
A Fast and Resource Efficient FPGA Implementation of Secret Sharing
for Storage Applications

Jakob Stangl∗†, Thomas Lorünser†, Sai Manoj Pudukotai Dinakarrao ∗
∗Technical University of Vienna, Austria

jakob.stangl@tuwien.ac.at, saimanoj.p.2013@ieee.org
†AIT Austrian Institute of Technology GmbH, Digital Safety & Security, Austria

thomas.loruenser@ait.ac.at

Abstract—Outsourcing data into the cloud gives wide benefits
and opportunities to customers. Beside these advantages, new
challenges such as confidentiality and accessibility have to be
addressed. One approach to overcome these challenges is by
applying secret sharing in a distributed storage setting, known
as cloud of clouds approach. For this purpose we present a
new hardware architecture of a wide parametrizable secret
sharing core. Performance metrics for various applied bit-
widths of secret words are given, which are crucial for benefits
of higher level protocols in the cloud of clouds approach.
Additionally, a complete system which is able to operate in a
network environment is presented. The achieved throughputs
are in the order of Gbit/s. It is significantly faster than similar
comparable hardware architectures and orders of magnitude
higher than software implementations.

Keywords-Secure cloud computing, cryptography, privacy,
information theoretic security, usability, privacy by design

I. INTRODUCTION

In recent years, cloud computing has emerged as a new

way to access information technology (IT) and has trans-

formed the digital landscape in many ways. The basic idea of

the cloud is to centralize IT and leverage economies of scale

to provide cheaper services. One major trend in cloud com-

puting is away from dedicated monolithic storage solutions

of specific vendors towards the use of cheap commercial off-

the-shelf (COTS) hardware to reduce costs and avoid vendor

lock-in. However, because of the high failure rate of COTS

hardware, an additional layer of redundancy is needed to

reach the desired reliability and availability of the overall

storage system.

The application of erasure coding is considered the most

efficient solution [1] to get high availability in modern

storage solutions. In this work we demonstrate the use of

secret sharing, similar to erasure coding. In the concept of

secret sharing, a secret, the data, is transformed into multiple

smaller so-called shares and stored on different servers. To

restore the original data, only a configurable subset of these

shares, k with k ≤ n, is required. It is of no importance

which of these shares are used, as long as sufficient shares

are recombined. The secrecy is accomplished by the fact

that any number smaller than this boundary k reveals no

information of the secret.

Confidentiality of data is protected as long as the dif-

ferent shares cannot be collected easily. In practice, the

shares should be distributed over multiple administrative

trust zones, which can be anything from separate servers

within data centres to dedicated cloud providers in multi-

cloud settings. Contrary to applying a cipher to the secret

and performing erasure coding, this approach is completely

key-less and therefore avoids issues of key management.

While various software solutions exist, few have been pro-

posed for hardware. However, implementations in dedicated

hardware offer the possibility of higher performance and

have the potential to expand its applicability.

When a file is shared, it is first split into words of a

certain bit-width, on which a mathematical algorithm is

applied. Although the security of the concept is not directly

influenced by the word size, there is a trade-off in terms of

efficiency and capabilities. Present solutions usually work on

word sizes of one byte, which lower the mathematical com-

plexity compared to greater bit-widths and provide higher

performance. However, if additional verifiability techniques

for auditing and verifiability procedures such as [2], [3] are

to be supported, small word sizes do not provide adequate

security and efficiency. Therefore in this work the feasibility

and efficiency of hardware implementations using different

bit-widths are investigated and efficient hardware architec-

tures, optimised for a certain bit-width, are proposed. All

these investigations are targeted at Field Programmable Gate

Arrays (FPGA). A fully parametrizable architecture is the

result. In particular, word-widths of 8, 16, 32, 64 and 128

bits were investigated.

A. About this Work

The contribution of this work is threefold: Firstly we

present, to the best of our knowledge, the fastest and most

resource efficient implementation of information theoreti-

cal secure secret sharing and information dispersal. The

implementation is orders of magnitudes faster than known

hardware implementations and tested software libraries. Sec-

ondly, it is also the first parameterizable core in terms of

bit-width to be used and the core automatically adapts to

the best implementation strategy for the given word size.

