
Work-in-Progress: Sequence-Crafter: Side-Channel Entropy
Minimization to Thwart Timing-based Side-Channel Attacks

Abhijitt Dhavlle, Sahil Bhat, Setareh Rafatirad, Houman Homayoun and Sai Manoj P D
George Mason University, Fairfax, VA, USA

{adhavlle,sbhat6,srafatir,hhomayou,spudukot}@gmu.edu

ABSTRACT
The hardware security domain in recent years has experienced a
plethora of side-channel attacks (SCAs) with cache-based SCAs
being one of the dominant threats. These SCAs function by exploit-
ing the side-channels which invariably leak important data during
an application’s execution. Shutting down the side channels is not
a feasible approach due to various restrictions it would pose to
system performance. To overcome such concerns and protect the
data integrity, we introduce Sequence-Crafter (SC) in this work. The
proposed Sequence-Crafter (SC) aims to minimize the entropy in
the side channel leaked information rather than attempting to close
the side-channels. To achieve this, we introduce carefully crafted
perturbations into the victim application which will be randomly
activated to introduce perturbations, thus resulting in misleading
information which looks legit that will be observed by the attacker.
This methodology has been successfully tested for Flush+Reload
attack and the key information observed by the attacker is seen to
be completely futile, indicating the success of proposed method.
ACM Reference Format:
Abhijitt Dhavlle, Sahil Bhat, Setareh Rafatirad, Houman Homayoun and
Sai Manoj P D. 2019. Work-in-Progress: Sequence-Crafter: Side-Channel
Entropy Minimization to Thwart Timing-based Side-Channel Attacks. In
2019 International Conference on Compliers, Architectures and Synthesis for
Embedded Systems Companion (CASES’19 Companion), October 13–18, 2019,
New York, NY, USA. ACM, New York, NY, USA, 2 pages. https://doi.org/10.
1145/3349569.3351543

1 INTRODUCTION
Security threats utilize the side-channels or covert channels to
obtain the secret information from the system and are passive in
nature. Side-channel attacks are a class of attacks that primarily
exploit security of computing systems based on the obtained side-
channel information as a result of design vulnerabilities rather than
the exploits in the application [1]. Side-channels are inherent in any
computing system and the foremost challenge in defending against
side-channel attacks is that they cannot be completely terminated.
Our work focuses on cache-based side-channel attacks which have
exacerbated [2] with the features introduced in modern computing
systems such asmemory-sharing, co-location of applications, which
were introduced for an efficient resource management and higher

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CASES’19 Companion, October 13–18, 2019, New York, NY, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6925-1/19/10. . . $15.00
https://doi.org/10.1145/3349569.3351543

throughput. However, a large number of cache-based side-channel
attacks rely on the timing information to determine the cache-
access (hit or miss) patterns in order to obtain the accessed address
and eventually the secret key from the cache [3]. For instance,
Flush+Reload [3] depends on the assumption that the victim and
the attacker share the same memory space and utilizes the cache-
access timing information to retrieve the secret key from system.

To address the challenges of cache side-channel attacks, tech-
niques such as static cache partitioning [4], partition locked cache
[5], non-monopolizable (nomo) cache architectures [6] are pro-
posed. These techniques can tremendously reduce the interference
between attacker and victim’s memory access, thus providing better
defense. However, adopting such techniques require alterations in
the cache design and also leads to performance degradation [4]. To
overcome the limitations of the cache-partitioning, randomization
of cache architectures are introduced. Conventional fully associa-
tive cache is one of the preliminary randomization based cache.
Despite its security benefits, this technique incurs large delays and
is power hungry. In a similar way, random permutation cache [5],
newcache [7], random fill cache [8], and random eviction cache
[4] strategies are implemented. Compared to cache-partitioning,
randomization based solutions have shown higher robustness, yet
the challenge of performance degradation is not addressed.

