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ABSTRACT
With the use of zonotope to model uncertainty of input data

pattern (or jitter), a reachability-based verification is developed

in this paper to compute the worst-case eye-diagram. The pro-

posed zonotope-based reachability analysis can consider both spa-

tial and temporal variations in one-time simulation of high-speed

I/O links. Moreover, nonlinear zonotoped macromodeling is de-

veloped to reduce the verification complexity. As shown by exper-

iments, the zonotoped macromodel achieves up to 450× speedup

compared to the Monte Carlo simulation of the original model

within small error under specified macromodel order for high-

speed I/O links verification.

1. INTRODUCTION
High-speed I/O links are critical for high-performance com-

puters by providing energy-efficient communication between mi-
croprocessor cores and memory. Design of Giga-bits/s data-rate
I/O links in nano-scale CMOS process is an emerging challenge
to handle all kinds of spatial and temporal uncertainties in I/O
links under stringent clock rate [1, 2, 3]. The robust functionality
of high-speed links can be only assured when they are evaluat-
ed by the worst-case eye-diagram under temporal uncertainty or
jitter of input data pattern under a desired bit-error-rate (BER).
Here, jitter is defined as temporal deviation in clock signal at
one time instant when compared to an ideal clock reference [1].
Majority of jitter comes from the clock generation circuitry such
as PLL. It propagates through the communication channel such
as high-speed I/O links and can cause data error at the receiver.
The conventional evaluation of high-speed I/O links with jitter is
to find the worst-case eye-diagram based on tedious Monte Car-
lo simulations under the desired BER (10−12 or less) [4, 5]. It
requires a long sequence of the input data pattern that is infea-
sible for analog verification at advanced technology nodes, which
also has large spatial variations, strong nonlinearities as well as
parasitics. In [6], a step response based eye-diagram prediction is
proposed under the step response with only temporal variation.

This paper studies an analog verification problem of high-speed
I/O links with temporal and spatial variations. Digital verifica-
tion [7, 8] can be performed formally with the use of reachability
analysis to verify infeasible state from discretized state space.
The recent analog verification [9, 10, 11] introduces the concept
of zonotope that can provide a boundary of multiple state tra-
jectories with time-domain evolution in continuous state space.
The work in [12, 13, 14] further provides a numerical integration
as in SPICE to calculate time-evoluted zonotope in state space.
Nonlinearity is addressed by repeated researchable set splitting
[12, 13, 14, 15]. As such, one can conveniently have a zonotope-
based reachability analysis that provides a predicted performance
bound for multiple trajectories under uncertainties from inputs
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and parameters by one-time computation, in contrast to simulat-
ing different trajectories generated one by one in Monte Carlo.
However, it is unknown how to formulate a reachability analysis
with consideration of the temporal variation of the jitter at input,
which is typically required in the analog verification of high-speed
I/O links. Moreover, complexity reduction is not well addressed
for the zonotope-based reachability analysis.

In this paper, a zonotope-based reachability analysis is utilized
for the analog verification of high-speed I/O links considering the
jitter of the input data pattern along with the spatial variation
of parameters. The worst-case eye-diagram verification problem
can be accordingly formulated by the zonotope-based reachability
analysis without repeated Monte Carlo simulations. To further
tackle complexity, a zonotoped macromodel is developed. By
constructing local Krylov subspaces in terms of zonotope matri-
ces along the set of trajectories, global subspaces are constructed
to approximate the original high-speed I/O links considering both
input and parameter variations [16, 17]. The reachability analysis
by the order-reduced macromodel is employed to efficiently gen-
erate the eye-diagram by zonotopes in time-domain. Numerical
experiments show that the proposed method achieves up to 450
× speedup when compared to Monte Carlo simulation with small
error (<6%) under specified macromodel order (order=7).

The rest of this paper is organized as follows. Section 2 reviews
the high-speed I/O link model and formulates the eye-diagram
verification problem. In Section 3, zonotope-based reachability
analysis is described for the I/O verification under both input
and parameter variations. Nonlinear zonotoped macromodeling
of I/Os is further developed in Section 4. Experimental validation
results of the proposed method are presented in Section 5 with
conclusions drawn in Section 6.