654978-3-9819263-0-9/DATE18/ c©2018 EDAA

Various optimization strategies have been investigated to

reach this goal. Thirdly, we present the first optimized and

fully integrated computational secret sharing core dedicated

for storage applications.

Furthermore a full prototype of a dispersed secure storage

application was developed for demonstration purposes and to

evaluate the developed IP core. The Zedboard , containing a

Xilinx Zynq-7000 AP SoC XC7Z020-CLG484, was selected

as the FPGA platform. It is partitioned into processing

system (PS) and programmable logic (PL). Synthesis and

implementations were performed with Vivado R© 2015.3.

B. Organization of the paper

In section II, an overview of the concepts applied in this

work is given. The related work is summarized in section III.

In section IV, the proposed architecture is presented while in

section V a complete system is developed and performance

results are presented. Conclusions are drawn in section VI.

II. PRELIMINARIES

The developed cores include both, a perfectly secure

secret sharing scheme (PSS) and a computational secure

scheme (CSS). The PSS scheme guarantees information

theoretical security, which is the strongest form of security

possible, but produces substantial storage overhead. In PSS,

each of the n shares has the same size as the original

unencoded data. Because PSS is not best suited for large

storage applications, we chose to support computational

secret sharing for bulk data processing. CSS is optimal in

terms of storage overhead and still provides good security

guarantees for practical usage.

A. Shamir’s Secret Sharing (PSS)

For PSS we selected Shamir’s algorithm [4], which is

based on the generation, evaluation and interpolation of

polynomials. In dependency of the threshold value k a

polynomial of degree k−1 is defined. The lowest coefficient

c0 is the secret, while all higher coefficients c1...cn are

random numbers. To generate the shares, the polynomial is

evaluated at n different x-points, x �= 0, where each x/f(x)
pair is a share. The size of the share can be minimized by

making x public. In order to restore the secret, a polynomial

interpolation can be performed if at least k shares are

combined. If any shareholder holds fewer than k shares

no information about the secret is revealed, which gives

Shamir’s scheme information theoretical secrecy.

B. Computational Secret Sharing (CSS)

Hugo Krawczyk published the first and very efficient

scheme for computational secret sharing [5]. First, the data

is encrypted by a secure encryption function ENC and

a random generated key. This key is shared using a PSS.

The rest of the data is shared with the polynomial concept

of Shamir, but replacing random numbers in all of the

coefficients of the polynomial with other secrets. This way of

using polynomials to encode data is also called information

dispersal (IDS) as introduced by Rabin [6] and is mainly

used for erasure coding in storage applications.

In the process of reconstructing the secret, first the key

is restored followed by the encrypted secret, which is then

decrypted by applying the key in ENC−1.

III. RELATED WORK

There are few hardware implementations of secret sharing

algorithms known from the literature and no extensive treat-

ment of such has been done so far. The focus in these works

is different from ours and — to the best of our knowledge —

there exists no speed optimized FPGA implementation for

full CSS schemes. Moreover, no work deals with the analysis

and evaluation of different word sizes and their trade-offs.

In [7], secret sharing is used in a network monitoring

application. Only the front-end sharing part, which handles

the data at Gigabit rates, was realized in hardware. A

significant performance increase was gained by restricting

the bit-width of the x-value. However, the multiplier in the

computational core was not optimized for this application

and gives potential for further performance increases. The

work was implemented on a network FPGA card using a

Virtex-II Pro 50 FPGA. The isolated examination of the

share generation reveals a throughput of 2359 Mbit/s with

the usage of 1633 slices in this design. These are roughly

3266 4-input look-up-tables. The full key share units reach a

throughput of 343 Mbit/s with 3687 slices and 18 BRAMs.

Another implementation from [8] focuses on secure se-

cret sharing. The target architectures are application-specific

integrated circuits (ASICs), synthesized using Cadence En-

counter RTL Compiler with the Nangate 45 nm Opencell

library. They apply robust codes and algebraic manipulation

detection to resist strong cheating attacks. Besides the size of

the implementation the results are focusing on the efficiency

of cheating detection and correction and the causing area-

overhead. There are no performance results given in terms

of throughput or any bit-width dependencies.

