “On Improving the Security of Logic Locking,” vol. 35,
no. 9, pp. 1411–1424, 2016.

[11] P. Subramanyan et al., “Evaluating the Security of Logic Encryption
Algorithms,” in Int’l Symp. on Hardware Oriented Security and Trust
(HOST), 2015, pp. 137–143.

[12] S. Roshanisefat and et al., “Benchmarking the capabilities and limita-
tions of SAT solvers in defeating obfuscation schemes,” in IEEE Int.
Symp. on On-Line Testing And Robust System Design (IOLTS), 2018.

[13] K. Z. Azar et al., “Threats on logic locking: A decade later,” in Great
Lakes Symp. on VLSI (GLSVLSI), 2019, pp. 471–476.

[14] M. Yasin et al., “SARLock: SAT Attack Resistant :Logic Locking,” in
HInt’l Symp. on Hardware Oriented Security and Trust (HOST), 2016.

[15] Y. Xie and A. Srivastava, “Anti-SAT: Mitigating SAT Attack on Logic
Locking,” in IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, vol. 38, 2019, pp. 199–207.

[16] M. Li et al., “Provably Secure Camouflaging Strategy for IC Protection,”
IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems, pp. 1–1, 2018.

[17] H. M. Kamali et al., “Full-Lock: Hard Distributions of SAT Instances
for Obfuscating Circuits using Fully Configurable Logic and Routing
Blocks,” in Proc. of Design Automation Conf. (DAC), 2019, p. 89.

[18] M. Yasin et al., “Security analysis of Anti-SAT,” in Asia and South
Pacific Design Automation Conf. (ASP-DAC), 2017, pp. 342–347.

[19] K. Z. Azar et al., “SMT Attack: Next Generation Attack on Obfuscated
Circuits with Capabilities and Performance Beyond the SAT Attacks,”
IACR Trans. on Cryptographic Hardware and Embedded Systems, no. 1,
pp. 97–122, 2019.

[20] A. Baumgarten et al., “Preventing IC Piracy Using Reconfigurable Logic
Barriers,” Design Test of Computers, vol. 27, no. 1, pp. 66–75, 2010.

[21] T. Winograd et al., “Hybrid STT-CMOS Designs for Rreverse-
Engineering Prevention,” in Design Automation Conf. (DAC), 2016.

[22] B. Liu and B. Wang, “Embedded Reconfigurable Logic for ASIC Design
Obfuscation against Supply Chain Attacks,” in Design, Automation Test
in Europe Conf. Exhibition (DATE), 2014, pp. 1–6.

[23] A. Attaran et al., “Static Design of Spin Transfer Torques Magnetic
Look Up Tables for ASIC Designs,” in Great Lakes Symp. on VLSI
(GLSVLSI), 2018, pp. 507–510.

[24] S. Patnaik et al., “Advancing Hardware Security using Polymorphic
and Stochastic Spin-Hall Effect Devices,” in Design, Automation Test
in Europe Conf. Exhibition (DATE), 2018, pp. 97–102.

[25] A. Rezaei et al., “Cyclic Locking and Memristor-based Obfuscation
against CycSAT and Inside Foundry Attacks,” in Design, Automation
Test in Europe Conf. Exhibition (DATE), 2018, pp. 85–90.

[26] J. Yang et al., “Exploiting Spin-Orbit Torque Devices As Reconfigurable
Logic for Circuit Obfuscation,” IEEE Trans. on Computer-Aided Design
of Integrated Circuits and Systems, vol. 38, no. 1, pp. 57–69, 2019.

[27] H. M. Kamali et al., “LUT-Lock: A Novel LUT-Based Logic Obfus-
cation for FPGA-Bitstream and ASIC-Hardware Protection,” in IEEE
Computer Society Annual Symp. on VLSI (ISVLSI), 2018, pp. 405–410.

[28] G. Kolhe et al., “On custom lut-based obfuscation,” in Great Lakes
Symp. on VLSI (GLSVLSI), 2019, pp. 477–482.

[29] J. Rajendran et al., “Security Analysis of Logic Obfuscation,” in Design
Automation Conf. (DAC), 2012, pp. 83–89.

[30] J. Rajendran et al., “Fault Analysis-Based Logic Encryption,” IEEE
Trans. on Computers, vol. 64, no. 2, pp. 410–424, 2015.

[31] J. Rajendran et al., “Security Analysis of Integrated Circuit Camouflag-
ing,” in Proc. of ACM SIGSAC Conf. on Computer & Communications
Security (CCS), 2013, pp. 709–720.

[32] M.Yasin et al., “Provably-secure logic locking: From theory to practice,”
in 2017 ACM SIGSAC Conf. on Computer & Communications Security
(CCS), 2017, pp. 1601–1618.

[33] K. Shamsi, M. Li, T. Meade, and et.al., “Cyclic obfuscation for
creating sat-unresolvable circuits,” in Great Lakes Symposium on
VLSI 2017. USA: ACM, 2017, pp. 173–178. [Online]. Available:
http://doi.acm.org/10.1145/3060403.3060458

[34] S. Roshanisefat et al., “SRCLock: SAT-Resistant Cyclic Logic Locking
for Protecting the Hardware,” in Great Lakes Symposium on VLSI
(GLSVLSI), 2018, pp. 153–158.

[35] H. Zhou, R. Jiang, and S. Kong, “Cycsat: Sat-based attack on cyclic logic
encryptions,” in IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). USA: IEEE, Nov 2017, pp. 49–56.