2. I/O VERIFICATION PROBLEM
2.1 Description of I/O Circuit
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Figure 1: A simple circuit block diagram of high-speed
serial-link I/O transceiver

A basic block diagram of the high-speed serial-link I/O transceiv-
er is shown in Fig.1. One can observe that a transmitter (Tx)
circuit consists of serializer (Mux), driver and phase-locked-loop
(PLL). The PLL generates a high frequency clock. The serializer
multiplexes the input data DTX into a sequence of bits based on
the clock frequency. Generated bits are are transmitted over the
channel to receiver passing the wired interconnect channel. Chain
of inverters, current mode logic (CML) or low voltage differential
signaling (LVDS) buffer can be utilized to transmit the bits gen-
erated from the serializer. At the receiver end, receiver consists
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of three basic blocks, namely equalizer, clock recovery and data
sampler. Based on the frequency by the clock recovery circuit,
sampling is performed at the receiver for equalization.
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Figure 2: (a) Temporal variation at input due to jitter
(b) Eye-diagram with and without jitter

In the high-speed I/O links, slight deviation in the clock fre-
quency due to jitter can introduce serious impact on the data
recovery at receiver, which is characterized by an eye-diagram.
The major sources of jitter are highlighted by dotted circles in
Fig.1. Considering Fig.2(b), one can observe the difference in the
eye width and height, when there is no jitter (plotted in pink) and
when there is jitter (plotted in dark blue). Jitter can introduce
significant variation to eye-diagram parameters and cause error in
data recovery with a large bit-error-rate (BER). The scope of this
paper studies the verification of I/O eye-diagram under jitter as
well as transistor parameter variations. Note that other external
noises can be included if needed.

2.2 Problem Formulation
Based on the above problem statement, we formulate a physi-

cal verification of the I/O circuit verification problem considering
temporal variation (or jitter) along with spatial variation of pa-
rameters. The input data of I/O circuit with temporal variation
(or jitter) shown in Fig.2(a) can be modeled as follows

u =


1 if t ≤ t0 −∆t

[0, 1] if t0 −∆t < t ≤ t0 +∆t

0 if t > t0 +∆t

. (1)

where u is the input; ∆t represents the jitter; and the shaded
region in Fig.2(a) is the uncertain region i.e., [0, 1] of the input.

Input jitter can cause a large BER at the output. The BER
can be approximated from the obtained eye-diagram parameters
as follows

BER =
1

2
erfc(

Amp(eye)
√
2σv

). (2)

Note that σv is the standard deviation of the noise at the crossing
point of eye: smaller the Width(eye), larger the σv and larger the
BER; and erfc is the complementary error function.

For a particular design-specified BERth, it imposes the width
and height requirement of the worst-case eye-diagram by

Amp(eye) ≥ Ath

Width(eye) ≥ Wth
(3)

where Amp(eye) and Width(eye) are the height and width of
the eye-diagram. Note that Ath and Wth indicate the minimum
height and width to achieve the desired BERth. As such, the
worst-case eye-diagram threshold values need to be verified for
the I/O circuit verification problem defined here.

However, obtaining the worst-case eye-diagram will be time
consuming by repeated Monte Carlo simulations due to the long
sequence of input data pattern in verification. In this paper, the
impact of temporal and spatial variations to I/O circuits is mod-
eled as a bounded polytope of states, called zonotope. Then, the
zonotope-based reachability analysis can be developed for the I/O
circuit verification. What is more, a zonotoped macromodeling
is applied to reduce the complexity with consideration of nonlin-
earity under variations. As such, one-time reachability analysis
can be performed efficiently to obtain the worst-case eye-diagram
parameters, which are bounded by the corner of zonotope.

3. ZONOTOPED REACHABILITY ANALY-
SIS OF I/O VERIFICATION

In this section, we will first discuss how to model the variations
in form of zonotopes followed by the reachability analysis for the
I/O verification.

3.1 Input and Parameter Variations by Zono-
tope

Zonotope Z is a symmetrical type of polytope mathematically
defined as:

Z ={x ∈ Rn×1 : x = c+

q∑
i=1

[−1, 1]g(i)}

={c, g(i), g(2), ...}

(4)

where c ∈ Rn×1 is the zonotope center; q represents number of
zonotope generators; and g(i) ∈ Rn×1 is a zonotope generator.
A zonotope models a reachable set, collection of all operating
points or states in the state space that a system may visit under
uncertainties from inputs and parameters.