There are various software implementations of secret

sharing. The crucial parts of software implementation are the

time-consuming polynomial multiplications limiting the per-

formance. Multiplications of small words can be processed

efficiently with look-up-tables, but processing time grows

exponentially with the greater bit-widths needed by larger

Galois fields (GF). Therefore, software implementations are

only efficient for widths of up to 16 bits.

In [9], a collection of libraries supporting secret sharing

was gathered. The GFShare library 1 operates in a GF(28)

field and was analysed in detail on an Intel i5-2500K,

3.3 GHz, 8 Gbit RAM, computer system. The achieved

1https://launchpad.net/libgfshare (Accessed: 03.07.2017)

Design, Automation And Test in Europe (DATE 2018) 655

throughput for sharing large files for an applied 5/3 thresh-

old scheme was 7.4 Mbit/s. This value is relatively small

compared to Gigabit networks and small extension fields.

In [10], secret sharing schemes were analysed in terms of

their performance. The focus of their work is the comparison

of different schemes according to the threshold parameters n
and k. There was no information about the computer system.

However, with Shamir’s secret sharing scheme a throughput

of about 9 Mbit/s could be achieved for generating 10 shares.

The computational secret sharing achieved a throughput of

about 18 Mbit/s for the same amount of shares.

To increase the throughput, efforts were made to use the

Graphics Processing Unit (GPU) for better performance. In

[11] it was shown that the benefit of a GPU increases with

higher thresholds. A threshold of 4 achieves a throughput

of 48 Mbit/s for the calculation of one share. Another

implementation of secret sharing based on cellular automata

on a GPU [12] reveals a speed of 40-160 Mbit/s in a 5/5
threshold scheme.

The most comprehensive secret sharing library for storage

applications was presented in [13] as part of a full multi-

cloud storage application. However, the implementation is in

Java and the reported performance figures are of the order

of about 500 Mbit/s in a 4/3 threshold scheme.

IV. ARCHITECTURE

The main functional block is structured into a Share

Generation Unit (SGU), a Secret Reconstruction Unit (SRU)

and an Advanced Encryption Standard Core (AES), which

performs the ENC and ENC−1 functions of the CSS

algorithm. Moreover, a True Random Number Generator

(TRNG) based on the design of Wold and Tan [14] was

developed, but excluded from the core to enable different

TRNGs in order to reach the individual space security trade-

off. The SGU and SRU are designed to work in Shamir’s

mode as well as in the computational mode. They are

capable of sharing the key and the payload, selectable via

a single signal. Due to the high resource occupation of the

AES, only one AES is shared between the SGU and SRU.

While the AES, SGU and SRU operate on streams, inde-

pendently processing words of a certain bit-width, the overall

architecture is packet based for better communication on

the external interfaces and a better combination of payload

shares with their according key share. Figure 1 represents

this architecture. Header signals are added to each packet to

enable fragmenting and identification of packets, which are

additionally passed through the CSS core.

While the AES statically works with 128 bits, the SGU

and SRU are designed to work generically at a bit-width

of 8, 16, 32, 64 or 128 bits. The bit-width of the SGU and

SRU is selected before synthesis via generic parameters. The

design is then adapted to certain implementation strategies

for the set bit-width. All operations are performed within a

Galois field GF(2n), where n corresponds to the bit-width.

Share0

Out
Buffer

Sharen

Out
Buffer

...
...

secret out

secret in

share0 out

sharen out

share0 in

sharek in

header

header

header

header

new key

rand

AES-
Arbiter

Secret
In

Buffer

Secret
Out

Buffer

AES

SRU
Buffer

SGU
Buffer SGU

SRU

Share0

In
Buffer

Sharen

In
Buffer

pre-calculated
data from PS

Figure 1: Architecture of the CSS core.