In this work, we introduce Sequence-Crafter, a defense for timing-
based side-channel attacks such as Flush+Reload and Prime+Probe.
In contrast to the existing works that focus on architectural changes
or perturbing cache lines, the proposed Sequence-Crafter primarily
focuses on minimizing the entropy of the side-channel informa-
tion obtained by the attacker without interfering with the original
functionality of the victim application. In the Sequence-Crafter
the original application is wrapped with a protective application
that is able to facilitate the perturbation of the cache-access timing
information obtained by the attacker under the constraints of the
achieved information looking similar to the normal timing informa-
tion, yet leading to a wrong key. The proposed Sequence-Crafter
introduces perturbations in the sequence (timing information) by
executing dummy functions that do not affect the result of the key
for the victim, but scrambling patterns observed by the attacker
thereby reducing entropy and dissuading the attack. The proposed
Sequence-Crafter technique is evaluated against Flush+Reload with
different keys and the proposed Sequence-Crafter is found to be suc-
cessful in defending against the attacks without any assumptions
on the attacker capabilities.
2 SEQUENCE-CRAFTER
Our proposed defense mechanism, Sequence-Crafter is shown in
Figure 1. Figure 1(a) shows the traditional Flush+Reload attack
eavesdropping on the sequence of operations of a cryptographic
application. The attack observes the sequence and then infers the

Spy inserts
probes in the

Victim's
cache space

Victim Spy

Spy has addresses of
Victim's code

Inserts
Additional

Code

Random PerturbationsSequence-Crafter

001 1

LLC

Probe_1:
0x086f0

Probe_2:
0x08616

Probe_2:
0x08628

spy and the victim
share the LLC cache

Victim's Cache
space

Side-Channel data seen by the attacker

Pr
ob

e
Ac

ce
ss

 T
im

e
(C

yc
les

)

Threshold

Slot Time
Discarded

Threshold
Discarded

Original sequence from victim's side channel protected
by Sequence-Crafter

0 0 1 1

Victim sees bits '1001'

Attacker sees bits '0011'

(b)

 Square
{ };

 Reduce
{ };

Multiply
{ };

Probe_1:
0x086f0

Probe_2:
0x08616

Probe_2:
0x08628

Square
Reduce
Multiply

Sequence-Crafter inserts perturbation code segments
here during runtime which are dummy functions that do

not contribute to the results of the victim

Probe_1:
0x086f0

Probe_2:
0x08616

Probe_2:
0x08628

(a)

 Square
{ };

 Reduce
{ };

Multiply
{ };

Spy inserts probes
in the Victim's cache

space
Victim's Cache

space
Victim Spy

Spy has addresses of
Victim's code

Pr
ob

e
Ac

ce
ss

 T
im

e
(C

yc
les

)

Probe_1:
0x086f0

Probe_2:
0x08616

Probe_2:
0x08628

spy and the victim share the
LLC cache

001 1Bit sequence derived

Side-Channel data seen by the
attacker

Threshold

Slot Time

Discarded
LLC

Figure 1: (a) Traditional Flush+Reload attack on encryption algorithm where all the data leaked via side-channel is accessible
to the attacker; (b) Victim is wrapped with Sequence-Crafter that injects perturbation code in the victim during run-time to
reduce and perturb the sensitive information leaked thereby making SCAs laborious and time-consuming.
bits of the exponent used for encryption. The covert channel or
the side-channel is not a 100% transparent medium, but rather
it is a noisy channel due to other cache accesses. To reduce this
noise, the attacker runs the attack multiple times and filters out the
noise. Hence, without any protection barrier, the attacker is able
to capture the leaked information. With our proposed Sequence-
Crafter , the original sequence of operations is perturbed by calling
dummy functions, the code for which is inserted in runtime by the
Sequence-Crafter as it knows the memory addresses of the opera-
tions. There is no change made on the attacker’s end. The attacker
inserts the probes in the functions and tries to observe the sequence.
The Sequence-Crafter calls fake functions which do not necessarily
intervene in the encryption operation but rather just executes the
function and exits after a while thus giving an impression to the
attacker that the functions were called by the encryption applica-
tion. This leads to wrong sequence of operations as observed by
the attacker and hence a wrong captured key thwarting the attack.