The dynamics of a nonlinear system can be expressed by a
differential algebraic equation (DAE)

d

dt
q(x(t)) + f(x(t)) +Bu(t) = 0. (5)

Here, x(t) ∈ Rn is the state variable vector; f(x(t)) includes drain
currents of transistor; q(x(t)) is the charge accumulated on the
gate or parasitic capacitor; B is the incident matrix for current
sources and u(t) is the input vector.

For transient analysis similar as in SPICE, the DAE in (5) can
be solved by the multi-step integration with linearization by

C
dx(t)

dt
+Gx(t) = Bu(t) = b

C = −
∂q

∂x
|x=x∗ , G = −

∂f

∂x
|x=x∗ .

(6)

Here, x∗ is the operating point at which the linearization is per-
formed, C is linearized capacitance matrix, G is linearized con-
ductance matrix, and the right hand side vector b contains both
the input vector u(t) and the linearization residue of f(x).

Temporal variation or jitter at one input u based on (1) can be
written in the form of zonotope by

u = α0 + [−1, 1]α1. (7)

Here, α0 is the nominal point with jitter modeled by the generator
α1. Similarly, when considering all inputs, an input vector u with
jitter can be modeled in the form of a vector zonotope. As an
example of three inputs with jitters modeled by (1), one can have

u =

u1

u2

u3

 =

α0

β0

γ

+ [−1, 1]

α1

0
0

+ [−1, 1]

 0
β1

0

 . (8)

Here, u1, u2 and u3 represent 3 inputs with jitters by u1 = α0 +
[−1, 1]α1, u2 = β0 + [−1, 1]β1 and u3 = γ.

To model parameter variations, for a linear device like resistor,
the conductance variation ∆g(i) can be directly expressed in the
form of zonotope as

g = g0 +

q∑
i=1

[−1, 1]∆g(i)

where g0 is the nominal value; and q represents number of varia-
tions. Whereas for nonlinear devices such as MOSFETs by BSIM
models, the construction of state matrix needs one more step.
Suppose that one transistor has a perturbation in width W as
∆W , the variation of its transconductance ∆gm is calculated as

∆gm =
∂gm

∂W
∆W. (9)
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Here, ∂gm
∂W

needs to be computed at one nominal operating point.
Other conductances including gds and gmb can be derived in a
similar fashion.

As an example, the generator matrix for inclusion of conduc-
tance parameter based on (9) is given below

∆G =


. . .

∂gm
∂W

− ∂gm
∂W

− ∂gm
∂W

∂gm
∂W

. . .

∆W. (10)

Thereby, one can model both input and parameter uncertainties
with the use of zonotope.

Initial Set

Trajectory

Zonotope

Final SetInput

variation
Parameter

variation

Figure 3: Reachability analysis in state space with zono-
tope for bounded uncertainties

3.2 Reachability Analysis of I/O Circuit
With the use of zonotope to model reachable set under all un-

certainties, one can explore all operating points or states in the
state space that an electronic circuit like I/O may visit under
variations. As shown in Fig.3, by modeling the input and pa-
rameter variations as zonotopes in initial set, the time-evolution
of zonotopes are calculated as boundary of multiple trajectories,
which can be verified (failure or not) when they reach the final
set.

Similar to zonotopes, state matrices with uncertain entries can
be described in the form of matrix zonotopes as

M = {M ∈ Rn×n : M = M(0) +

q∑
i=1

[−1, 1]M(i)}. (11)

Here, M(0) is called the center matrix and the matrix M(i) is
called the generator matrix. Additive and multiplication rules
for zonotopes and matrix zonotopes are defined in [10]. Note that

M(0) can be the linearized state matrix for the nominal operating
point; and M(i) contains variations due to multiple parameter
variations. Uncorrelated parameter variations after decoupling
are filled in different generator matrices.