A. Share Generation and Secret Reconstruction

If the Secret In Buffer contains a whole packet and the

AES is not busy, it is passed to the AES. If a new key is

required according to the packet’s header, it is loaded and

forwarded to the SGU Buffer, together with the encrypted

packet. If the SGU Buffer is full, the packet is forwarded

to the SGU, where the key is first shared using Shamir’s

mode and then the payload is shared with the computational

mode. The reconstruction follows the same sequence.

B. AES Blockcipher Unit

An OpenCores certified AES core2 having sufficient per-

formance was chosen. It is able to process one new 128 bit

block each cycle, with a latency of 22 cycles. The applied

core makes use of BRAMs and LUTs and was modified in

this project to give more generic design options for their

usage. The plain AES core was extended to operate in

counter mode (CTR). Because it is shared by the SGU and

SRU, the final AES unit consists of two count registers of

generic width and two key registers.

C. Share Generation Unit (SGU)

The share generation unit supports two modes, Shamir’s

scheme and information dispersal. Both require the defini-

tion of a unique polynomial and the shares are generated

by evaluation at an arbitrary point x with the condition

x �= 0, i.e. f(x) =
∑n

i=0 cix
i. In Shamir’s mode the lowest

coefficient c0 is a secret word and the other coefficients are

filled with random words, while in the information dispersal

mode all coefficients c0...cn are filled with secret-words.

Evaluating the polynomial directly requires
∑n

i=0 (i)
multiplications and n additions. Conversely, in the Horner

scheme the coefficients are processed from cn to c0 down-

wards which allows a significant reduction to n multiplica-

tions and n additions, as shown in equation (1).

f(x) = (...(cnx+ cn−1)x+ ...+ c2)x+ c1)x+ c0 (1)

2https://opencores.org/project,tiny aes (Accessed: 16.9.2017)

656 Design, Automation And Test in Europe (DATE 2018)

MULT Reduce

Adder
(XOR)

M
U
X

Regx1

rand

secret

share1

FSM reset

share_valid

secret_rd

rand_rd

sharen
xn

mode

Reg

MULT Reduce

Adder
(XOR)

Reg

enable

Figure 2: Architecture of the SGU.

GF(28) GF(216) GF(232) GF(264)GF(2128)

0

2

4

6

48
0 92
4

1
,2
11

2
,8
11

5,
36
8

06
-i

n
p

u
t

L
U

T
[×

10
00

]

LUT

min clk period

0

2

4

6

8

3.
6 4.
5

3
.9

4
.9 5
.6

M
in

im
u

m
cl

k
p

er
io

d
[n

s]

Figure 3: Implementation results of the SGU, where 10

shares can be generated in parallel.

The SGU architecture is illustrated in figure 2. Multiple

Polynomial Evaluation Units (PEUs) perform the evaluation

of the Shamir polynomial to generate the shares in parallel.

Each PEU needs k − 1 cycles to construct the share; the

coefficients are loaded sequentially. Each PEU consists of

an adder, realizable with XORs, a multiplier and a reduction

circuit appropriate to the Galois field. By defining the Galois

field with an irreducible polynomial of low weight, the

reduction circuit can be realised by a minimum number of

static-XOR connections. The polynomial multiplier shows

the strongest size increase with ascending bit-width. As

mentioned in [7], a significant reduction can be realized by

restricting the x-value. While this value is generic in the

design, it was set to 8 bits in this paper. By holding the x-

value at a certain bit-width, the size growth is linear, which

results in a similar share generation performance for all the

investigated bit-widths. In figure 3 implementation results

are shown for a parallel generation of 10 shares.

D. Secret Reconstruction Unit (SRU)

The evaluation process of the Shamir polynomial is a

linear equation system. Written in matrix notation it leads to

formula (2), with a matrix SEC containing a set of secrets,

a matrix SH containing a set of shares and a matrix X with

x-values and their powers. Such secrets or shares are always

computed together.

