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Abstract—It is challenging to efficiently evaluate performance
bound of high-precision analog circuits with multiple parame-
ter variations at nano-scale. In this paper, a nonlinear model
order reduction is proposed to deploy zonotope-based model
for multiple-interval-valued parameter variations. As such, one
can have a zonotope-based reachability analysis to generate a
set of trajectories with performance bound defined. By further
constructing local parameterized subspaces to approximate a
number of zonotopes along the set of trajectories, one can perform
nonlinear model order reduction to generate the performance
bound under parameter variations. As shown by numerical
experiments, the zonotope-based nonlinear macromodeling by
order of 19 achieves up to 500× speedup when compared to
Monte Carlo simulations of the original model; and up to
50% smaller error when compared to previous parameterized
nonlinear macromodeling under the same order.

I. INTRODUCTION

At nano-scale, nonlinearity of analog circuits and amount of para-
sitic have become more prominent than ever. For example, I/O circuits
with interconnects are strongly susceptible to parameter variations
with performance bound [1], [2], [3], [4], [5], [6], [7] of skew to be
determined. The calculation of performance bound is expensive with
consideration of multiple parameter variations, because it involves
both large-scale parasitics and nonlinear I/O buffers. Model order
reduction (MOR) [8], [9], [10] can reduce complexity of state space
by subspace-based approximation. The generation of subspace can
be obtained by Krylov iteration or truncation-balanced realization.
However, the effectiveness of subspace generation is limited when
considering the strong nonlinearity and parameter variations for
analog circuits such as I/Os.

The nonlinearity can be addressed during MOR [11], [12], [13],
[14] by constructing a series of local subspaces obtained at different
operation points of one trajectory, which can be further aggregated
to provide one global subspace for approximation. The challenge is
to further consider parameter variations since the number of local
expanded subspaces by moments can grow substantially [11] when
considering all types of parameter variations. In [15], parameter
variations are included during MOR with the use of interval-values.
Correlation-decoupled parameter variations in a statistical range are
modeled by interval values. For example, if ∆x1, ∆x2 model
uncertainties in two state variables of state vector x with c as interval
center, the neighboring points for variation regions can be modeled as:
x = c+ [−1, 1]∆x1 + [−1, 1]∆x2 in one dimension line. However,
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there is no method developed to deal with multi-dimensional interval-
value problem. What is more, it is unknown how to perform a
nonlinear MOR with multi-dimensional interval-values that model
parameter variations of analog circuits.

Zonotope based over-approximation have been widely deployed in
reachability analysis for verification of system dynamics by exploring
potential trajectories of operating points in state space [16], [17]. It
can conveniently provide predicted boundary of multiple trajectories
under uncertain interval parameters by one-time computation, in
contrast to simulate different trajectories one by one. The zonotope
based reachability analysis has been deployed for a number of hard
analog circuit verifications [18]. What is more, implicit integration is
further developed in [19] for a fast numerical estimation of zonotope
with consideration of nonlinearity.

In this work, zonotope based over-approximation has been applied
to describe multi-dimensional interval-values for parameter variations,
which are included into interval state matrices. By running reacha-
bility analysis with interval state matrices, a zonotope-expanded state
space can be constructed to enclose a set of trajectories, each used
to describe one type of combination of parameter variations. By
further constructing local Krylov subspaces in term of interval state
matrices at a number of zonotopes along the set of trajectories, one
can construct global subspaces to approximate the original nonlinear
analog circuits with consideration of multiple parameter variations.
Note that in the previous parameterized nonlinear macromodeling
[11], [12], [13], [14], a weighting sphere is introduced to achieve
an approximated subspace based on the neighboring points. The
approximation is a weighted combination in which the weights are
calculated by Kernel distance. It is not well defined how to build
weights in presence of multiple parameter variations. In contrast,
the parameterized subspace is well covered by the zonotope in the
proposed method, which results in higher accuracy as shown by
experiments. Experimental results have shown that the proposed
method achieves up to 500× speedup when compared to Monte
Carlo simulation with 1000 samples by 1% error; and up to 50%
smaller error when compared to previous parameterized nonlinear
macromodeling [11], [12], [13], [14] under the same order.