As such, once the variations are modeled with the help of (8)
and (9), the zonotoped state matrices for G, C and u can be
formed as G, C and U , respectively. Therefore, the linearized
equation in (6) can be formulated with zonotopes and zonotope
matrices as below

C
dX (t)

dt
+ GX (t) = BU (12)

where X is the state variable zonotope; G and C are the zonotope
matrices of G and C with parameter variations; and U is the input
zonotope with the input jitter variation, as given in (8).

The discretized DAE with zonotopes can be solved by the lin-
ear multi-step integration like implicit Euler method [12] with a
discretized time-step of h as

C
Xk −Xk−1

h
+ GXk = BU . (13)

As such,

Xk = (A)−1(
CXk−1

h
+BU) (14)

Wth1

Ath1
Max(Xk)

Min(Xk)

Width(eye) 

Eye open

(a)

Ath2

Wth2

Max(Xk)

Min(Xk)

Width(eye) 

Eye closed

(b)

Figure 4: Eye-diagram verification by zonotope: (a) Eye-
open-diagram; (b) Eye-close-diagram

where A = (C
h
+G). Note that no real inverse of zonotope matrix

A = (A(0), ..., A(q)) in (14) is performed but with approximat-
ed LU decomposition to reduce computational complexity [12],
similar to a SPICE-like simulator.

Therefore, based on (14), the zonotope of state Xk at kth time
instant can be found. The time-domain eye-diagram thereby will
natively formulate in the final set such that the maximum and
minimum values of the zonotope at the final set can be found to
calculate the eye opening parameters.

For example, Amp(eye) can be calculated as

Amp(eye) = max(Xk)−min(Xk).

Here, min(Xk) and max(Xk) are the minimum and maximum
values of the zonotope in eye-diagram respectively at the sam-
pling time instant k, as shown in Fig.4. Similarly, width of the
eye-diagram at the crossing point can be calculated as well. As
such, one can characterize the worst case eye-opening parameters
from the formed zonotope-based reachability analysis for the I/O
circuit verification.

Fig.4 shows the I/O verification using the eye-opening param-
eters, characterized by the zonotope of the final set calculated
by (2). When the zonotope of the final set can perfectly em-
bed the specified eye-diagram safety region described in (3), the
according zonotoped eye-diagram of I/O can be considered to be
open, indicating that the desired BER can be achieved. As shown
in Fig.4(a), the specified eye-diagram with threshold parameters
Ath1 and Wth1 can be perfectly embedded in the zonotoped eye-
diagram. As such, the eye-diagram is considered to be open and
denoted as Eye open. Whereas when the zonotope of the final set
overlaps over the specified eye-diagram threshold, the according
zonotoped eye-diagram of I/O is considered to be closed or failed
for the specified BER. If the threshold parameters become Ath2

and Wth2, the zonotoped eye-diagram overlaps with the safety
region and hence the eye-diagram is considered to be closed for
the specified BER, denoted by Eye closed in Fig.4(b).

4. ZONOTOPED MACROMODEL
To further reduce the complexity for an efficient I/O veri-

fication by zonotope-based reachability analysis, the nonlinear
macromodeling by model order reduction (MOR) can be utilized.
In this section, we first show a nonlinear MOR by considering
the zonotope-molded variations from inputs and parameters; and
then discuss the reachability analysis under the zonotoped macro-
model for I/O verification.

4.1 Nonlinear Macromodeling
A dimension-reduced macromodel can be generated by per-

forming MOR to reduce the complexity, whereby subspaces are
identified to approximate the original full state space.

Suppose a subspace of dimension p is found with z ∈ Rp

as the reduced state vector, the projection from the original s-
tate vector x is expressed by z = V T x. Column vectors in
V , V = [v1, v2, ..., vp] are the base vectors for the subspace for
projection. The dimension-reduced state vector z satisfies the
dimension-reduced DAE by [18, 17]

V T [
d

dt
q(V z) + f(V z) +Bu] = 0. (15)
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With the linearization along the trajectory by piece-wise linear
approximation at a number of sample points, for example the jth
local sample xj , the subspace Vj is orthogonalized from Krylov
subspace obtained below

Kr(Aj , rj , p) = colsp(rj , Ajrj , A
2
jrj , ..., A

p−1
j rj) (16)

where Aj = −G−1
j Cj and rj = −G−1

j bj .