⎛
⎜⎜⎝
share0

share1

share2

share3

⎞
⎟⎟⎠

︸ ︷︷ ︸
SH

=

⎛
⎜⎜⎜⎝

1 x0 x2
0 x3

0

1 x1 x2
1 x3

1

1 x2 x2
2 x3

2

1 x3 x2
3 x3

3

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
X

⎛
⎜⎜⎝
secret0

secret1

secret2

secret3

⎞
⎟⎟⎠

︸ ︷︷ ︸
SEC

(2)

By solving the equation for SEC, the matrix X has to be

inverted, which leads to equation (3) for the reconstruction

of a set of secrets.

SEC = X−1SH (3)

Because the calculation of the matrix X−1 is of high

computational effort and is only required if new x-values

are applied, it has high potential for HW/SW partitioning.

Therefore the PS of the Zynq-7000 SoC calculates all

matrix coefficients and loads these values into the SRU. The

hardware architecture of the SRU is presented in figure 4.

Every row of the matrix X is calculated in parallel,

where each multiplication takes place in a sharen −
subreconstruction block. The multiplication results are

added and reduced in order to obtain one secret of the set.

Since there is no feedback loop, the whole process can be

pipelined. To meet a custom design trade-off of resources

against timing requirements, the number of pipelining stages

can be set at synthesis time by generics. The rows of the

matrix are processed sequentially by applying different val-

ues of the matrix X but the same share for each multiplier.

These values are previously calculated from the PS.

While the polynomial multiplier becomes the bottleneck

of the SRU, a bit-width limitation of one input, as it

was done for the SGU, is not applicable here. However,

because these multipliers essentially limit the applicability

of higher bit-widths, further optimisations were necessary.

One approach is applying Karatsuba’s algorithm [15] to

decrease the mathematical complexity. A multiplication of

n bits is broken down to 3 multiplications of n/2 bits

and 4 additions, which reduces the complexity from O(n2)
to O(2log2(3)). This method is applied recursively. In the

case of 6-input LUTs a resource reduction is observable

upon a width of 16 bits. Therefore, in the proposed design,

Karatsuba’s algorithm is applied recursively until a 16× 16
bit sub-multiplication is reached.

Since polynomial multiplications are performed, arith-

metic multipliers of FPGA-DSPs are not directly applicable.

The main difference is the absence of the carry bit. Designs

Design, Automation And Test in Europe (DATE 2018) 657

MULT

ADD reg

FSM

secret valid

...

MULT

Mem

Mem

reg

reg

reg

reg

Reduce
secret

row_sel

matrix_
elements

sel_col

share0

Sharen

share_rd

share_rd

mode

enable

Figure 4: Architecture of the SRU.

GF(28) GF(216) GF(232) GF(264) GF(2128)

0

5

10

15

20
(9

6
D

S
P

)

2
0

3

6
6

2 1
9

1
8

5
8

8
7

1
8

k

1
2

3
(4

D
S

P
)

2
9

1
(1

6
D

S
P

)

9
3

7
(4

8
D

S
P

)

2
9

5
5

(1
4

4
D

S
P

)

1
6

k

6
-i

n
p

u
t

L
U

T
[×

10
00

]

LUT - no DSPs used

LUT - DPSs used

min clk period - no DSPs used

min clk period - DSPs used

0

2

4

6

8

2.
5 3

3.
3

4.
3 4.
5

3
.9

3
.9

3
.9

3
.9

3.
9

M
in

im
u

m
cl

k
p

er
io

d
e

[n
s]

Figure 5: Implementation results of the CSS SRU with and

without the inclusion of DSPs.

to include DSP multipliers were investigated, even if poten-

tially less efficient. In practice an 18 × 25 DSP-multiplier

was adapted to a 9 × 6 polynomial multiplier by skipping

all the bits influenced by a carry. From these a 16 × 16
bit polynomial multiplier was formed to serve as a base

multiplier block, which saves about 15-20 LUTs per DSP.

The number of FPGA-DSPs used can be controlled by

generics, allowing excess DSPs to save LUTs. The imple-

mentation results for the SGU, assuming a threshold of 4, are

presented in figure 5, comparing the involvement of DSPs

in the polynomial multipliers against pure LUT utilization.