The rest of this paper is organized as follows. Section II reviews
the nonlinear MOR. Section III introduces basic principles of zono-
tope and reachability analysis. Further, the zonotope-based nonlinear
model order reduction considering multiple parameter variations is
proposed. The proposed method is validated by experiments in
Section IV. Conclusions are drawn in Section V.

II. NONLINEAR MODEL ORDER REDUCTION

Model order reduction (MOR) reduces complexity by building
subspace to approximate the original full state space. Unlike well-
developed linear MOR [8], [9], one problem of nonlinear MOR for



analog circuits is how to construct a global subspace from local
subspaces [12], [14] obtained at operating points of one trajectory.
This problem becomes even worse when parameter variations are
introduced. MOR for a nonlinear system using the system dynamics
can be performed as described below.

The dynamics of a nonlinear system can be described by differ-
ential algebraic equation (DAE) as

d

dt
q(x(t)) + f(x(t)) +Bu(t) = 0 (1)

in which x(t) ∈ Rn is the state variable vector and u(t) is the input
vector.

Suppose a subspace of dimension p is found in which z ∈ Rp,
the projection from the original state is expressed by z = V Tx.
Column vectors in V , V = [v1, v2, ..., vp] are the base vectors for
the subspace. The reduced state variable z satisfies

V T [
d

dt
q(V z) + f(V z) +Bu] = 0. (2)

To derive the projection matrix V , (1) needs to be linearized first
as below

C
dx(t)

dt
+Gx(t) = Bu(t) = b

C =
∂q

∂x
|x=x∗ , G =

∂f

∂x
|x=x∗ ;

(3)

Here, x∗ is the operating point at which the linearization is performed,
C is a non singular linearized capacitance matrix, G is linearized
conductance matrix, and the right hand side vector b contains both
the input vector u(t) and the linearization residue of f(x).

At the jth local operating points x∗
j , the Krylov subspace with

an order of p can be constructed by

Kr(Aj , rj , p) = colsp(rj , Ajrj , A
2
jrj , ..., A

p−1
j rj) (4)

where Aj = −G−1
j Cj and rj = −G−1

j bj . By orthogonalizing base
vectors for Krylov subspace, one can obtain the local subspace for
projection matrix Vj . To approximate a nonlinear system, one needs
to assemble those Vj together for an aggregated global subspace.

In [14] the subspace of the nonlinear system is constructed by two
types of manifolds in the state space. As shown in Fig.1, by simulating
(DC or TRAN) the full system with the training inputs, a series of
sample points are first generated and scattered in the state space as a
1D manifold, called the DC-manifold. Second, the nonlinear system
is linearized and further reduced at each sampled points. The spanned
subspace is the so-called AC-manifold.

DC manifold

AC manifold

0

Sample 

point

Fig. 1: Manifold-based model order reduction with DC-manifold
and AC-manifold.

Suppose a mapping between the jth sample point xj and one
point zj at the relevant AC-manifold is performed. For any nearby

operating point x, its corresponding mapping point at the relevant
AC-manifold is z, can be obtained as

z =zj + V T
j (x− xj);

x =xj + Vj(z − zj)
(5)

and vice versa for the reverse projection.

As such, the reduced nonlinear function f(z) becomes

f(z) =V T
j f(x)

=V T
j [f(xj) +Gj(x− xj)]

=V T
j f(xj) + V T

j GjVj(z − zj).

(6)

The charge function q(x) is reduced in the same way.

Based on (2), the reduced nonlinear DAE can be used for the
simulation by

dq(z)

dt
+ f(z) + V TBu = 0. (7)

A look-up table is used to store all reduced matrices V T
j CjVj and

V T
j GjVj .

To improve accuracy, neighboring points around one sample point
xi are utilized to approximate f(z) by

f(z) =

k∑
i=1

wi(z)(V
T
j f(xi) + V T

j GjVj(z − zi)).

The approximation is a weighted combination, in which the weights
wi(z) are calculated by Kernel distance in a a weighting sphere,
described in [20]. However, it is unknown how to build weights to
obtain an approximated subspace in presence of multiple parameter
variations with according parameterized subspace. In the following,
we show that the parameterized subspace due to multiple parameter
variations can be well covered by zonotope.