There is a mapping between the jth sample point xj and zj by

z =zj + V T
j (x− xj) (17)

and vice-versa for the reverse projection. As such, the dimension-
reduced nonlinear function f(z) becomes

f(z) =V T
j f(x)

=V T
j f(xj) + V T

j GjVj(z − zj).
(18)

The same can be derived for the charge function q(x).
Therefore, the dimension-reduced nonlinear DAE can be de-

rived as
dq(z)

dt
+ f(z) + V TBu = 0. (19)

A look-up table is used to store all locally reduced matrices V T
j CjVj

and V T
j GjVj [17].

4.2 Zonotoped Macromodel for Variations
It is unknown how to consider variations from multiple pa-

rameter as well as input during the nonlinear macromodeling.
Individual parameter moment expansion is expensive [16]. With
the use of zonotope, zonotope state vector, and zonotope state
matrix, the convenient subspace based nonlinear macromodel-
ing with uncertainties can be developed. On the other hand,
the zonotope-based reachability analysis would be expensive if
the original circuit complexity is high. Therefore, the zonotoped
macromodeling is the need here for the I/O circuit verification.

The Krylov subspace considering the variation of input and the
variation of multiple parameters is given as

Kr(A,R, p) = colsp(R,AR,A2R, ...,Ap−1R) (20)

where A = −G−1C and R = −G−1B. As such, the zonotope
state vectors form the parameterized Krylov subspace. Note that
the sample point xj in (24) is selected based on the Euclidean
distance from the operating point. The center of zonotope Z of
state vector is used to calculate the Euclidean distance.

To orthogonalize the base vectors, QR decomposition needs to
be performed. However, AkR of the Krylov subspace cannot be
handled directly by the conventional QR decomposition routine.
One can first orthogonalize the center matrix

Q(i) = M(i)((Q(0))TM(0))−1 (21)

where the center matrix M(0) is orthogonalized to Q(0), and the
zonotope generator matrix M(i) is orthogonalized to Q(i). As
such, the orthogonalization of the parameterized subspace V can
be obtained by considering Q(0) as center zonotope and Q(i) as
zonotope generator.

V = {V ∈ Rn×n : V = Q(0) +

q∑
i=1

[−1, 1]Q(i)}. (22)

The construction of the parameterized subspace is performed at
each sample point, and is stored to produce the macromodel later.

As a result, one can perform the zonotope-based I/O verifica-
tion efficiently based on the dimension-reduced macromodel. The
state variable z in (19) is now replaced by the zonotope Z with a

nominal center z(0) and a series of generators z(i); and the input
variable u is replaced with zonotope U with the nominal center
α0 and series of zonotope generators αi caused by jitters.

The zonotope-based DAE is shown below based on (19) and
(22) in the reduced state space

VT CV
dZ
dt

+ F(Z) + VTBU = 0. (23)

With the obtained parameterized subspaces at the jth sample
point, the projection of f(x) becomes

F(Z) = VT
j f(xj) + VT

j GjVj(Z − zj). (24)

Here, the multiplication of three zonotope matrices are used to
evaluate the interval function F(Z).

Note that the higher-order variation products are discarded as
small compared with the first order ones:

VT
j GjVj = (Vj +∆Vj)

T (Gj +∆Gj)(Vj +∆Vj)

≈ V T
j GjVj +∆V T

j GjVj + V T
j ∆GjVj + V T

j Gj∆Vj

(25)
where the variations ∆Gj , ∆Vj refer to the sum of generators in
Gj and Vj . The full multiplication between a zonotope matrix
and a zonotope leads to an increased number of generators. The
Minkowski summation rule [10] is used to merge zonotopes while
preserving new generators created during multiplication

Zk = A−1(
VT CVZk−1

h
⊕−VT f(xj)⊕VTGVzj⊕−VTBU) (26)

where A = VT CV
h

+VTGV; and ⊕ denotes Minkowski summation.
Here, Minkowski summation of zonotopes P and Q is mathemat-
ically defined as

P ⊕Q = {p+ q|p ∈ P, q ∈ Q}

= (c1 + c2, g
(1)
1 , ..., g

(e)
1 , g

(1)
1 , ..., g

(e)
1 )

(27)

where c1 and c2 represent the centers of zonotopes P , Q respec-

tively, having corresponding generator vectors g
(i)
1 and g

(i)
2 . As

such, Minkowski summation is summation of the zonotope centers
and concatenation of their generator vectors.