V. RESULTS

In order to evaluate the complete architecture in a real

setup, a complete system was developed, embedded in a

network environment to manage, share and reconstruct com-

plete files. As target platform the Zedboard was extended

GF(28) GF(216) GF(232) GF(264) GF(2128)

50G

100G

150G

127G 130G
149G

124G 118G

65G 56G 48G 38G 28G

H
ar

d
w

ar
e

T
h

ro
u

g
h

p
u

t
[b

it
/s

]

GF(28) GF(216) GF(232) GF(264) GF(2128)

100M

200M

262M 273M

152M 141M 142M144M 148M

104M 98M 89M

S
o

ft
w

ar
e

T
h

ro
u

g
h

p
u

t
[b

it
/s

]

Share generation Secret reconstruction

Figure 6: The theoretical maximal throughput of a SW and

an FPGA implementation for an 8/4 threshold scheme. The

throughput is measured in share-bit/s for the share generation

and secret-bit/s for the secret reconstruction.

by an Ethernet FMC, where 3 Gigabit Ethernet connections

are used. The CSS core was encapsulated in a wrapper, to

correctly distribute each packet of the 3 physical connections

to a buffer, as prepared dynamically by the PS. A specially

developed protocol carried over UDP is used to fragment

and identify all packets.

The result is a resource optimized architecture, widely

parametrizable for parameters such as the bit-width, x-

value range, buffer size, packet size, n/k threshold scheme,

inclusion of DSPs, BRAM/FF usage, pipelining stages etc.

In order to obtain the theoretical throughput, the devel-

oped cores were evaluated independently and the results

were extrapolated for a 50% utilization of the target FPGA,

listed in figure 6. In this theoretical estimation, the data flows

and buffers were neglected. DSPs were not included in this

design to allow a more universal comparison. The counter-

part was a software-implementation, which also neglected all

data flows and simply performs all of the required calcula-

tions, performed on an Intel i5-4590 Quadcore running at 3.3

GHz and full utilization of all cores. The share generation

rate in the FPGA design could be held almost constant due

to the fixed bit-width of the x-point. The reconstruction

shows a significant performance decrease with ascending bit-

width, for both the software and hardware implementations.

However, overall the FPGA design shows the capability

of throughputs 100 to 1000 times faster than its software

counterpart. This was observed for the software applied in

figure 6 as well as the previously described existing software

libraries summarized in section III.

The complete core in the prototype was built with a 64

658 Design, Automation And Test in Europe (DATE 2018)

Functional Unit LUT (%) FF (%) BRAM DSP P(W)

Complete Design 27745 (100) 35405 (100) 90 144 2.99
PS — (–) — (–) — — 1.53
3 Ethernet IP 7317 (26) 3984 (11) 4 0 0.88
TRNG 146 (0.5) 52 (0.1) 0 0 0.001
Share Switch 119 (0.7) 151 (0.7) 0 0 0.014
CSS Core 17135 (62) 20448 (58) 77.5 144 1.02

AES 2588 (9.3) 8851 (43) 36 0 0.46
SRU 2942 (11) 7467 (36) 0 144 0.3
SGU 1638 (6) 1095 (5.3) 0 0 0.033
CSS Buffers 3154 (11) 9728 (48) 39 0 0.15

Table I: FPGA utilization results for the functional units of

a complete CSS system in a 4/8 threshold scheme.

bit architecture, as it is a good trade-off in terms of resource

utilization and capabilities. It is capable of processing 6.4

Gbit/s, working with 64 bit words and an 8/4 threshold

scheme. The bottleneck is the external Ethernet connection,

which limits the speed to 1 Gbit/s. The resource utilization

and power consumption, structured in terms of functional

components, is summarized in table I.

VI. CONCLUSION

We presented the first hardware based computational

secret sharing core including information theoretical secret

sharing and information dispersal as dedicated components.

Furthermore the proposed core is widely parametrizable and

the influence of the secret word-width on the performance

has been evaluated and shown in detail.

We show the feasibility of significant performance in-

crease when performing secret sharing on hardware. While

a significant performance drop for higher bit-widths is

observable, as it is in software, higher bit-widths are still

processable with throughput orders of magnitudes higher

than in software solutions.