III. ZONOTOPE-BASED NONLINEAR MODEL ORDER
REDUCTION

A. Zonotope for Multiple-interval-valued Parameter Variation

Zonotope-based reachability analysis [16], [17] can efficiently
determine a reachable region that one dynamic system can evolve with
uncertain states as shown in Fig.2. As such, if we model the multiple-
interval-valued parameter variations to the state x by a zonotope
or a polytope, one can perform reachability analysis to obtain the
performance bound of analog circuits. In this paper, we further show
how nonlinear model order reduction can be introduced during the
zonotope-based reachability analysis.

Initial Set

Trajectory

Zonotope

Final SetParameter

variation

Fig. 2: Reachability based performance bound analysis with
zonotopes.

To start with, an important concept is the reachable set, which
is the collection of all possible operating points or states in the
state space that a system may visit, and can be approximated by an



enclosing polytope. One simple and symmetrical type of polytope,
called zonotope [16] is defined as follows.

Z ={x ∈ Rn×1 : x = c+

q∑
i=1

[−1, 1]g(i)}

={c, g(i), g(2), ...}
(8)

where c ∈ Rn×1 is the zonotope center; q represents number of
zonotope generators; and g(i) ∈ Rn×1 is a zonotope generator. A
zonotope spans a polytope in the state space to include multiple-
interval-valued state variables.

The interval-valued state variable can come from the uncertainty
of interval-valued parameter variation, which contains a constant
nominal value and a variation range. Such uncertain parameters with
variations can be modeled as zonotopes in the parameter space, which
is the first step of the proposed zonotope-based nonlinear model order
reduction. This is achieved as follows. A state matrix with uncertain
entries can be described in the form of matrix zonotopes by

M = {M ∈ Rn×n : M = M (0) +

q∑
i=1

[−1, 1]M (i)} (9)

which can be conveniently transformed into an interval matrix by
[M (0) −

∑
|M (i)|,M (0) +

∑
|M (i)|]. Similar to zonotopes, the

matrix M (0) is called the center matrix and the matrix M (i) is called
the generator matrix. Addition and multiplication rules for zonotopes
and matrix zonotopes are similarly defined in [17].

M (0) can be the linearized state matrix for the nominal operating
point; and M (i) contains variation ranges due to multiple parameter
variations. Uncorrelated parameter variations after decoupling are
filled in different generator matrices. As a result, the interval values
of multiple parameter variations can be considered in the zonotope
matrix for circuit simulation, including the use in nonlinear model
order reduction.

In the following, zonotope-based nonlinear model order reduction
with multiple parameter variations is discussed first. Performance
bound analysis for the reduced system will be illustrated at last.

B. Nonlinear Model Order Reduction with Zonotopes

To account for the impact by parameter variations, the linearized
system equation (3) needs to be formulated by zonotopes as below

C dX (t)

dt
+ GX (t) = Bu(t) (10)

where X is the state variable zonotope, and G and C are the zonotope
matrices of G and C respectively as discussed in (9).

The construction of zonotope conductance matrix G is straight-
forward for linear devices. For example, the zonotope conductance
of a multiple-interval-valued resistor is expressed as

g = g0 +

q∑
i=1

[−1, 1]∆g(i),

which includes the nominal value and the range of parameter varia-
tions. G is built up by assembling interval conductance stamps.

As for nonlinear devices such as MOSFETs by BSIM models,
the construction of state matrix needs one more step. Suppose that
one transistor width W has parameter variation, the variation of its
transconductance satisfies

∆gm =
∂gm
∂W

∆W.

Here, ∂gm
∂W

needs to be computed at one nominal operating point.
Other interval conductances including gds and gmb can be derived in

the same fashion. Inclusion of parameter variations can be performed
below

∆G =


. . .

∂gm
∂W

− ∂gm
∂W

− ∂gm
∂W

∂gm
∂W

. . .