5. EXPERIMENTAL RESULTS
The proposed zonotope-based I/O eye-diagram verification is

implemented in MATLAB on the basis of a SPICE-like simula-
tor. Manipulations of zonotopes are performed by a MATLAB
toolbox named Multi-Parametric Toolbox (MPT) [19]. Experi-
ment data is collected on a desktop with Intel Core i5 3.2GHz
processor and 8GB memory. CMOS 40nm is used as the tech-
nology node for the testing I/O circuits: inverter-buffer chain
with RC-interconnect and transmission-line (T-line) with current-
mode-logic (CML) buffers. The induced variations are randomly
introduced. They are simulated with input signal bit-stream of
400-bit randomly generated to consider input variations. Other
patterns can be considered similarly.

5.1 Inverter-buffer Chain with RC-interconnect
The CMOS inverter-buffer chain in Fig.5 is considered as I/Os

for RC-interconnects. Each resistor has an independent spatial
variation of 5% (in value); and transistors share a local spatial
variation of 5% on their widths. The inverter chain is simulated
with a square-wave of pulse width 20ns. Input variations, or
jitters, varying from 1% to 10% are experimented. Eye-diagrams
for the inverter-buffer chain with temporal and spatial variations
are generated by the zonotoped-macromodel based reachability
analysis in time domain. To further verify the accuracy of the
zonotoped macromodel, Monte Carlo simulation of the full model
is also performed.

First, we illustrate the impacts on the eye-diagram due to on-
ly temporal variation, only spatial variation and their combined
one. Fig.6 shows waveforms with individual and combined varia-
tions considering input jitter variation of 10%. At one terminal of
outputs of the inverter chain, one can observe that the wavefor-
m (blue) has large displacement (4.5%) of eye width when only
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Table 1: Comparison between zonotoped-macromodel based reachability analysis and Monte Carlo of full model for a
4-stage inverter-buffer chain with RC-interconnect

Jitter Order
Zonotope-based verification Full model MC | error |

speedup
Amp (V) Width (ns) run time (s) Amp (V) Width (ns) run time (s) Amp Width

1%
p=5 1.0443 18.2 80.18

0.96547 19.5 60342.18
8.17% 6.67% 752.58×

p=7 0.9539 18.6 132.08 1.19% 4.62% 456.86×
p=n=13 0.9625 19.1 190.96 0.31% 2.05% 315.99×

10%
p=5 0.9281 13.8 83.62

0.93383 15.9 60066.94
0.61% 13.21% 718.33×

p=7 0.9313 15.0 134.88 0.27% 5.66% 445.34×
p=n=13 0.9334 15.1 188.15 0.04% 5.03% 319.25×
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Figure 5: Inverter-buffer chain with RC-interconnect:
(a) N-channel; (b) Single channel
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Figure 6: Impact of spatial and temporal variations for
inverter-chain respectively

temporal variation is present, whereas the waveform (green) by s-
patial variation has little displacement (1.8%) of eye width. When
both the temporal and spatial variations are considered together,
the waveform (red) has the altered eye width of 7.27%.

Eye-diagrams generated by the proposed zonotoped macro-
model and Monte Carlo simulations under a jitter of 1% input
variation and 10% spatial variation is shown in Fig.7. The dark
blue curves (MC) are generated by Monte Carlo simulations and
white blocks with pink envelope (ZM) are generated by the zono-
toped macromodel (order p = 10). The zonotoped macromodel
can fit with the full model (p = n) with Monte Carlo by an er-
ror of 0.19% in eye-open. The amplitude and width of the eye
generated by the zonotoped macromodel as well as the full mod-
el are (0.9570V, 18.9ns) and (0.9588V, 19.5ns), respectively. Both
results indicate that the eye-diagram results into the safety region
for a BER of 10−12 with eye is considered to be open.