Therefore, FPGA implementations of secret sharing are

applicable in multi-cloud storage solutions to enable the

efficient usage of higher protocols, such as auditing and

verification. It widens the application of a secure storage

solution on top of existing cloud infrastructure in a dis-

tributed setup. Single point of trust or failure are avoided

and secrecy is achieved without key-management issues.

This work is a step towards practical high-speed low latency

storage solutions based on secret sharing, which has been

considered in academia for a long time but was lacking

efficient implementations.

In the future work the core has to be adapted to high-

bandwidth storage interfaces and cloud storage protocols in

order to increase its applicability. Moreover, the extension

to a verifiable secret sharing core is of interest.

ACKNOWLEDGEMENTS

This work was partly funded by the European Com-

mission through grant agreement no 644962 (PRIS-

MACLOUD). The authors would also like to thank Xilinx

University program (XUP) for their support.

REFERENCES

[1] H. Weatherspoon and J. Kubiatowicz, “Erasure coding vs.
replication: A quantitative comparison,” in Revised Papers
from the First International Workshop on Peer-to-Peer Sys-
tems, 2002.

[2] D. Demirel, S. Krenn, T. Loruenser, and G. Traverso, “Ef-
ficient and Privacy Preserving Third Party Auditing for a
Distributed Storage System,” in International Conference on
Availability, Reliability and Security, 2016.

[3] S. Krenn, T. Loruenser, and C. Striecks, “Batch-verifiable
Secret Sharing with Unconditional Privacy,” in International
Conference on Information Systems Security and Privacy,
2017.

[4] A. Shamir, “How to share a secret,” Communications of the
ACM, vol. 22, no. 11, pp. 612–613, nov 1979.

[5] H. Krawczyk, “Secret sharing made short,” in International
Cryptology Conference on Advances in Cryptology, 1994.

[6] M. O. Rabin, “Efficient dispersal of information for security,
load balancing, and fault tolerance,” Journal of the ACM
(JACM), vol. 36, no. 2, pp. 335–348, 1989.

[7] J. Wolkerstorfer, “Secret-sharing hardware improves the pri-
vacy of network monitoring,” in International Workshop on
Data Privacy Management, and 3rd International Conference
on Autonomous Spontaneous Security, 2011.

[8] P. Luo, A. Y. L. Lin, Z. Wang, and M. Karpovsky, “Hardware
implementation of secure shamir’s secret sharing scheme,” in
International Symposium on High-Assurance Systems Engi-
neering, 2014.

[9] M. Kirchner, “On the applicability of secret sharing cryptog-
raphy in secure cloud services,” Master’s thesis, Technische
Universität Wien, 2014.

[10] A. Abdallah and M. Salleh, “Secret sharing scheme security
and performance analysis,” in International Conference on
Computing, Control, Networking, Electronics and Embedded
Systems Engineering (ICCNEEE), 2015.

[11] S. Chen, L. Bai, Y. Chen, H. Jiang, and K. C. Li, “Deploy-
ing scalable and secure secret sharing with gpu many-core
architecture,” in IEEE International Parallel and Distributed
Processing Symposium Workshops PhD Forum, 2012.

[12] R. A. Hernandez-Becerril, A. G. Bucio-Ramirez, M. Nakano-
Miyatake, H. Perez-Meana, and M. P. Ramirez-Tachiquin,
“A gpu implementation of secret sharing scheme based on
cellular automata,” The Journal of Supercomputing, 2016.

[13] T. Loruenser, A. Happe, and D. Slamanig, “Archistar: to-
wards secure and robust cloud based data sharing,” in Cloud
Computing Technology and Science (CloudCom), 2015 IEEE
International Conference on, 2015.

[14] K. Wold and C. H. Tan, “Analysis and enhancement of
random number generator in fpga based on oscillator rings,”
in International Conference on Reconfigurable Computing
and FPGAs, 2008.

[15] A. Karatsuba and Y. Ofman, “Multiplication of multidigit
numbers on automata,” in Soviet Physics - Doklady, 1963.

Design, Automation And Test in Europe (DATE 2018) 659

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