∆W. (11)

After the above uncertain system equation is formulated with param-
eter variations modeled by zonotope matrix with multiple-interval-
values by

G ∈ [G(0) −
∑
i

|·G(i)|,G(0) +
∑
i

|·G(i)|]. (12)

One can build the local subspace by the Krylov method in the
next step. In addition, note that the correlated zonotope generators
can be merged into the same zonotope generator matrix. To consider
multiple-interval-valued parameter variations in zonotopes, the base
vectors in the Krylov subspace are formulated as zonotopes too by

Kr(A,R, p) = colsp(R,AR,A2R, ...,Ap−1R) (13)

where A = −G−1C and R = −G−1B. As such, the zonotope vectors
in (13) form the parameterized Krylov subspace.

What is more, QR decomposition is necessary to orthogonalize
the base vectors, but the interval-valued AkR cannot be handled
directly by the conventional QR decomposition routine. In this paper,
we orthogonalize the interval-valued matrices based on the center
matrix as below

Q(i) = M (i)((Q(0))TM (0))−1 (14)

where the center matrix M (0) is orthogonalized to Q(0), and the
zonotope generator matrix M (i) is orthogonalized to Q(i).

As such, the orthogonalized parameterized subspace can be ob-
tained by

V = {V ∈ Rn×n : V = Q(0) +

q∑
i=1

[−1, 1]Q(i)}. (15)

The construction of parameterized subspace is performed at each
sample point of DC-manifold, and is stored to produce the compact
macromodel in the following to provide a fast performance bound
analysis.

C. Parameterized Macromodel for Performance Bound

As a result, one can obtain the performance bound efficiently
based on the order-reduced macromodel. The state variable z in (7)
is now replaced by the zonotope Z with a nominal center z(0) and
a series of generators z(i) caused by multiple parameter variations.
The zonotope-based DAE is shown below based on (7) and (15) in
the reduced state space

VT CV dZ
dt

+ F(Z) + VTBu = 0. (16)

With obtained parameterized subspaces at the jth sample point,
the projection of f(x) from the original space to the AC-manifold in
(6) becomes

F(Z) = VT
j f(xj) + VT

j GjVj(Z − zj). (17)

Here, the multiplication of three zonotope matrices are used to eval-
uate the interval function F(Z). Note that higher-order of variation



products are discarded since their contribution is quite small compared
with first order ones:

VT
j GjVj = (Vj +∆Vj)

T (Gj +∆Gj)(Vj +∆Vj)

≈ V T
j GjVj +∆V T

j GjVj + V T
j ∆GjVj + V T

j Gj∆Vj

(18)
where the variations ∆Gj , ∆Vj refer to the sum of generators in Gj

and Vj . Note that the sample point xj in (17) is selected based on the
Euclidean distance from the operating point. The center of zonotope
Z of state vector is used to calculate the Euclidean distance.

To solve the zonotope-based DAE in (16), implicit Euler method
is applied with discretized time-step h at kth time-step by

VT CV Zk −Zk−1

h
+ F(Zk) + VTBu = 0. (19)

By substituting F(Zk) with (17), one can obtain

(
VT CV

h
+ VTGV)Zk =

VT CVZk−1

h
− VT f(xj)

+ VTGVzj − VTBu.

(20)

Here V has same dimension for all intervals. Performance bound is
obtained by transforming the final state set/zonotope into an interval
as in (12).

Note that the full multiplication between a zonotope matrix and a
zonotope leads to an increased number of generators. The Minkowski
summation rule [17] is used to merge zonotopes while preserving new
generators created during multiplication

Zk = A−1(
VTCVZk−1

h
⊕−VT f(xj)⊕VTGVzj⊕−VTBu) (21)

where A = VT CV
h

+ VTGV .

Moreover, there is no real inverse of zonotope matrix A =
(A(0), ..., A(i), ...) in (21) but by the two-step below. The first step
is the approximated expansion of A−1 by

A−1 = ((A(0))−1, ..., (A(0))−1A(i)(A(0))−1, ...). (22)

The second step is to calculate (A(0))−1 by LU decomposition.

(A(0))−1 = U−1L−1PT I (23)

where I is the identity matrix and P is the permutation matrix.
This approach enables a cost-effective numerical implementation of
zonotope-based circuit analysis similar to a SPICE-like simulator.