In addition, the results for different model orders under dif-
ferent jitters with 5% spatial variations are presented in Table
1. Amp and Width indicate the eye height and width, respec-
tively. Monte Carlo simulations are performed with 1000 samples
and the corresponding results are presented under Full model MC
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Figure 7: Zonotope and Monte Carlo based eye-open-
diagrams under 1% jitter for inverter-chain

column. Error indicates the difference between the estimated
values from the zonotoped macromodel and the full model by
Monte Carlo. Note that the eye amplitude obtained from the
proposed method is smaller than the Monte Carlo due to over
approximation. For a high accuracy macromodel (p = 7), n-
early 450× speedup is achieved compared to the Monte Carlo
simulation. The error between the macromodel and Monte Carlo
reduces when increasing the order but at the cost of runtime.

5.2 CML Buffer with Transmission Line
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Figure 8: CML-buffer chain with transmission line:(a)
N-channel; (b) Single-channel

Next, we consider a CMOS current-mode-logic (CML) I/O
buffer with transmission line (T-line) interconnect as shown in
Fig.8. Similar to the inverter buffer chain, spatial variations in
transistor widths and resistances are set to 5%. The input is a
square-wave of pulse width 10ns with input jitter varied from 1%
to 10%. The accuracy and speedup are validated by comparing
with the Monte Carlo simulation of the full model.

In Fig.9, the eye-diagram with 10% jitter of the input by zonotoped-
macromodel (order p = 12) is plotted along with the Monte Car-
lo simulation of the full model. The obtained amplitude and
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Table 2: Comparison between zonotoped-macromodel based reachability analysis and Monte Carlo for CML buffer
with transmission line

Jitter Order
Zonotope-based verification Full model MC | error |

speedup
Amp (V) Width (ns) run time (s) Amp (V) Width (ns) run time (s) Amp Width

1%
p=12 0.7313 9.5 111.23

0.7439 9.78 29253.47
1.70% 2.86% 263.00×

p=n=18 0.7436 9.8 294.65 0.04% 0.20% 99.29×

10%
p=12 0.6699 7.8 110.28

0.6761 8.3 29349.01
0.92% 6.02% 266.13×

p=n=18 0.6726 8.0 293.61 0.52% 3.61% 99.95×
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Figure 9: Zonotope and Monte Carlo based eye-close-
diagrams under 10% jitter for CML-buffer chain

the width of the eye-diagram for the proposed zonotoped macro-
model and the full model by the Monte Carlo simulation are
(0.6699V, 7.8ns) and (0.6761V, 8.3ns), respectively. The zono-
toped macromodel fits the full model Monte Carlo with an error
of 0.92% in eye opening. From the zoomed-in figure, one can
observe that most of the curves generated by the Monte Carlo
of the full model are enclosed within the one by the zonotoped
macromodel closely. Note that in contrast to the inverter chain
eye-diagram, CML buffer eye-diagram does not reach 0V due to
the presence of the bias.

In addition, the results for the full model and the zonotoped
macromodel with different input variations are presented in Table
2. For high accuracy macromodel (p = 12) nearly 300× speedup
is achieved compared to Monte Carlo simulations with an error
less than 1%.

Lastly, the eye-diagram verification for the case of CML buffer
is discussed here based on (2) under the BER of 10−12. Recall
that the eye-open condition can be confirmed if the zonotope-
formed eye can be embedded into a square of eye-diagram safety
region. For the CML buffer with input variations or jitter in Fig.9,
the zonotope-formed eye cannot be embedded into the square of
eye-diagram safety region, which indicates that the eye is closed
for the given BER under the input variation or jitter with 10%
deviation. The verification time is in 110 seconds.

6. CONCLUSIONS
In this paper, a zonotoped reachability analysis is developed for

the verification of high-speed I/O links considering both temporal
and spatial variations. The zonotope is introduced to model both
jitter and device parameter uncertainty to avoid multiple simula-
tions within long input data sequence for the verification of the
worst-case eye-diagram. Moreover, nonlinear zonotoped macro-
model is further developed to reduce complexity by forming the
zonotoped subspace or manifold. As shown by numerical experi-
ments for high-speed I/O links considering temporal and spatial
variations, zonotoped macromodel (order=7) based reachability
analysis can generate the worst-case eye-diagram parameters with
less than 6% error but with 450× speedup when compared to
Monte Carlo simulations of the full model.
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