Algorithm 1 Pseudocode illustrating the implementation of
Sequence-Crafter
Input: Private Ecryption Key
Output: Decoded Incorrect Encryption Key
1: Victim Program() {Victim pseudo code w/ Sequence-Crafter }
2: Square func() { Probe 1 <= memory address }
3: Multiply func()
4: { Probe 2 <= memory address of Multiply func
5: - - Dummy call to Square func() - - }
6: Reduce func() { Probe 3 }
7: Attacker Program() {Code that decodes the secret key}
8: Loop 1: load i < n
9: clflush (Probe 1) ; clflush (Probe 2) ; clflush (Probe 1);
10: Reloading time(t)
11: jump Loop1; end;
12: cmp t # threshold time(th)
13: if(t > th) => Cache miss else if(t < th) => Cache hit
14: Incorrect Secret Key is Deduced

Algorithm 1 describes the pseudocode for the implementation of
Sequence-Crafter . The traditional Flush+Reload attack on encryp-
tion application is not shown due to space restrictions where Line
5 would be absent, everything else remains pretty much the same.
The attacker inserts probes in the Square, Reduce and Multiply
function of the algorithm so whenever the function is called and
hence the memory line is accessed, it knows and keeps track of it.
With Sequence-Crafter, from within the Multiply function a fake
call to the Square function is made which tricks the attack code
into thinking that a real call was made. The dummy call is made
multiple times to ensure that the call achieves a cache-hit as the

Table 1: Impact of Sequence-Crafter on key extraction
Flush+Reload Attack RSA and RSA DSA and Elgamal
Original Key F9D2EDC5 3DA77005
Without perturbation (seen by the spy) F9D2EDC5 3DA77005
With Crafter (seen by victim) F9D2EDC5 3DA77005
With Crafter(seen by spy) F1D2ADC7 3FA7710D

attack code accepts only cache hit as a condition for considering or
rejecting the sequence of Square, Reduce or Multiply.
3 RESULTS
The impact of the proposed Crafter on the data leakage in the covert
channel can be clearly seen in Table 1. We ran our experiments with
two types of encryption methods - RSA and RSA where both the
public and private keys are RSA type, and DSA and Elgamal where
the private key was Elgamal type. For discussion, we have only
considered a short version of the original keys. Without the Crafter,
the spy (attacker) is able to view the private key as shown in Table 1.
However, with the proposed Crafter, the attacker observes a wrong
sequence and hence the incorrect key is deduced compared to the
original key used by victim, as in Table 1. The experiments so far
have shown promising results to thwart SCAs.
4 CONCLUSION AND FUTUREWORK
We discussed how SCAs are a threat to data integrity and confi-
dentiality and mentioned about the works in the past that have
proposed mitigation techniques against the SCAs. But, there are
many shortcomings that needed to be addressed and Sequence-
Crafter can prove to be a feasible panacea. Our experimental results
mentioned in Table 1 have shown promising outcomes in thwarting
timing-based cache side-channel attacks and we are working on
developing the further version of the Sequence-Crafter where ran-
dom perturbations along with the number of bits to be perturbed
would also be accommodated.
REFERENCES
[1] F. Brasser et al., “Advances and throwbacks in hardware-assisted security: Special

session,” in Proceedings of the Inter. Conf. on CASES, 2018.
[2] S. M. P. D. et al., “Adversarial attack on microarchitectural events based malware

detectors,” in Proceedings of the DAC, 2019.
[3] Y. Yarom and K. Falkner, “Flush+reload: A high resolution, low noise, L3 cache

side-channel attack,” in USENIX Conf. on Security Symposium, 2014.
[4] Z. He and R. B. Lee, “How secure is your cache against side-channel attacks?” in

IEEE/ACM Int. Symp. on Microarchitecture, 2017.
[5] Z. Wang and R. B. Lee, “New cache designs for thwarting software cache-based

side channel attacks,” in Int. Symp. on Computer Architecture, 2007.
[6] L. Domnitser, A. Jaleel, J. Loew, N. Abu-Ghazaleh, and D. Ponomarev, “Non-

monopolizable caches: Low-complexity mitigation of cache side channel attacks,”
ACM Trans. Archit. Code Optim., vol. 8, no. 4, pp. 35:1–35:21, Jan 2012.

[7] F. Liu, H. Wu, K. Mai, and R. B. Lee, “Newcache: Secure cache architecture thwart-
ing cache side-channel attacks,” IEEE Micro, vol. 36, no. 5, pp. 8–16, Sep. 2016.

[8] F. Liu and R. B. Lee, “Random fill cache architecture,” in IEEE/ACM Int. Symp. on
Microarchitecture, 2014.

2