IV. EXPERIMENTAL RESULTS

The proposed zonotope-based nonlinear model order reduction
(ZMOR) is implemented in MATLAB on the basis of a SPICE-
like simulator. As such, one can have efficient performance bound
analysis with multiple-interval-valued parameter variations by the
reduced maromodel. Manipulations of zonotopes are performed by
a MATLAB toolbox named Multi-Parametric Toolbox (MPT) [21].
Experiment data is collected on a desktop with Intel Core i5 3.2GHz
processor and 8GB memory. 40nm is used as the technological node
for the test circuits: RC-interconnect with inverter-buffer chain; and
transmission-line (T-line) with current-mode-logic (CML) buffers.

A. Inverter-buffer Chain with RC-interconnect

The first test-case is a CMOS inverter-buffer chain containing
four stages as shown in Fig.3. Each resistor has an independent
variation of 10%; and transistors share a local variation of 5%
on their widths. The inverter chain is simulated for 40ns with a
square-wave signal input active between 5ns and 25ns. The reduced
macromodel of the inverter-buffer chain with variations is generated
by the proposed ZMOR. For comparison, the nonlinear MOR [14]
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Fig. 3: (a) N-channel inverter-buffer chain with RC-interconnect;
(b) Single channel.

is also deployed. The performance bound evaluation by reachability
analysis is undertaken afterwards for both models. To verify the
accuracy of reduced macromodels and the Monte Carlo of the
full model are performed considering all parameter variations. The
performance bound is defined as the spatial variation of voltage-
waveform difference (skew) in the state space, where the horizontal
axis v1 represents the voltage on the gate of the third inverter and the
vertical axis v2 is for the voltage on the gate of the fourth inverter.

Performance bound analysis of the reduced macromodels and the
Monte Carlo of the full model is shown in Fig.4 and Fig.5. Both
models are reduced to eighth order (p = 8). In Fig.4, reachability
analysis of the reduced macromodel by ZMOR is shown by white
blocks with pink envelopes. Each of the blocks is a zonotope for
the potential operating points at one time step. The blue curves are
generated by the Monte Carlo. One can observe that the trajectories
move towards the bottom-right corner under the input Vin = 1
starting from the top-left corner. After the input signal flips to zero,
the trajectories move back towards the initial state. What is more, one
can observe that the reduced macromodel with variations manages to
fit the trajectories of the full model by the Monte Carlo. There is small
error that happens when over-approximation increases as v1 reaches
about 0.6V . As shown in Fig.4, more than 90% of the operating
points at the final instant by the Monte Carlo settle within the final
set of reachability analysis based on the proposed model. In contrast,
the result of the reduced macromodel by [14] is shown in Fig.5.
One can observe that due to the incapability of handling parameter
variations, only 40% of operating points of the Monte Carlo at the
final time-instant are contained in the final zonotope, which is nearly
50% lower than what is achieved by the proposed model.

Furthermore, the macromodel is obtained with process variation
with 15% independent variations of resistors and 10% local variations
on transistor widths. Performance summary for different conditions
is listed in Table I in which the Monte Carlo is performed with 1000
samples, variation gives the variation of local and global parameters
and the proposed ZMOR refers to the zonotope-based MOR, min and
max stand for the lower and upper bounds of the voltage-waveform
difference at the final state. One can observe that the difference of the
boundaries compared with the Monte Carlo can be limited within 1%
for p = 8. Up to 500× of speedup can be achieved by the proposed
method.

B. CML Buffer with Transmission Line

Next, we consider a CMOS current-mode-logic (CML) buffer
with transmission line as shown in Fig.6. The reduced macromodel



TABLE I: Comparison between reachability analysis of ZMOR and Monte Carlo for a 4-stage inverter-buffer chain with RC-
interconnect

test case ZMOR full model MC error speedupvariation order min (V) max (V) run time (s) min (V) max (V) run time (s) min max
5%/10% p = 8 0.4013 0.4616 94.02 0.4008 0.4607 47956.35 0.12% 0.20% 510.1
5%/10% p = 7 0.4243 0.4681 75.49 5.86% 1.61% 635.3
10%/15% p = 8 0.3721 0.4909 93.89 0.3725 0.4870 47973.11 -0.12% 0.80% 511.0
10%/15% p = 7 0.4033 0.4890 75.21 8.27% 0.41% 637.9

TABLE II: Comparison between reachability analysis of ZMOR and Monte Carlo for CML buffer with transmission line
test case ZMOR full model MC error speedupChannel order min (V) max (V) run time (s) min (V) max (V) run time (s) min max

1 p = 7 0.7037 0.7417 59.94 0.6869 0.7579 20519 2.44% -2.13% 342.3
2 p = 9 0.7052 0.7359 88.32 0.6882 0.7588 33175,26 2.38% -3.01% 375.6
4 p = 10 0.7104 0.7311 194.19 0.6913 0.7543 77267.18 2.76% -3.08% 397.9
8 p = 19 0.6107 0.7750 564.71 0.6928 0.7587 229700.79 -11.84% 2.14% 406.8
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Fig. 4: Performance bound analysis with macromodel by ZMOR
for a 4-stage inverter-buffer chain with RC-interconnect.
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Fig. 5: Performance bound analysis with macromodel by [14] for
a 4-stage inverter-buffer chain with RC-interconnect.

with variations is generated by the proposed method with comparison
of [14]. The accuracy of the reduced model is validated by comparing
with the Monte Carlo of the full model considering all parameter
variations. Each resistor in the transmission line has an independent
variation of 10%. The amount of variations in transistor widths
are set as 10%. The number of channels can be increased. The
performance bound is defined as the spatial variation of voltage-
waveform difference (skew) of the CML buffer at different channels.

Performance bound analysis by the reduced macromodels and
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R3 R4

v1 v2
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Fig. 6: (a) N-channel CML buffer with transmission line; (b)
Single-channel.

by the Monte Carlo of the full model is shown in Fig.7 and Fig.8.
Both the models are reduced to seventh order (p = 7). In Fig.7,
reachability analysis by the ZMOR with consideration of interval-
valued parameter variations is shown by white blocks with pink
envelope. Each zonotope is a polytope (zoomed-in) that can be clearly
observed at the point of over-approximation in the beginning and
in the close-up of the final state. The blue curves are generated by
the Monte Carlo with parameter variations. Over-approximation is
observed at the initial points of the trajectory. The proposed method
can include the trajectories of the full model within the zonotopes
most of the time as shown in Fig.7. In contrast, as shown in Fig.8, only
40% of the operating points are included when using the macromodel
by [14].

Further, we show performance comparison by increasing the
number of channels. Performance summary for different number of
channels is listed in Table II in which the Monte Carlo is performed
with 1000 samples, ZMOR refers to the reachability-based model
order reduction, min and max stand for the lower and upper
bounds of the voltage-waveform difference at the final state. Channel
represents the number of channels. As shown, the order of reduced
model varies with the number of channels. The difference compared
to the Monte Carlo can be limited by increasing the order at the cost
of extra runtime. For 8-channel of order 16, up to 400× of speedup
can be achieved by the proposed method. The difference compared
to the Monte Carlo is nearly 10%. One can observe that increase in
speedup due to reduction in order but at the cost of accuracy.

Lastly, Fig.9 shows the transient waveforms by ZMOR and the
full model. Transient waveforms obtained at two outputs of buffers by
ZMOR of tenth orders (p = 10) and full order Monte Carlo are shown
in pink and blue color curves respectively. Transient waveforms of the
full model are nearly overlapped with the ZMOR of order 10 (p = 10)
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with less than 1% error. There is a slight difference between the two
curves shown in the close-up. The performance bounds with different
orders are shown in error column of Table I and II.

V. CONCLUSIONS

In this paper, the zonotope-based nonlinear model order reduction
is developed for nonlinear analog circuits such as I/Os with multiple
parameter variations. By zonotope-based reachability analysis, one
can generate a set of trajectories with formed performance bound,

and each trajectory is associated with one combination of parameter
variations. The parameterized subspaces for model order reduction
can be thereby constructed by a number zonotopes along the set of
trajectories with well-defined weights. The developed method can be
conveniently applied to evaluate the performance bound for large-
scale nonlinear analog circuits with multiple parameter variations.
As shown by numerical experiments, the zonotope-based nonlinear
macromodeling by order of 19 achieves up to 500× speedup when
compared to Monte Carlo simulations of the original model; and
up to 50% smaller error when compared to previous parameterized
nonlinear macromodeling under the same order.
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